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Hello. So, in the last lecture, we discussed about the method of weighted residual and

how we develop the approximate solution for any differential equation.  Today we will

look at the choice of weighting function on which the whole method hinges upon. So,

how do we choose these weighting functions? There are different types of weighting

functions and that is what gives rise to different variants of method of weighted residual.
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First one is what we call as the point collocation method. In this method we enforce the

residual to be zero at a particular point. 

So,  that  is  same as  saying  that  we  consider  the  weighting  functions  as  Dirac  delta

functions.  Dirac  delta  functions  are  special functions  which  shoots  to  infinity  at  a

particular point and are zero otherwise with the additional condition that the integral of

this function is equal to unity.

So, the whole idea of Dirac delta function is that it can be used to model discontinuities

such as what we are trying to impose here that residual or the error of approximation



should be zero at a particular point. Iterating the property of Dirac delta function below

as we will use it very often.

In the above equation, the Dirac delta function  δ ( x−b ) indicates that the function has

zero value everywhere except at x=b . At x=b the function value is infinite and integral

of Dirac delta is unity. 
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So, in the point collocation method; we take the domain residual and Dirac delta function

at one point and we make this residual vanish at that particular point. We can generate as

many points as required in the domain according to the number of unknown coefficients

Each point giving an algebraic equation and solving the set of algebraic equations to find

out unknowns. 

So, essentially  transforming differential  equation into a set  of simultaneous algebraic

equations. So, we generate as many equations as we need by enforcing the residuals to

vanish at different points in the domain and solving the resulting simultaneous equations.

The next  method,  or the next  variant  of method of weighted  residual  is  subdomain

collocation. In this method, instead of forcing the error to vanish at a particular point, we

insist on vanishing the error over part of the domain. 

We divide the domain of the problem into sum of non-overlapping subdomain; so total

∫ f (x ) δ ( x−b )dx=f (b ) where b∈ [a,c ]



domain  of  the problem  Ω can be  represented  as  a  sum of  several  subdomains  Ω j ,

which  are  non-overlapping  in  nature.  And  then  we  integrate  the  error  over  each

subdomain and put it to 0. 

So, on an average the error vanishes over the individual subdomains and we can use as

many subdomains as required according to the number of unknowns in the problem,

which will fetch as many equations as the number of unknowns.

Essentially  this  translates  to  saying  that,  weighting  function  is  equal  to  unity  over

individual subdomain and it is equal to 0 over other subdomain. So, for sub domain Ω j ,

the weighting function is  equal  to 1 and it  is  0 everywhere else.  And then it  is  just

evaluating  the  definite  integral  and  that  will  fetch  a  set  of  algebraic  simultaneous

equations in terms of the unknown coefficients which can be solved for evaluating those

coefficients.

The third and the most popular method of all in methods of weighted residuals is called

Galerkin method. In Galerkin method, the weighting functions are taken to be the same

as that of the trial functions in the series solution that we had earlier.
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So, the approximate solution is given as linear combination of these trial functions; c j

are the unknown coefficients and  g j  are the trial functions and we choose these trial

functions  as  the  weighting  functions.  This gives  us  Galerkin  method  for  method  of



weighted residuals.

And  we  can  go  ahead  and  evaluate  the  integrals  and  that  will  fetch  us  a  set  of

simultaneous equations and we can use those for solution of simultaneous equations.

Galerkin method is very popular and there are reasons for that; first thing is because we

are choosing the weighting functions as the trial functions. So, the whole problem of

uncertainty over what weighting functions to chose vanishes.

And because the trial functions satisfy the homogeneous boundary conditions; the error

in the domain are weighted more heavily than at the boundaries.

Let us try to solve a second order differential equation similar to the actual deformation

problem or it could also be a heat conduction problem. Interpretation of coefficients and

terms  may vary  from application  to  application;  but  essentially  it  is  a  second order

differential equation with constant coefficients.
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This is a second order differential equation and the domain is 0 to 1 and the function q

in this particular case, is defined to be unity over half of the domain and it is equal to 0

over other half of the domain.  It is a second order differential equation, so we need to

d
dx (k

dϕ
dx )+q=0 Ω : {x | 0<x<1 }

with

ϕ ( x=0 )=0 ; ϕ (x=1 )=0 ; k=1 ; q={1. 0 ; 0<x<0 .5
0 .0 ; 0 .5<x<1 }



have two boundary conditions. And in this particular case, both boundary conditions are

specified on the basic unknown of the problem. 

