
Rock Engineering 

Prof. Priti Maheshwari 

Department of Civil Engineering 

Indian Institute of Technology – Roorkee 

 

Lecture - 41 

Elasto-Plastic Stress Distribution Around Circular Tunnel 

 

Hello everyone. In the previous class, we discussed about the elastic analysis of the circular 

tunnel. We saw the stress distribution around the circular tunnel. And also, we saw that how 

the deformations or the displacements are going to occur? That was followed by our discussion 

on the analysis of the concrete lining. And that was also the elastic analysis. So, today, we will 

start with the elasto-plastic stress distribution around the circular tunnel.  

 

And here, we will take the help of Tresca yield criterion in order to define the plastic region of 

the rock. Let us see how we proceed in this direction.  

(Refer Slide Time: 01:27) 

 

This resembles to a problem of circular hole in an infinite plate. In case of the incompetent 

rocks, which are sufficiently plastic to deform without fracturing, such elasto-plastic situation 

will be relevant. Rocks such as shales, phyllites, slates, limestones or dolomite they exhibit 

elasto-plastic behavior specially at high temperature, pressure and depths.  
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So, this figure shows the geometry of the problem. You see that this is what is the ground 

condition. Here, this is the intact rock. And in this rock, you have made the excavation in the 

form of this circular opening which has a radius of a. Then, because this rock is in such a way 

that there is the occurrence of a plastic zone all around this cavity, which is the circular tunnel 

and that has been represented by this blue colored curve.  

 

It has been assumed to be more or less circular. Why is it so? We will discuss that in detail just 

in subsequent slides. And the radius of this zone from the center, that has been taken as c. So, 

the rock which is beyond this boundary, this is in elastic zone. And the rock in between the 

boundary and the cavity, this is in the plastic zone. So, this is what we call as the intact rock. 

And here in this plastic zone that is from here to here, you will have the loosened rock.  

 

So, this boundary which is drawn with the help of the blue color is the boundary between the 

elastic and the plastic zone. And therefore, we call this as elasto-plastic boundary. As we 

discussed in case of the elastic analysis in this case also any point in the rock is denoted by r,θ, 

where r is its radial distance from this center point O and θ is an angle which is measured from 

the horizontal in the anti-clockwise direction as shown in this figure.  

(Refer Slide Time: 04:46) 



 

Coming to the loading condition, it is assumed that there occurs the hydrostatic in situ state of 

stress. That means that the vertical as well as the horizontal in situ stresses, they are same. All 

the basic equations, such as equations of equilibrium, compatibility and strain displacement 

relationship, all these must be satisfied. Rock surrounding the periphery of the cavity to some 

extent gets loosened and yield.  

 

And this results into the development of a plastic zone, as I just explained you, when we were 

discussing about the geometry of the problem. And c is defined as the radius of boundary 

between elastic and the plastic zone.  

(Refer Slide Time: 05:52) 

 

Coming to some discussion on the plastic zone, the state of a stress which is developed is such 

that it equals or exceeds the yield stress of rock immediately surrounding the periphery of the 



cavity. What does that mean? That is the material yield condition is satisfied. And therefore, 

the surrounding rock enters into the plastic state up to a radial distance of c, which we are 

calling as elasto-plastic boundary.  

(Refer Slide Time: 06:39) 

 

This elasto-plastic boundary is circular. Why? Because the geometry, loading and the boundary 

condition of the problem they all are symmetric. So, for all those conditions like condition of 

equilibrium, compatibility condition everything's should be satisfied. So, this elasto-plastic 

boundary has to be circular. We are assuming this elastic perfectly plastic response of the rock 

which is characterized by a yield stress.  

 

And it is assumed that rock which is immediately surrounding the cavity. It follows the 

TRESCA yield criterion. It is not necessary that it follows the TRESCA yield criterion, it can 

follow Mohr Coulomb failure criterion as well. But here as far as this lecture and the scope of 

this course is concerned, we will be restricting only to the TRESCA yield criterion. However, 

the procedure that I am going to explain for the elasto-plastic analysis is general enough.  

