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Elastic Stress Distribution Around Circular Tunnels-02 

 

Hello everyone. In the previous class, we started our discussion on elastic stress distribution 

around the circular tunnels and we were deriving those expression using the theory of elasticity. 

And we could do up to the application of the boundary condition at r tending to infinity, we 

are still left with few boundary conditions at the tunnel periphery that is at r=A. So, let us apply 

that and see how we can get the complete solution towards this problem? 

(Refer Slide Time: 01:11) 

 

So, in case of this boundary condition in the previous class, we already substituted the boundary 

conditions, which were at r tending to infinity that we did earlier. So, now, we have the other 

boundary conditions which are like at r = a you have σr = 0. Now, when this σr = 0, what is 

the expression that we are going to have is this that is 

 

1

2
(𝑆𝑥 + 𝑆𝑦) +

1

2
(𝑆𝑥 − 𝑆𝑦) cos 2𝜃 = 𝜎𝑟 = 0 =

𝐴

𝑎2
+ 2𝐵 + (−2𝐶 − 6𝐸𝑎−4 − 4𝐹𝑎−2) cos 2𝜃 

 

Now, as we did in the previous class, let us again compare the terms on both the sides of the 

equation. 

 



What we will get is 

1

2
(𝑆𝑥 + 𝑆𝑦) =

𝐴

𝑎2
+ 2𝐵 = 0 → (10𝑑) 

 

(−2𝐶 − 6𝐸𝑎−4 − 4𝐹𝑎−2) = 0 → (10𝑒) 
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What will happen at r = a to τrθ that is going to be at r = a, your τrθ is also equal to 0. And 

therefore, what we will get from here is  

 

−
1

2
(𝑆𝑥 − 𝑆𝑦) sin 2𝜃 = (2𝐶 + 6𝐷𝑎2 − 6𝐸𝑎−4 − 2𝐹𝑎−2) sin 2𝜃 = 0 

 

Now, we have seen that the constant D = 0. So, therefore, if I substitute D = 0, so, here this 

term will become equal to 0 and what I am going to get is  

 

2𝐶 − 6𝐸𝑎−4 − 2𝐹𝑎−2 = 0 → (10𝑓) 

 

Now, let us see from the previous class I will rewrite these equations for your ready reference. 

So, we had equation  

1

2
(𝑆𝑥 + 𝑆𝑦) = 2𝐵 → (10𝑎) 

−
1

2
(𝑆𝑥 − 𝑆𝑦) = 2𝐶 → (10𝑐) 

 



𝐴

𝑎2
+ 2𝐵 = 0 → (10𝑑) 

𝐴 = −
𝑎2

2
(𝑆𝑥 + 𝑆𝑦) 

 

We know that D = 0. Now, this 10e and 10f combined form they will give me 

−
1

2
(𝑆𝑥 − 𝑆𝑦) − 6𝐸𝑎−4 − (𝑆𝑥 − 𝑆𝑦) = 0 

 

𝐸 = −
1

4
(𝑆𝑥 − 𝑆𝑦)𝑎4 

 

So, I write all these equations in a combined manner as equation number 11. 

 

So, all these constants which were arbitrary, we could obtain in terms of these apply the stresses 

at r tending to infinity which are Sx and Sy. 
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Now, we substitute this equation 11 to equations 9a, 9b and 9c and see how it looks like, please 

do it very patiently, otherwise, you will make the mistake 

𝜎𝑟 =
𝑎2

2𝑟2
(𝑆𝑥 + 𝑆𝑦) +

1

2
(𝑆𝑥 + 𝑆𝑦)

+ [
1

2
(𝑆𝑥 − 𝑆𝑦) +

6

4
(𝑆𝑥 − 𝑆𝑦)𝑎4𝑟−4 − 2(𝑆𝑥 − 𝑆𝑦)𝑎2𝑟−2] cos 2𝜃 

 



𝜎𝑟 =
1

2
(𝑆𝑥 + 𝑆𝑦) (1 −

𝑎2

𝑟2
) +

1

2
(𝑆𝑥 − 𝑆𝑦) [1 +

3𝑎4

𝑟4
−

4𝑎2

𝑟2
] cos 2𝜃 → (12𝑎) 

Write it as equation number 12a. Now, what will happen to σθ? This is going to be 

