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Lecture-39 

Elastic Analysis of Circular Tunnels-Displacements 

 

Hello everyone. In the previous class, we discussed about the elastic analysis of circular 

tunnels, we saw that how the stress distribution can be obtained all around the tunnel periphery 

or along any direction say θ equal to 0 and θ equal to 90°. We saw these things with respect to 

hydrostatic state of stress as well as for uniaxial state of stress. So, today, we will continue that 

discussion and now we will see that how the displacements can be obtained in this elastic 

analysis of circular tunnel. 

 

Because, it is not only the stresses, but the displacements are also very important from the 

design point of view. So, today we will learn about the aspects related to the determination of 

displacements all around the tenor periphery. So, these expressions can be obtained by 

integrating the stress displacement equations for plane stress state. 
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Let us see how? So, far the plane stress state we have these equations which are 

𝜕𝑢

𝜕𝑟
=

1

𝐸
(𝜎𝑟 − 𝜇𝜎𝜃) → (1𝑎) 

𝑢

𝑟
+

1

𝑟

𝜕𝑣

𝜕𝜃
=

1

𝐸
(𝜎𝜃 − 𝜇𝜎𝑟) → (1𝑏) 



1

𝑟

𝜕𝑢

𝜕𝜃
+

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
=

2(1 + 𝜇)

𝐸
𝜏𝑟𝜃 → (1𝑏) 

 

We discussed that this u is the radial displacement and v is the tangential displacement which 

is in the direction perpendicular to the direction of u. Now, recall our discussion of the previous 

class, we had equation number 12 where the expression for𝜎𝑟 , 𝜎𝜃 etcetera was given. So, 

whatever the expression for these quantities which are here s𝜎𝑟 , 𝜎𝜃  and 𝜏𝑟𝜃,let us substitute it 

in these 3 equations that is 1a, 1b, and 1c. 

 

So, we have here substituting from equation number 12. So, first let us see that what will happen 

to this equation 1a. This is going to be  

 

𝜕𝑢

𝜕𝑟
=

1

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (1 −

𝑎2

𝑟2
) +

1

2
(𝑆𝑥 − 𝑆𝑦) (1 +

3𝑎4

𝑟4
− 4

𝑎2

𝑟2
) cos 2𝜃]

−
𝜇

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (1 −

𝑎2

𝑟2
) −

1

2
(𝑆𝑥 − 𝑆𝑦) (1 +

3𝑎4

𝑟4
) cos 2𝜃] → (2𝑎) 

 

Make this equation as equation number 2a. Now, if we integrate this equation 2a we will be 

getting the expression for u, let us see how? 
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So, integrating this equation 2a what one can get, 



𝑢 =
1

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (𝑟 +

𝑎2

𝑟
) +

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
+ 4

𝑎2

𝑟
) cos 2𝜃]

−
𝜇

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (𝑟 −

𝑎2

𝑟
) −

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
) cos 2𝜃] + 𝑔1(𝜃) → (3) 

 

And there is going to be one constant of integration which will only be the function of θ. So, 

make this equation as equation number 3, where this 𝑔1(𝜃) is the constant of integration. Now, 

you substitute this equation number 3 and expression for u in equation number 1b. So, what 

we are going to get is this substituting equation 3 in equation 1b. So, we have here that 

 

𝑢 +
𝜕𝑣

𝜕𝜃
=

𝑟

𝐸
(𝜎𝜃 − 𝜇𝜎𝑟) 

𝜕𝑣

𝜕𝜃
=

𝑟

𝐸
(𝜎𝜃 − 𝜇𝜎𝑟) − 𝑢 

 

Now, here you again substitute the expression for 𝜎𝜃 and 𝜎𝑟 and also for u and then simplify it 

further let us see what we get. 
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So, we have here 



𝜕𝑣

𝜕𝜃
=

𝑟

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (1 −

𝑎2

𝑟2
) −

1

2
(𝑆𝑥 − 𝑆𝑦) (1 +

3𝑎4

𝑟4
) cos 2𝜃]

−
𝜇𝑟

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (1 −

𝑎2

𝑟2
) +

1

2
(𝑆𝑥 − 𝑆𝑦) (1 +

3𝑎4

𝑟4
− 4

𝑎2

𝑟2
) cos 2𝜃]