 

And you can apply any failure criterion to represent the rock immediately surrounding the 

cavity.  

(Refer Slide Time: 08:12) 



 

Coming to the material properties, beyond the elasto-plastic boundary, the surrounding rock 

will behave in an elastic manner. As we have assumed that the rock is following TRESCA 

yield criterion, which is the maximum shear stress criterion. Take a look at this figure where σ 

versus ε has been plotted up to the elastic limit it goes in a linear fashion in this manner as 

shown here.  

 

And once it enters or once the material yields then it enters in the plastic domain. And this is 

how the stress strain relationship will be represented. So, here you get the maximum stress 

which is the yield stress. And it is represented by σ = σy. So, what is the state of stress in this 

case?  
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Let us see that. That is going to be σr, σθ and τrθ which will be equal to 0. And you will have σz 

for tunnel in a state of plane strain. Then in the elastic zone, we have the stresses as σr’, σθ’ and 

σz’. And in the plastic zone, these are represented as σr'', σθ''and σz''.  

 

Now, what will happen to the yielding condition in the elastic zone is 

1

2
(𝜎𝜃

′ − 𝜎𝑟
′) = 𝜅 

 And when this condition is satisfied, we would say that the yielding is taking place. And then 

we can write this equation in this form that 

𝜎𝜃
′ − 𝜎𝑟

′ = 2𝜅 → (1𝑎) 

  

This is equation number 1a. What happens in plastic zone?  

 

We will have 

1

2
(𝜎𝜃

′′ − 𝜎𝑟
′′) = 𝜅 

 

Here it is the yielding which is continuous. Or, we can write it in this particular form this 

equation as 

𝜎𝜃
′′ − 𝜎𝑟

′′
= 2𝜅 → (1𝑏) 

 This is equation number 1b.  
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Now, what are going to be the equations for the equilibrium in the polar coordinate systems? 

So, here we have 

𝜕𝜎𝑟

𝜕𝑟
+

1

𝑟
(𝜎𝑟 − 𝜎𝜃) +

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
= 0 

1

𝑟

𝜕𝜎𝜃

𝜕𝜃
+

𝜕𝜏𝑟𝜃

𝜕𝑟
+

2

𝑟
𝜏𝑟𝜃 = 0 

 

Now, we have seen that since τrθ = 0 and due to symmetry, no change in the stress which is in 

θ direction. So, this is going to give me  

𝜕(𝜎𝜃)

𝜕𝜃
= 0 
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So, in the plastic zone, what will happen? 

𝜕

𝜕𝑟
(𝜎𝑟′′) +

1

𝑟
(𝜎𝑟

′′ − 𝜎𝜃′′) = 0 ⇒
𝜕

𝜕𝑟
(𝜎𝑟′′) =

1

𝑟
(𝜎𝜃

′′ − 𝜎𝑟′′) → (2) 

This equation I am marking as equation number 2. What will happen in case of the elastic zone? 

Similarly, I can apply that equation of the equilibrium. So, we are going to get  

𝜕

𝜕𝑟
(𝜎𝑟′′) =

1

𝑟
(𝜎𝜃

′ − 𝜎𝑟′) → (3) 

That is equation number 3.  

 

Now, what will be the compatibility condition in the elastic zone? So, that will be given by 

 



{
𝜕2

𝜕𝑟2
+ (

1

𝑟
)

𝜕

𝜕𝑟
(𝜎𝜃

′ + 𝜎𝑟′)} = 0 → (4) 

This equation is going to be equation number 4. Now, these equations of equilibrium and the 

compatibility equation are to be satisfied subjected to boundary condition of the problem.  
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So, we have here boundary conditions. So, take a look at this figure. This boundary that is at 

r=a. It is the free boundary because here excavation has taken place. So, this is the boundary 

of the cavity. So, therefore, what we will have here is that  

𝜎𝑟
′′|𝑟=𝑎 = 0 → (5𝑎) 

σ r double’ will be equal to 0. Now, at the elasto-plastic boundary, what is r at elasto-plastic 

boundary which is this elasto-plastic boundary? What is r here? That is at r = c.  