𝜎𝜃 =
𝑎2

2𝑟2
(𝑆𝑥 + 𝑆𝑦) +

1

2
(𝑆𝑥 + 𝑆𝑦) + [−

1

2
(𝑆𝑥 − 𝑆𝑦) −

6

4
(𝑆𝑥 − 𝑆𝑦)𝑎4𝑟−4] cos 2𝜃 

 

𝜎𝜃 =
1

2
(𝑆𝑥 + 𝑆𝑦) (1 +

𝑎2

𝑟2
) −

1

2
(𝑆𝑥 − 𝑆𝑦) [1 +

3𝑎4

𝑟4
] cos 2𝜃 → (12𝑏) 

 

This is going to be equation number 12b. 
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Similarly, we can write the expression for τrθ when we substitute this equation 11 to equation 

number 9c. So, this is what that we are going to get is  

−
1

2
(𝑆𝑥 − 𝑆𝑦) sin 2𝜃 = (2𝐶 + 6𝐷𝑎2 − 6𝐸𝑎−4 − 2𝐹𝑎−2) sin 2𝜃 = 0 

𝜏𝑟𝜃 = [−
1

2
(𝑆𝑥 − 𝑆𝑦) +

6

4
(𝑆𝑥 − 𝑆𝑦)𝑎4𝑟−4 − (𝑆𝑥 − 𝑆𝑦)𝑎2𝑟−2] sin 2𝜃 

𝜏𝑟𝜃 = −
1

2
(𝑆𝑥 − 𝑆𝑦) [1 −

3𝑎4

𝑟4
+

2𝑎2

𝑟2
] sin 2𝜃 → (12𝑐) 

 

And this equation will become equation 12c. 

 

Now, notice here that σr, σθ and τrθ these are the function of r, θ, a, Sx and Sy only. These are 

not the function of the elastic properties of the rock. So, what does that mean? That elastic 



properties of the rock are not going to influence these stresses physically this statement does 

not make any sense. So, we know that strength of the material is given in terms of its UCS, its 

tensile strength and its shear strength. 

 

So, indirectly these elastic constants they play a role through these strength characteristics. We 

will discuss about this in more detail little later in this class. 

(Refer Slide Time: 15:00) 

 

Now, this strength of the material, it reduces as the size of the cavity changes, stresses are 

equated to this degraded strength and here the elastic properties indirectly come into picture. 

So, we need to be careful. Equation number 12 which we derived just now, these gave the stress 

components for a biaxial stress field when the applied a stress field at the infinity is σx = Sx and 

σy = Sy. 
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Now, we take some of the special cases and see how the form of the equation 12 becomes for 

these special cases. So, when we have the hydrostatic state of stress that means, that Sx =Sy =-

p and since it is in compressive in nature, so, I am introducing a negative sign with this state of 

stress which is p. So, what we are going to get if we just substitute this equal to Sy in equation 

number 12 what we are going to get is 

 

𝜎𝑟 = −𝑝 (1 −
𝑎2

𝑟2
) 

𝜎𝜃 = −𝑝 (1 +
𝑎2

𝑟2
) 

𝜏𝑟𝜃 = 0 

 

 

And that will happen to the boundary condition that is at 

𝜎𝑟|𝑟=𝑎 = 0, 𝜎𝜃|𝑟=𝑎 = −2𝑝, 𝜏𝑟𝜃|𝑟=𝑎 = 0 → (13) 

 

So, this equation I will write as equation number 13. Now, I define a factor called stress 

concentration factor this I define as  

(
𝜎𝜃

−𝑝
) = 2 𝑎𝑡 𝑟 = 𝑎 

Please remember this we are going to use this information while we plot the stress distribution 

around a circular tunnel. 
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Now, let us take another state of stress which is the uniaxial state of stress in which case I will 

have a Sx = 0 that means, the applied stresses in the x direction they are 0 and in y direction 

they have the finite value. So, in such a situation what will happen to σr?  