−
1

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (𝑟 +

𝑎2

𝑟
) +

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
+ 4

𝑎2

𝑟
) cos 2𝜃]

+
𝜇

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (𝑟 −

𝑎2

𝑟
) −

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
) cos 2𝜃] − 𝑔1(𝜃) 

=
1

2𝐸
(𝑆𝑥 − 𝑆𝑦) [(−2𝑟 −

2𝑎4

𝑟3
−

4𝑎2

𝑟
) + 𝜇 (−2𝑟 −

2𝑎4

𝑟3
−

4𝑎2

𝑟
)] cos 2𝜃 + 𝑔1(𝜃) 

𝜕𝑣

𝜕𝜃
=

1

𝐸
[−2 (

𝑆𝑥 − 𝑆𝑦

2
) (𝑟 +

2𝑎2

𝑟
+

𝑎4

𝑟3
)] cos 2𝜃

−
𝜇

𝐸
[2 (

𝑆𝑥 − 𝑆𝑦

2
) (𝑟 −

2𝑎2

𝑟
+

𝑎4

𝑟3
)] cos 2𝜃 −𝑔1(𝜃) → (4) 

 

Now, if we integrate this equation, which is equation number 4 with respect to θ and I will be 

getting the expression for v. 
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So, let us do that integrating equation number 4 what we will get is  

𝑣 =
1

𝐸
[−

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 +

2𝑎2

𝑟
+

𝑎4

𝑟3
) sin 2𝜃] −

𝜇

𝐸
[
1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

2𝑎2

𝑟
+

𝑎4

𝑟3
) sin 2𝜃]

− ∫ 𝑔1(𝜃)𝑑𝜃 + 𝑔2(𝑟) → (5) 



This is equation number 5 and this 𝑔2(𝑟) is again the constant of integration. Now, what we 

can do is differentiate equation number 3 with respect to θ and equation number 5 with respect 

to r. So, this is what that I am going to get is differentiating equation 3 with respect to θ and 

equation number 5 which is this equation with respect to r. 
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So, see this is what that we will get, say 

 

𝜕𝑢

𝜕𝜃
=

1

𝐸
[−2 ×

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
+

4𝑎2

𝑟
) sin 2𝜃] −

𝜇

𝐸
[2 ×

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
) sin 2𝜃]

+
𝑑𝑔1(𝜃)

𝑑𝜃
→ (6) 

 

𝜕𝑣

𝜕𝑟
=

1

𝐸
[−

1

2
(𝑆𝑥 − 𝑆𝑦) (1 −

2𝑎2

𝑟2
−

3𝑎4

𝑟4
) sin 2𝜃] −

𝜇

𝐸
[
1

2
(𝑆𝑥 − 𝑆𝑦) (1 +

2𝑎2

𝑟2
−

3𝑎4

𝑟4
) sin 2𝜃]

+
𝑑𝑔2(𝑟)

𝑑𝑟
→ (7) 

 

So, you will not have any difficulty. Now, what we will do is, we will substitute these equations 

5, 6, 7 in equation number 1c. 
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So, substituting these equations 5, 6 and 7 in equation number 1c. So, what we are going to get  

 

1

𝑟

1

𝐸
[−(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
+

4𝑎2

𝑟
) sin 2𝜃] −

1

𝑟

𝜇

𝐸
[(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
) sin 2𝜃] +

1

𝑟

𝑑𝑔1(𝜃)

𝑑𝜃

+
1

𝐸
[−

1

2
(𝑆𝑥 − 𝑆𝑦) (1 −

2𝑎2

𝑟2
−

3𝑎4

𝑟4
) sin 2𝜃]

−
𝜇

𝐸
[−

1

2
(𝑆𝑥 − 𝑆𝑦) (1 +

2𝑎2

𝑟2
−

3𝑎4

𝑟4
) sin 2𝜃] +

𝑑𝑔2(𝑟)

𝑑𝑟

−
1

𝑟

1

𝐸
[−

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 +

2𝑎2

𝑟
+

𝑎4

𝑟3
) sin 2𝜃]

+
1

𝑟

𝜇

𝐸
[
1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

2𝑎2

𝑟
+

𝑎4

𝑟3
) sin 2𝜃] +

1

𝑟
∫ 𝑔1(𝜃)𝑑𝜃 −

1

𝑟
𝑔2(𝑟) 