 

There is going to be the continuity of the stresses across this boundary. So, because of that what 

you are going to have is 

𝜎𝑟
′′|𝑟=𝑐− = 𝜎𝑟

′′|𝑟=𝑐+ ⟶ (5𝑏) 

 

𝜎𝜃
′′|𝑟=𝑐− = 𝜎𝜃

′′|𝑟=𝑐+ ⟶ (5𝑏) 

 

Please understand that here this is the elasto-plastic boundary.  

 

And for this system to be in equilibrium there has to be the continuity of stresses across this 

boundary. Now, this when I say r =c- that means, we are somewhere in the plastic zone, but 



very near to this elasto-plastic boundary. When I say r =c+ we are in the elastic zone, but again 

we are near to the elasto-plastic boundary. That is what is the meaning of these r =c- and  r =c+ 

 

That is, we are at the boundary, but just inside and just outside the boundary what exactly is 

going to happen. So, this equation I am calling as 5b. Why we are writing for 𝜎𝑟
′′|𝑟=𝑐−? 

Because when r =c- , we are in the plastic zone. And in the plastic zone, we are representing 

the state of stresses with double’. Now, the next boundary condition is that at sufficiently large 

distance from the periphery of the cavity, what will happen?  

 

What does this mean? That I say that r is tending to infinity. We have seen in case of the elastic 

analysis that at r tending to infinity the stresses are going to be equal to the in-situ stresses. So, 

that we can write as that 

𝜎𝑟
′|𝑟→∞ = 𝜎𝜃

′|𝑟→∞ = 𝑝 ⟶ (5𝑐) 

 

Make this equation at 5c. When I say r tending to infinity essentially this is going to be in the 

elastic zone.  

 

And therefore, the state of stresses is being represented by single’. This p is the applied 

hydrostatic stress. What is a? This is the radius of the cavity. And c is the radius of boundary 

between plastic and elastic zones as it has been shown in this figure.  

(Refer Slide Time: 22:02) 

 

Now, coming to the solution of these, so, these solutions will involve the solution of equations 

of equilibrium which were given by equations 2 and 3 and subjected to the boundary conditions 



which we just derived which are equation number 5. So, what we will do is we just substitute 

these yield condition given by 1b in equation number 2. What we get is 

𝜕

𝜕𝑟
(𝜎𝑟

′′) =
1

𝑟
(2𝜅) ⟶ (6𝑎) 

This is 6a. Now, you integrate this equation.  

 

So, integrating equation 6a, we are going to get  

𝜎𝑟
′′ = 2𝜅 ln(𝑟) + 𝐴′ 

Now, from equation number 5b,  

2𝜅 ln(𝑎) + 𝐴′ = 0 ⇒ 𝐴′ = −2𝜅 ln(𝑎) 

 

That is what is your equation number 5b. This will be equal to 0.  Now substitute it here in this 

expression.  

𝜎𝑟
′′ = 2𝜅 ln(

𝑟

𝑎
) ⟶ (6) 

 

 So, this equation I am making it as 6. Now, I substitute this equation number 6 in equation 

1b.  

𝜎𝜃
′′ = 2𝜅 [1 + 𝑙𝑛(

𝑟

𝑎
)] ⟶ (7) 

This is equation number 7.  
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Now, what will happen in case if you have the elastic zone? You will have these stresses in this 

form that is  

𝜎𝑟
′ = 𝐴 +

𝐵

𝑟2
⟶ (8𝑎)    

𝜎𝜃
′ = 𝐴 −

𝐵

𝑟2
⟶ (8𝑏) 

Substituting BC at 𝑟 ⟶∝    𝜎𝑟
′ = 𝑝 = 𝐴 

Substituting BC at E-P boundary, i.e r=c 

𝜎𝑟|𝑟=𝑐+ = 𝜎𝑟
′ = 𝑝 +

𝐵

𝑐2
= 𝜎𝑟|𝑟=𝑐− = 𝜎𝑟

′′ = 2𝜅 ln(
𝑐

𝑎
) ⟶ (9𝑎) 