 

𝑆𝑥 = 0 𝑎𝑛𝑑 𝑆𝑦 ≠ 0 

𝜎𝑟 =
1

2
𝑆𝑦 (1 −

𝑎2

𝑟2
) −

1

2
𝑆𝑦 [1 +

3𝑎4

𝑟4
−

4𝑎2

𝑟2
] cos 2𝜃 

𝜎𝜃 =
1

2
𝑆𝑦 (1 +

𝑎2

𝑟2
) +

1

2
𝑆𝑦 [1 +

3𝑎4

𝑟4
] cos 2𝜃 

𝜏𝑟𝜃 =
1

2
𝑆𝑦 [1 −

3𝑎4

𝑟4
+

2𝑎2

𝑟2
] sin 2𝜃 

𝑖) 𝐴𝑡 𝑟 = 𝑎 𝑎𝑛𝑑 𝜃 = 0 → 𝜎𝑟 = 0, 𝜎𝜃 =
1

2
(𝑆𝑦 × 2) +

1

2
(𝑆𝑦 × 4) = 3𝑆𝑦 

𝑖𝑖) 𝐴𝑡 𝑟 = 𝑎 𝑎𝑛𝑑 𝜃 =
𝜋

2
 → 𝜎𝑟 = 0, 𝜎𝜃 =

1

2
(𝑆𝑦 × 2) +

1

2
(𝑆𝑦 × 4 × −1) = −𝑆𝑦 

 

I made these equations as equation number 14. Now, let us take few conditions. So, the first 

condition is at r = a and θ = 0. 

 

So, if this was the tunnel, I had the directions of these axis in this manner equal to that is the 

horizontal axis was representing x direction and vertical was y and if this is what was the rock 

mass. So, any point was there, which was having they coordinate as r ,θ and this θ, I took in 



the anti clockwise direction from the x axis. So, when I see r equal to a and θ equal to 0 this 

means what? 

 

R equal to a means, it is here at the tunnel periphery and θ equal to 0 means, it is in the x 

direction. So, what I am going to get here is σr = 0, just substitute this r =a. So, you see this 

term will become equal to 0 and this term will also become equal to 0 resulting into σr = 0, then 

what will happen to σθ. Let us see, substitute r = a here. 

 

So, what will happen at this point to all these stress components, see here σr will become equal 

to 0 again because r = a and this term will become equal to 0. 

 

So, in this case your stress concentration factor is going to be equal to 3 while in this case the 

stress concentration factor will be equal to - 1. So, here it is 3 in the first case and in the second 

case it equal to - 1. 
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So, here I have summarized what we discussed for the uniaxial state of stress, that is when 

there is no applied stress in the x direction and only in the y direction these stresses are present. 

In that case (σθ /Sy) we have seen that it is - 1. If the applied stress is compressive in nature, the 

resulting tangential stress and the crown portion of the tunnel becomes tensile in nature, 

because you see that the ratio of these 2 is - 1. 

 

So, in case if I take this Sy to be equal to compressive obviously with that logic this σθ will 

become tensile in nature and we are talking about the tangentially stress at the crown portion 



because this was the value at θ equal to 90 degree or Π /2. Its magnitude at this location would 

be equal to the applied stress Sy which is in the y direction. Now, let us say that this applied 

stress in the y direction becomes more than the tensile strength of the material, which is 

represented by σt. 

 

What do we mean that is Sy is more than σt, then what will happen? Stress is more than the 

strength in the same mode which is in tension. So, this would result into the tensile failure of 

rock in the crown portion of the tunnel which is θ equal to Π/2 and this is one of the most 

critical conditions as far as the analysis of the tunnels is concern. So, one needs to be very, very 

careful about the stresses at the crown portion of the tunnel. 

(Refer Slide Time: 27:03) 

 

So, we have seen that for hydrostatic state of stress both the radius as well as the tangential 

stresses. They are all compressive in nature, we saw that the stress concentration factor was all 

positive in that case. But in case of the uniaxial state of stress, it is not only that the stress 

concentration factor at the periphery of the tunnel is 3 times the applied stress. But also due to 

the tensile stress condition in the crown portion of the tunnel. 

 

This unit actually state of stress becomes most critical state of stress. So, once again here I have 

given for your ready reference that what do we mean by the crown of a tunnel and invert of the 

tunnel? So, if this is the tunnel and you have these axes like x and y. So, here this θ we are 

measuring from this direction. So, when θ is equal to 90 degree then this is what is the crown 

and when θ equal to - Π /2 which is this point, this is going to be the invert of the tunnel. 

(Refer Slide Time: 28:27) 



 

Now, the expressions which were given for these stresses using equation number 12 we have 

seen that these are independent of the elastic properties, what were those like E and μ. So, those 

expression for σr, σθ and τrθ, they were not the function of these E and μ. So, this does not really 

mean that stresses are independent of the material behavior. What happens in practice is that 

with increase in the size of the excavation, the strength of the rock is influenced and the strength 

properties such as UCS, tensile strength and the sheer strength they degrade. 