 

𝜏𝑟𝜃 =
2(1 + 𝜇)

𝐸
[−

1

2
(𝑆𝑥 − 𝑆𝑦) (1 +

2𝑎2

𝑟2
−

3𝑎4

𝑟4
) sin 2𝜃] → (12𝑐) 

 

Now, what we need to do is as we did in the case of the stress distribution, we compare the 

terms on either side of these equation. So, this is what that we are going to get. See this all 

these terms they have Sx - Sy in with their terms. So, these terms that is this, this, this one and 

this one, these have to be equal to 0 in a combined fashion. 
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So, comparing the terms on either side of this equation, this is going to give us, 

 

[
𝑑𝑔1(𝜃)

𝑑𝜃
+ ∫ 𝑔1(𝜃)𝑑𝜃] + [𝑟

𝑑𝑔2(𝑟)

𝑑𝑟
− 𝑔2(𝑟)] = 0 → (8) 

 

Now as this g1(θ) is a function of θ only and your g2(r) is the function of r only. 

 

So, separately this and this they both will be equal to a constant. So, that is what that we are 

going to write that is  

𝑟
𝑑𝑔2(𝑟)

𝑑𝑟
− 𝑔2(𝑟) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑘 → (9𝑎) ⇒ 𝑔2(𝑟) = 𝐶𝑟 − 𝐾 → (10𝑎) 

𝑑𝑔1(𝜃)

𝑑𝜃
+ ∫ 𝑔1(𝜃)𝑑𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑘 → (9𝑏) ⇒ 𝑔1(𝜃) = 𝐴 sin 𝜃 + 𝐵 cos 𝜃 → (10𝑏) 

 

These A, B and C, they are the constants to be determined from the boundary conditions using 

the boundary conditions. So, let us see further what we can do. So, this 10b I will substitute in 

equation number 3. 
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So, substituting equation 10b in equation number 3. So, what we will get is  

 

𝑢 =
1

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (𝑟 +

𝑎2

𝑟
) +

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
+ 4

𝑎2

𝑟
) cos 2𝜃]

−
𝜇

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (𝑟 −

𝑎2

𝑟
) −

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
) cos 2𝜃] + 𝐴 sin 𝜃

+ 𝐵 cos 𝜃 → (11𝑎) 

 

This equation I will mark as 11a. So, similarly, I will substitute equation 10a in equation 

number 5 which is the expression for v. 

 

𝑣 =
1

𝐸
[−

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 +

2𝑎2

𝑟
+

𝑎4

𝑟3
) sin 2𝜃] −

𝜇

𝐸
[
1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

2𝑎2

𝑟
+

𝑎4

𝑟3
) sin 2𝜃]

+ 𝐴 cos 𝜃 − 𝐵 cos 𝜃 + 𝐶𝑟 
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Now, after getting this is the time to apply the boundary conditions. So, we need to apply here 

the boundary conditions with respect to the displacement. So, what do we have here is that 

displacement v will be equal to 0 then θ = 0 or Π/2 for all values of r. Now, what is the reason 

behind this? It is due to the axis of symmetry. So, this is due to axis of symmetry. Now, this 

 

𝑣 = 0 𝑎𝑡 𝜃 = 0 ⇒ 𝐴 + 𝐶𝑟 = 0  

𝑣 = 0 𝑎𝑡 𝜃 =
𝜋

2
⇒ −𝐵 + 𝐶𝑟 = 0 

 

And if you try to solve both of these equations, so, the solution will be A = B = C = 0. Now, 

like we did in case of the stresses in this case also we will take the 2 conditions, one for the 

biaxial and the second one is for the uniaxial. 
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So, for the general biaxial state of stress what we will get 

 

𝑢 =
1

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (𝑟 +

𝑎2

𝑟
) +

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
+ 4

𝑎2

𝑟
) cos 2𝜃]

−
𝜇

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (𝑟 −

𝑎2

𝑟
) −

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
) cos 2𝜃] → (12𝑎) 

𝑣 =
1

𝐸
[−

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 +

2𝑎2

𝑟
+

𝑎4

𝑟3
) sin 2𝜃] −

𝜇

𝐸
[
1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

2𝑎2

𝑟
+

𝑎4

𝑟3
) sin 2𝜃]

→ (12𝑏) 

 

That is 12b. Now, what will happen at the tunnel boundary? 
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So, at the tunnel boundary that is, at r = a just substitute r = a in the earlier expressions. So, 

you will be getting  

𝑢 =
1

𝐸
[(𝑆𝑥 + 𝑆𝑦)𝑎 + 2(𝑆𝑥 − 𝑆𝑦)𝑎 cos 2𝜃] → (13𝑎) 

𝑣 =
1

𝐸
[2(𝑆𝑥 − 𝑆𝑦)𝑎 sin 2𝜃] → (13𝑏) 

 

Now, you know that any point on the periphery will be defined by θ, if you just recall this 

figure that we had. 