𝜎𝜃|𝑟=𝑐+ = 𝜎𝜃
′ = 𝑝 +

𝐵

𝑐2
= 𝜎𝜃|𝑟=𝑐− = 𝜎𝜃

′′ = 2𝜅 ln(1 +
𝑐

𝑎
) ⟶ (9𝑏) 

 

 

This is 8a. Please refer to our discussion related to the elastic analysis. There we derived these 

expressions for σr and σθ. And if you just correlate, they were in this particular form. So, I am 

directly taking it from there.  

 

Now, we substitute the boundary condition at r tending to infinity. So, substituting the boundary 

condition at r tending to infinity. So, what will happen? What is that condition? So, when this 

r is tending to infinity, this term will become very large tending to because r is tending to 

infinity. And this whole term will tend to 0. So, therefore, this will become equal to A.  

 

Now, substituting this boundary condition at the elasto-plastic boundary which is at r=c. So, 

what was that?  

 

We just obtained this. So, make this equation as 9a. Similarly, we have it for θ. This is 9b. So, 

this is how we obtain the expression for 𝜎𝑟
′′ , 𝜎𝜃

′′ and the respective stresses in the elastic zone 

as well.  
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Now, if we look at equation number 9a, this will give me  

𝐵

𝑐2
= 2𝜅 ln (

𝑐

𝑎
) − 𝑝 ⟶ (9𝑎) 

𝑝 − 2𝜅 ln (1 +
𝑐

𝑎
) + 𝑝 = 2𝜅 ln (1 +

𝑐

𝑎
) ⟶ (9𝑏) 

𝑝 −  𝜅 ln (
𝑐

𝑎
) = 𝜅 ln (1 +

𝑐

𝑎
) ⇒

𝑝

𝜅
= 2 ln (

𝑐

𝑎
) + 1 

𝑝

𝜅
= 2 ln (

𝑐

𝑎
) + 1 

2 ln (
𝑐

𝑎
) =

𝑝

𝜅
− 1 ⇒ ln (

𝑐

𝑎
) =

𝑝 − 𝜅

2𝜅
⇒ 𝑐 = 𝑎 𝑒𝑥𝑝 [

𝑝 − 𝜅

2𝜅
] 

 

So, this is how the radius of this elasto-plastic boundary is obtained in terms of the other 

quantities.  
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And therefore, what will happen to this B? That is going to be 

𝐵 = 𝑐2 [2𝜅 ln (
𝑐

𝑎
) − 𝑝] 

= 𝑎2𝑒
(

2(𝑝−𝜅)
2𝜅

)
[2𝜅 ln (

𝑐

𝑎
) − 𝑝] = 𝑎2𝑒

(
(𝑝−𝜅)

𝜅
)

[2𝜅 ln {
𝑎𝑒

(
(𝑝−𝜅)

𝜅
)

𝑎
} − 𝑝] 

= 𝑎2𝑒
(

(𝑝−𝜅)
𝜅

)
[2𝜅 ln (

𝑝 − 𝜅

𝜅
) − 𝑝] 

𝐵 = −𝜅𝑎2𝑒𝑥𝑝 [
𝑝 − 𝜅

𝜅
] ⟶ (10) 

This equation I will write as equation number 10.  

(Refer Slide Time: 34:31) 

 

 



𝑐 = 𝑎 𝑒𝑥𝑝 [
𝑝 − 𝜅

2𝜅
] ⟶ (11) 

So, this basically defines the distance to the elasto-plastic boundary. And this is a function of 

p, κ and a. So, this yield shear stress which I am representing by this κ will be some fraction of 

this applied stress which is p. So, I assume that this κ is equal to some fraction h of this applied 

stress p.  

𝐿𝑒𝑡 𝜅 = ℎ𝑝 ⟶ (12)  

 

Make it equation number 12. 