 

So, from a design point of view this degeneration in the strength properties will govern the 

design of excavation. So, when those expression for these stresses when they come out to be 

independent of the elastic property, that does not mean that stresses are independent of the 

material characteristic or its behavior they come in this particular fashion as far as the design 

of those structures are concerned. 

(Refer Slide Time: 30:10) 



 

Now, here whatever are the expressions that we obtained in the form of equation number 12, 

that is the expression for σr, σθ and τrθ. So, the variations of those stresses have been shown 

here in this figure. So, these stresses they have been obtained as a part of the stress 

concentration factor and the radial distance has been normalized with the help of the radius of 

the tunnel, that is this all the data has been presented in the form of r/a. 
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Let us have the detailed discussion about this. First you focus on this particular part of the 

figure, that is at θ = 0. So, θ = 0 means, that here it is this axis, here θ = 0. So, I have on this 

axis r /a quantity and on the vertical axis we are plotting σ /Sy. Now, this σ can be σr or it can 

be σθ. So, this plot is showing the variation of σr with r /a and this plot is showing the variation 

of σθ with r /a. 

 



So, if you just take a look at those expression of equation number 12 normally at r /a equal to 

4 to 5, this σr would work out to be equal to 0 and that is what we can see here in this figure as 

well, that is when this r /a is to the tune of 4 or 5, this σr will become equal to 0. What happens 

to the tangential stress? So, in this case it is the vertical and at infinity it must be equal to the 

applied stress Sy and therefore, this σθ /Sy should be equal to 1 when this r tends to infinity. 

 

So, in this case you see that here r tends to infinity means that I am taking that the radial 

distance is about 4 to 5 times the radius of the tunnel and that we can consider for all practical 

purposes to represent the infinite boundary in case of the elastic situation. So, you see that at r 

/a tending to 4 to 5, this σθ becomes equal to 1. So, this is what that we get from those equation 

and has been represented in this figure. Please remember these are the typical variation of these 

stresses at θ equal to 0. 

(Refer Slide Time: 33:39) 

 

Then focus on this portion of the figure. See here this is at the crown which is at θ equal to Π/2 

axis. So, when you have r /a equal to 1 that means, at r =a that is an eternal periphery, you have 

σθ /Sy to be equal to – 1 and we saw that it is like in that condition that a stress concentration 

factor was coming out to be – 1 and that is what has been represented in this figure. 

 

And when it goes to infinity that is when r /a becomes equal to 4 to 5, this becomes equal to 0, 

that is σθ is approximately equal to 0. In case of the σr at r tending to infinity or r /a goes to 4 

to 5 this σr /Sy it tends to + 1 you see here. So, this is how the variation along the crown it looks 

like. 
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Now, this is the variation along the circumference. So, along the circumference from θ equal 

to 0 degree to this is θ equal to 90 degree. So, this is 0 degree, then you have here 10, 20, 30, 

40, 50, 60, 70, 80 and this is point is 90 degree. Now, take a look here that what happens at θ 

equal to 60 degree and obviously, because we are discussing about this variation along the 

circumference. 

 

So, r is going to be equal to a. So, the σθ will be what? 

𝜎𝜃 =
1

2
𝑆𝑦 (1 +

𝑎2

𝑟2
) +

1

2
𝑆𝑦 [1 +

3𝑎4

𝑟4
] cos 2𝜃 

𝜎𝜃 =
1

2
𝑆𝑦 × 2 +

1

2
𝑆𝑦 × 4 cos 120 = 0 

So, this is going to give me σθ to be equal to 0, you see that this is Sy and this will become - S 

y. So, they will get cancelled out. Now, take a look here 10, 20, 30, 40, 50 and 60. So, we just 

have its projection like this here. 

 

And then take it like this and here you have the stress concentration factor. So, you see that 

corresponding to θ equal to 60 degree, you have this σθ to be equal to 0. That is how your curve 

is also giving you. Now, at θ equal to 0, you have seen that σθ upon Sy works out to be 3. So, 

that is what has been shown here in this figure θ equal to 0 have the projection and you go 

along this line and see this point corresponding to this point your σθ upon Sy works out to be 3. 

 

So, this is how one can show the variation of these stresses all along the circumference, along 

any axis, say we have seen that along x axis or y axis. So, this is what that I wanted to discuss 



with you as far as the elastic stress distribution around a circular tunnel is concerned. We will 

see other aspects related to this topic in the next class. Thank you very much. 