 

So, for any point we had this r, θ, this was x direction and this was y direction r was this distance 

and θ was here. So, along the periphery any point will be defined by the value of θ because r 

is going to be equal to the radius of the tunnel which is equal to A. So, for a typical hydrostatic 

state of stress what will happen? That is Sx = Sy = - p.  Why I am writing - p here because 

tension we have taken as positive in this case, so, this is compressive. 

 

So, with a negative sign, substitute this whole thing here and what you will get, 

 

𝑢 =
−2𝑝𝑎

𝐸
 𝑎𝑛𝑑 𝑣 = 0 → (14) 

 

So, your v will be equal to 0, make it equation number 14. Now, this is typically for the 

hydrostatic state of stress. 
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Now, what will happen in case if you have the uniaxial state of stress where you have Sx = 0 

and Sy is nonzero. So, you will get here as 

𝑢 =
𝑆𝑦

𝐸
[𝑎 − 2𝑎 cos 2𝜃] → (15𝑎) ⇒

𝑢𝐸

𝑆𝑦𝑎
= 1 − 2cos 2𝜃 

𝑣 =
𝑆𝑦

𝐸
[2𝑎 sin 2𝜃] → (15𝑏) ⇒

𝑣𝐸

𝑆𝑦𝑎
= 2 sin 2𝜃 

 

Now, the variation of this quantity and this quantity with respect to θ has been shown in this 

figure on the tunnel periphery that is, when you have r = a. That is what is the case that we are 

considering? So, accordingly this plot is giving you the variation of u and this one is giving 

you the variation of v. 

 

So, just keep on substituting the value of θ from 0 to 90° and you will be able to generate this 

kind of smooth curve, some typical values which you can take let us say that when you have 

here θ = 15°, just substitute θ = 15° and see what you get the value of v it will work out to be 

1. Similarly, for θ = 75° also this v will work out to be 1. 

 

And this for 45° your u will work out to be 1. So, this is how you keep on substituting the value 

of θ in these expressions and you will be able to get this variation of the displacement u and v 

on the tunnel periphery. Now let us see that what happens in case of the plane strain. So, this 

is what that we discuss till now was the plane stress state. 
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Now what will happen in case of the plane strain, displacement which is occurring when the 

circular hole is subjected to a two-dimensional stress field under the condition of the plane 

strain? So, in this case we have to integrate these stress displacement equations which are there 

for the plane strain. In the previous case we integrated the equations for plane stress. Now from 

the theory of elasticity what are the equations for the plane strain? 

 

See these look like this  

𝜕𝑢

𝜕𝑟
=

1

𝐸
[(1 − 𝜇2)𝜎𝑟 − 𝜇(1 + 𝜇)𝜎𝜃] → (1) 

𝑢

𝑟
+

1

𝑟

𝜕𝑣

𝜕𝜃
=

1

𝐸
[(1 − 𝜇2)𝜎𝜃 − 𝜇(1 + 𝜇)𝜎𝑟] → (2) 

1

𝑟

𝜕𝑢

𝜕𝜃
+

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
=

2(1 − 𝜇)

𝐸
𝜏𝑟𝜃 → (3) 

 

So, these are the equations for stress displacement relationship for the plane strain situation. 