So, for tunnel to be in a state of plane strain, remember we are doing this derivation for this 

situation.  

𝜎𝑧
′ = 𝜈(𝜎𝑟

′ + 𝜎𝜃
′ ) 

𝜎𝑧
′′ = 0.5(𝜎𝑟

′′ + 𝜎𝜃
′′) 

 

Now, why this 0.5? That in the plastic state your material becomes incompressible. And you 

know that for an incompressible material 𝜈 can be taken as 0.5.  

(Refer Slide Time: 37:18) 

 

So, let us try to write the complete solution here. First, I write in the plastic zone. That is  

 𝑎 ≤ 𝑟 ≤ 𝑐 .  

𝜎𝑟
′ = 2𝜅 ln

𝑟

𝑎
;  𝜎𝜃

′′ =  2𝜅 [1 + ln
𝑟

𝑎
] ; 𝜎𝑧

′′ =   𝜅 [1 + ln
𝑟

𝑎
] = ℎ𝑝 [1 + 2ln

𝑟

𝑎
] ⟹ (13) 



These equations I am writing as equation number 13. Now, what will happen in the elastic 

zone?  
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So, in the elastic zone, your r ≥ c. We are going to have is  

𝜎𝑟
′ = 𝐴 +

𝐵

𝑟2
= 𝑝 +

1

𝑟
[−𝜅𝑎2𝑒𝑥𝑝 [

𝑝 − 𝜅

𝜅
]] 

𝜎𝑟
′ = 𝑝 [1 −

ℎ𝑎2

𝑟2
𝑒(

1−ℎ
ℎ

)] 

𝜎𝜃
′ = 𝑝 [1 +

ℎ𝑎2

𝑟2
𝑒(

1−ℎ
ℎ

)] 

𝜎𝑧
′ = 𝜈(𝜎𝑟

′ + 𝜎𝜃
′ ) = 2𝜈𝑝 

 

So, first we will have here as equation number 14, these 3 equations.  

 

And we can write this radius of the elasto-plastic boundary again in the form of   

𝑐 = 𝑎𝑒
(

1−ℎ
2ℎ

)
→ (15) 

This equation I will write as equation number 15.  
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Now, what will happen when this h becomes equal to 1? Your equation 12 will become what 

κ is equal to p. And in that situation, what will happen to σr
’? That will be  

𝜎𝑟
′ = 𝑝 [1 −

𝑎2

𝑟2
] 

𝜎𝜃
′ = 𝑝 [1 +

𝑎2

𝑟2
] 

 

This you write as equation number 16. Now, this equation 16 which we have derived here for 

the yield shear stress of the same order of the magnitude as the applied hydrostatic stress that 

means when κ becomes equal to p.  

 

The state of stress in the rock surrounding the periphery of the cavity will be completely in an 

elastic state. You can have a look here on the equation number 16. And if you just compare the 

result with the elastic analysis, you will be able to have that idea that right now it is the 

completely and elastic state.  

(Refer Slide Time: 42:37) 



 

So, in such a situation, when this κ becomes equal to p, there will be no development of plastic 

zone around the periphery of the cavity. And the entire rock surrounding the tunnel will be in 

the elastic condition only. This equation 16 can be interpreted in conjunction with the equation 

11 in which c will be equal to a when this κ becomes equal to p. That is for h =1 and c =a.  

 

This suggests that elasto-plastic boundary will shift its position to the periphery of the tunnel. 

And hence, the entire rock which is surrounding the tunnel will be in the elastic state.  
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Now, the variation of both radial and the tangential stresses with the distance from the periphery 

of the cavity has been shown in this figure. Let us try to see some of the typical feature with 

respect to this stress distribution one by one.  
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So, here we are taking 4 cases 1, 2, 3 and 4. The first case corresponds to when h is equal to 

0.2, second case is for 0.3, third is for 0.4 and the fourth case h will become equal to 1. You 

can see here that it is written. So, when this is the fourth case as we have seen this is going to 

be fully elastic situation. So, as the magnitude of the yield shear stress increases, that means 

for these 3 values you can see as this is increasing from 0.2 times p to p.  