So, the unknown ϕ  is equal to 0 at  x=0  and it also vanishes at the other end of the

boundary.  So  we  have  homogeneous  boundary  conditions  at  both  ends  and  for

homogeneous boundary conditions a very simple approximation can be sine function,

sin (πx ) , sin (2πx ) ,sin (3 πx )  as they all will vanish at x=0  and x=1 .

We consider  two  term approximation  of  ϕ ( x ) as  ( x )=c1sin (πx )+c2sin (2πx )ϕ .  This

obviously, satisfies the specified boundary conditions of the problem. Now, when we

substitute this in the governing differential equation, that gives us the domain residual.

There is only domain residual in this case, there are no boundary residuals as boundary

conditions are exactly satisfied. 

So, once we substitute this approximate solution in the governing differential equation,

we get the domain residual as : 
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∫
Ω

W j ( x )RΩ dΩ = 0

= ∫
0

0 . 5

W j ( x ) [−π2c1sin πx−4 π2c2 sin2 πx+1 ]dx+

+∫
0 .5

1 .0

W j ( x ) [−π 2c1sin πx−4 π2c2sin2 πx ]dx



So, the statement of weighted residual, I mean the whole basis of approximate solution

is; we can enforce weighted sum of the domain residual to vanish. In the above problem,

the entire domain Ω  is split into two parts, because the domain residual is discontinuous

over two parts. First half is 0 to 0.5, second half is 0.5 to 1. Now, at this point we can

choose  any  of  the  three  methods  that  we  discussed;  point  collocation,  subdomain

collocation, and Galerkin method.

Let us use Galerkin method, though other methods could as well be used. So, we choose

two  weighting  functions.  First  we  choose  W 1=sin πx ,  substitute  and  evaluate  the

integral  that  will  fetch  us  one  equation  in  terms  of  unknown  c1  and  c2 .  In  this

particular  case,  since  sin πx  is  orthogonal  to  sin2 πx ;  the  integral  of  sin πx  and

sin2 πx  will vanish, so eventually we will have only one term involving c1 .

Similarly we now repeat  this  operation  with the choice of  sin2πx  as  the weighting

function. And again after carrying out the integral, we will have another set of equations

and  once  we  solve  these  two set  of  equations  simultaneously,  we  get the  unknown

coefficient c1  and c2 as :

Substituting it back in the approximation 

 that  is  the  desired  approximate  solution  of  the  differential  equation.  Now,  it  is

instructive to look at how the solution looks like and what happens to the residuals, what

is the quality of solution and quality of approximation.

c1=
2

π3
; c2=

1

2π 3

( x )=c1sin πx+c2 sin2 πxϕ
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So, this is what the approximate solution looks like. And obviously, we have chosen the

approximation function,  such that boundary conditions  are satisfied.  So, we have the

exact satisfaction of the boundary condition, i.e. at x=0 , the function value is 0 and at

x=1 , the function value is 0 again, in between it rises and then it comes back.

Now, the domain residual as you can see oscillates around 0 throughout the domain. In

other words, the entire error oscillates about this 0 line and it will keep on decreasing as

we increase the number of terms in the series. So, the error will shrink closer to the 0 line

and the approximation will become progressively better as we add more number of terms

in the series.

So, instead of just two term approximation, if I use three term approximation, four term

approximation, six term approximation; I will get better and better quality of results with

smaller absolute error in the domain. This is similar to what we always know; we have

always known this the quality of function approximation by using Fourier series.  If we

use the trigonometric function as the trial function; then effectively we are using Fourier

series approximation. 

And we all know about the convergence properties of the Fourier series. Any periodic

function can be represented as a sum of trigonometric functions. 
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So, now one thing that we need to look at is, while we are looking at the governing

differential equation - second order differential equation in this case. The approximation

has to be consistent with the highest order of derivative that exist in the problem. For a

solution of second order differential equation, I cannot choose an approximation which is

just a constant value. 

If I choose ϕ=ϕ0 where ϕ0  is a constant, then the entire thing breaks down. There is no

working approximation to find as derivative of ϕ0 will be 0 and I will be left with very

absurd situation like q  is equal to 0. 

So,  obviously,  that  does  not  work  and  that  is  a  care  that  we  need  to  take  while

constructing the  approximate  solution.  The approximation  that  we develop has  to  be

sufficiently smooth, it has to be sufficiently differentiable as dictated by the highest order

of derivative in the problem. 

And that is what we call as the strong formulation of method of weighted residuals. In

the strong formulation, the approximate solution satisfies the continuity requirement to

the highest degree as dictated by the governing differential equation.