Now we can substitute the expression for σr σθ and τrθ again as we did in the previous case. 
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So, let us see what we get is  

𝜕𝑢

𝜕𝑟
=

1 − 𝜇2

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (1 −

𝑎2

𝑟2
) +

1

2
(𝑆𝑥 − 𝑆𝑦) (1 +

3𝑎4

𝑟4
− 4

𝑎2

𝑟2
) cos 2𝜃]

−
𝜇(1 + 𝜇)

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (1 +

𝑎2

𝑟2
) −

1

2
(𝑆𝑥 − 𝑆𝑦) (1 +

3𝑎4

𝑟4
) cos 2𝜃] → (4) 

 



Similarly, you will have  

𝑢

𝑟
+

1

𝑟

𝜕𝑣

𝜕𝜃
=

1 − 𝜇2

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (1 +

𝑎2

𝑟2
) −

1

2
(𝑆𝑥 − 𝑆𝑦) (1 +

3𝑎4

𝑟4
) cos 2𝜃]

−
𝜇(1 + 𝜇)

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (1 −

𝑎2

𝑟2
) +

1

2
(𝑆𝑥 − 𝑆𝑦) (1 +

3𝑎4

𝑟4
− 4

𝑎2

𝑟2
) cos 2𝜃]

→ (5) 

 

And the last equation which is  

 

1

𝑟

𝜕𝑢

𝜕𝜃
+

𝜕𝑣

𝜕𝑟
−

𝑣

𝑟
=

−2(1 − 𝜇)

𝐸
[
1

2
(𝑆𝑥 − 𝑆𝑦) (1 −

3𝑎4

𝑟4
+ 2

𝑎2

𝑟2
) sin 2𝜃] → (6) 

 

So, now if you integrate these equations this, this. 

(Refer Slide Time: 47:56) 

 

And this you will be able to get the expression for u and v how? Let us see, 

 

𝑢 =
1 − 𝜇2

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (𝑟 +

𝑎2

𝑟
) +

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
+ 4

𝑎2

𝑟
) cos 2𝜃]

−
𝜇(1 + 𝜇)

𝐸
[
1

2
(𝑆𝑥 + 𝑆𝑦) (𝑟 −

𝑎2

𝑟
) −

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

𝑎4

𝑟3
) cos 2𝜃] → (7) 

 

This equation will be your equation number 7. 

 



And what will be the expressions for v let us see that,  

 

=
1 − 𝜇2

𝐸
[−

1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 +

2𝑎2

𝑟
+

𝑎4

𝑟3
) sin 2𝜃]

−
𝜇(1 + 𝜇)

𝐸
[
1

2
(𝑆𝑥 − 𝑆𝑦) (𝑟 −

2𝑎2

𝑟
+

𝑎4

𝑟3
) sin 2𝜃] → (8) 

 

Now these equations 7 and 8, these are the generalized expressions for u and v. 

 

u is the radial displacement, v is the tangential displacement and you can see that these are the 

function of a, r, θ, Sx, Sy, μ and E. If you recall in case of these stresses those expressions where 

not the function of the elastic properties, but in case of the displacement E and μ also come into 

the picture. 

(Refer Slide Time: 51:10) 

 

Now what happens at the periphery of the tunnel? That means at r = a. So, at periphery of the 

tunnel what does that mean? That is r = a,  

𝑢 =
1 − 𝜇2

𝐸
[(𝑆𝑥 + 𝑆𝑦)𝑎 + 2(𝑆𝑥 − 𝑆𝑦)𝑎 cos 2𝜃] → (9) 

𝑣 =
1 − 𝜇2

𝐸
[2(𝑆𝑥 − 𝑆𝑦)𝑎 sin 2𝜃] → (10) 

 

This is equation number 10. Now if you compare these 2 equations of the plane strain with 

those of the plane stress equations, so compare. 

 



And if I just substitute μ = 0.25 then we will see that u and v for the plane strain situation they 

are approximately equal to 0.94 times the u and v for the plane stress case. So, in case if you 

have the elastic ground conditions, so tunnels do not require any support lining, they all stable. 

If the excavation is at shallow depth, then in this situation seismic effects place an important 

role. 

 

So, as for as the expressions for displacement are concerned, we saw these for the plane stress 

as well as for the plane strain condition for a circular tunnel and we see that when we compared 

these 2, they are more or less of the same order for same μ = 0.25 and this is how the analysis 

of the circular tunnel can be carried out. So, we discussed about not only the stresses but the 

distribution of the displacement or the variation of the displacement all along the tunnel 

periphery which is circular in shape. 

 

So, this is what that I wanted to discuss with you as far as the elastic analysis of circular tunnel 

is concern, in the next class we will discuss about the elastic analysis for the lining of the tunnel. 

Thank you very much. 