 

The radius of elasto-plastic boundary or the extent of the plastic zone around the periphery of 

the cavity reduces. Because when it is equal to 1, we have seen that it is going to be completely 

elastic. And that is also shown here that c/ a. In the first case, you can see that it is quite large 

which is let us say about 7.3 something here. Then in case of c by in case of the second case 

that is when it h is equal to 0.3, it is further reducing.  

 

And when this is increased 2.4 that is h is increased 2.4, this is further reduced to somewhere 

close to 2. And when you have the fourth case, obviously this is going to be equal to 1.  

(Refer Slide Time: 46:01) 



 

So, at the periphery of the cavity, what does that mean? That is, r=a. So, this ratio r /a equal to 

1. And then you can see that here this axis we are plotting r /a. And here it is σ/ p. So, this is 

what is r/a = p. So, we move along this line if you want to see what is the situation at the 

periphery of the cavity? So, take a look here that this stress concentration factor which has been 

plotted on this axis, it increases from 0.4 to 0.8.  

 

As the ratio of yield stress to the in-situ stress that is κ upon p which is equal to h is being 

increased from 0.2 to 0.4. So, you see that for the first case here h is equal to 0.2. So, this at the 

tunnel periphery the stress concentration factor is 0.4. And for this case when h is equal to 0.3, 

it increases to 0.6 and further increases, when you further increase this h to 0.4. And it increases 

to 0.8. So, some of these salient features you must keep in mind.  
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Now, even though the stress concentration factor at the boundary of the opening is less than 1. 

We have seen that it is 0.8, 0.6 or 0.4. The tangential stress at the boundary, when I say 

tangential stress means I am talking about σθ. This σθ is less than the in situ hydrostatic stress 

which is p. The tangential stresses in the rock beyond the elasto-plastic boundary, they are 

always higher than the corresponding stresses if the entire rock mass were to be elastic.  

 

Try to understand this, if the entire rock mass were to be elastic, this is what is the variation of 

σθ with r/a. See this is the fourth case. Now, take a look at these respective curves beyond these 

respective dotted lines. In all the cases, the state of stress beyond this is more than what it was 

in case of the elastic. So, you see that you drop a line here. State of stress here is more than the 

state of stress corresponding to the elastic state.  
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So, the initial existing in situ stress gets redistributed in such a fashion that more amount of 

stress is borne by the elastic rock and lesser stress is left out in the plastic zone. The advantage 

of this is that if the tunnel is to be supported by an appropriate support system, that support 

system would be subjected to the lesser load. What happens? All around the periphery of the 

cavity in the surrounding rock, there occurs the loosening of the rock.  

 

And this provides an advantage as far as the economy in the design of support system is 

concerned. Now, as the rock immediately surrounding the cavity, it enters into the plastic state.  
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Boundary of the opening can deform plastically. These deformations are always going to be 

higher than the corresponding deformations if the entire rock were to be in the elastic state. 

That is the reason why stress concentration factor at the boundary of the opening becomes less 

than 1.  
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Now, this is the typical variation of σr and σθ at the elasto-plastic boundary. See this one is for 

the variation of σr at the elasto-plastic boundary. And this is for the σθ. While in case of the 

elastic state, this is the variation for σr. And this is the variation for σθ. Here on the x-axis you 

have c/a. And on y axis you have the stress concentration factor as σ /p.  

 

And then one curve has also been shown for this the variation of κ/p, you can see here that it is 

the κ /p. That is this is h. So, that has been shown and it will vary from 0 to 1. And the variation 



of this has been shown with respect to this c/a by this plot. So, this is what that I wanted to 

discuss with you as far as the elasto-plastic stress distribution around circular tunnel is 

concerned.  

 

We could see some of the typical features from this analysis which was based upon the 

TRESCA yield criterion. So, in the next class, we will learn about some of the failure modes 

and mechanism in case of the underground excavation. Thank you very much.  