So, in this case the continuity requirement is that the approximate function has to be at

least twice differentiable; we have to choose a form of the approximate solution which

will be differentiable at least two times.  That is the strongest form of continuity being



enforced, that it has to be differentiable at least two times.

Now, let us look at it in a slightly different way. We can evaluate the integral of product

of two functions W  and the derivative of approximation. So, I can integrate it by parts.

So, if I perform integration by parts on strong form, this is the result I get :

 

Now, interestingly we have not violated any laws of mathematics here; but the statement

of weighted residual now is different than before. 

What  is  the difference?  The first  noticeable  difference  is,  while  the highest  order  of

derivative in the strong form of weighted residual statement was 2; in this particular case

the highest order of derivative is only 1. So, the approximate solution for this weighted

residual  statement  to  exist  approximate solution only needs to  be differentiable  by 1

degree.

So, I do not need to construct an approximation,  which will be differentiable at least

twice; the approximation is good enough as long as I can get a finite derivative, as long

as the first derivative exists. Of course, that comes at the cost of increased degree of

continuity  requirement  on  the  weighting  function.  Earlier,  there  was  no  such

requirement, the weighting functions were completely arbitrary, I could choose anything

and that is how point collocation or subdomain collocations methods could exist, because

 could be anything.

But  now  if  I  take  the  liberty  of  reducing  the continuity  requirement  or  the

differentiability requirement on the approximate solution at the cost of increasing the

continuity requirement  of the weighting function; then I  am looking at  a situation in

which the approximation can be constructed of lower degree polynomials which may not

be sufficiently differentiable as dictated by the governing differential equation.

That  is  a  very  profound  statement.  The  continuity  requirement  for  the  approximate

solution is  now decreased at  the cost of higher  continuity requirement  for weighting

functions and this is called the weak formulation of method of weighted residuals. 

0=[W j(k d ϕ̂dx )]
0

1

−∫
0

1

k
dW j

dx
d ϕ̂
dx

+∫
0

1

W j q dx



We can see that in the domain integral if I choose weighting functions same as the trial

functions this integral essentially leads to a symmetric system of simultaneous equations,

a much desired quality for numerical computations. A symmetric system of equations is

numerically  very  stable  and  very  efficient  and  robust  solution  techniques  can  be

deployed for solution of simultaneous equations.

So, it is by using this weak form of method of weighted residual and using the Galerkin

approach;  it is guaranteed that the simultaneous equations that we will be getting for

solution of unknown coefficients are going to be a symmetric system of equations. That

is a very desirable property for numerical solution. 

It  may seem that  now we have additional  difficulty  of  choosing weighting  function,

which now has a higher continuity requirement. But that is not a problem because, we

are using weighting function same as the trial functions. And as long as trial functions

are sufficiently smooth according to the order of derivative required as dictated by this

method a statement of weighted residual, we have just as many trial functions as we need

for the generation of requisite number of equations for solving unknown coefficients.

So, it is a kind of made for each other kind of situation and leads to a very stable system

of equations for solution. Now, another thing that we need to notice here is the boundary

term;  it is  always  a  product  of  two  terms  weighting  function ,  and  a  derivative

function. Interpretation of this boundary term varies from application to application. 

In case of structural mechanics applications; this derivative term will always correspond

to  a  force  like  quantities  and,  the weighting  function  term  always  corresponds  to

displacement like quantities.  Another interpretation of weighting function can  be as a

virtual displacement.

So, this boundary term can be interpreted as the work done by the boundary forces in

moving  through  the  virtual  displacements  at  the  boundaries.  And  looking  at  this

boundary  term also  gives  us  important  idea  about  the  identification  of  what  are  the

essential boundary conditions.

Given  the  differential  equation  and  the  associated  boundary  conditions;  how do  we

recognize which of the boundary conditions are essential boundary conditions and which

are natural boundary conditions? or  in mathematical  parlance,  they are referred to as



Dirichlet boundary conditions and Neumann boundary conditions, respectively.

It  is  important  to  recognize  this  distinction;  because  we  need  to  construct  our

approximate solution in such a way that, the essential or Dirichlet boundary conditions

are always satisfied. Natural boundary conditions or the Neumann boundary conditions

would be satisfied through the process during the process of approximation. We do not

really  need  to  bother  about  imposing  the  Neumann  boundary  conditions  during  the

process of approximation itself.

More on this in our next lecture and how we go about and how to interpret and how this

weak formulation is similar to another formulations of approximate solutions and how

we can establish a parity between this weak formulation of method of weighted residual

with the variational methods of approximate solution or the variational calculus. We will

discuss that in our next lecture.

Thank you.


