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Hello everyone. In the previous class, we learnt about the strength criteria for isotropic and 

anisotropic rock. We started with this topic with the comparison between soils and rocks. We 

learnt about the stress-strain relationship which is applicable for the linear elastic constitutive 

relation and then we also learnt about the plane strain loading.  

 

So, today we will learn about the plane stress loading, axisymmetric loading and then we will 

see; what is the effect of confining pressure on the strength characteristics of rock and rock 

masses. And then we will also learn about the Mohr's failure theory.  

(Refer Slide Time: 01:26) 

 

So, we have to start with plane stress loading. This is not very common in the geotechnical 

applications. In the previous class we saw that the plane strain loading which was quite 

applicable in areas related to geotechnical engineering. For example retaining walls, strip 

loading, etc. An example of the plane stress loading includes thin plate which is being loaded 

along its plane.  

 



So, like we discussed the stress-strain relationship in case of the plane strain loading 

condition. Let us see how in case of plane stress loading these stresses and strains are being 

related. Take a note here that in this case of plane stress loading stresses are confined to x-y 

plane while in case of the plane strain loading, we have seen that strains were confined to x-y 

plane. The strain in z plane that was the perpendicular to x-y plane was 0 in case of plane 

strain loading, however σ z was non-zero.  
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So here in this case this is related to stresses which are confined to x-y plane. So let us see 

how the stresses and strains are related in this plane stress loading case. So, I will first write 

the strain vector which is ∈ x, ∈ y and γ xy so that is the strain vector this is equal to 1 upon E 

times 1 –ν, 0, –ν, 1, 0, 0, 0, 2 times (1+ν) and this will be multiplied by the stress vector 

which is σ x, σ y and tau xy.  

 

So, this is how your strain vector is related to the stress vector. Now as we did in the previous 

case, we can also do here like how to represent the stresses in terms of strains. 

(Refer Slide Time: 04:16) 
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So, again stresses are confined to the x-y plane and I am going to write the same expression 

in terms of the stresses and strains. So, you see that the stress vector σ x, σ y and tau xy 

which is the stress vector that is equal to E upon 1-ν whole square and 1, ν, 0, ν, 1, 0, 0, 0, 

and 1–ν upon 2. This multiplied by ∈ x into ∈ y into γ xy. So, this is your strain vector.  

 

Keep in mind that the stresses σ x and σ y these are the normal stresses, tau xy is the shear 

stress while ∈ x and ∈ y these are normal strains and γ xy is the shear strain. E and ν these are 

the elastic modulus and Poisson’s ratio for the material. Again, here the assumption is 

involved that the material is following the Hook’s law.  

(Refer Slide Time: 06:06) 

 

So, dimension in the z direction is very small in case of the plane stress loading. What was 

the situation in plane strain loading? The dimension in the z direction was pretty long and 

therefore we could take the strain in that direction to be equal to 0. Now what are going to be 

the non-zero stresses in case of the plane stress loading? They are going to be σ x, σ y and tau 

xy. Strains can be there perpendicular to x-y plane.  

 

So, what all are the non-zero strains in this case? That is going to be ∈ x, ∈ y, ∈ z and γ xy. 

What does this mean is that all the three component of normal strains that is ∈ x, ∈ y and ∈ z 

are going to be non-zero in case of the plane stress loading. Now what will happen? When 

you have the normal strain in the direction of 0 normal stress because you can see from here 

that σ z is 0 in this case, but in z direction ∈ z is non-zero.  

 

So, what is the expression for this ∈ z?  
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So, we will get ∈ z as ν upon 1–ν into ∈ x + ∈ y or this can also be represented as –ν upon E 

σ x + σ y. So, this is how all the components of stresses and strains can be determined in case 

of the plane stress loading. Once again what is the difference between plane strain loading 

and plane stress loading?  

 

Say if x-y is the plane of the consideration in case of the plane strain loading the strain in the 

z direction is going to be equal to 0 but it will have non-zero stress in z direction. However, 

in case of the plane stress loading you will have non-zero strain in the z direction but you will 

have 0 stress in the z direction. So, you should be able to understand the difference between 

plane strain and plane stress loading in a very clear manner because this is very much 

important from geotechnical point of view.  

(Refer Slide Time: 09:35) 

 

So, the next type of loading is the axisymmetric loading. Again, this is very common in case 

of the geotechnical and the rock engineering. An example includes that along the vertical 

center line of a uniformly distributed load on the circular loading because it has the same 

lateral stress in all the direction, this is what is called as the axisymmetric loading. So, you 

see it looks like this.  

 



So, you have a circular footing let us say and it is subjected to the uniformly distributed load 

and if this is being the axis so it is the lateral stress is same in all the directions, so this 

problem is solved by this axisymmetric loading. Now this σ 1 and σ 3 these are the axial and 

radial normal stresses ah respectively. These are related to the corresponding normal strains ∈ 

1 and ∈ 3.  
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So, this ∈ 1 is the strain in which this axial stress is acting and ∈ 3 is the strain in the 

direction of σ 3. So, let us see that how these are related to each other? So in this case you 

have the two components ∈ 1 and ∈ 3, one is axial another one is radial that is given as 1 

upon E 1 –2 ν –ν 1–ν and multiplied by the stress vector this is σ 1 and σ 3 or this expression 

can also be written in the other way round that is σ 1 σ 3. 
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This is equal to E upon 1+ν, 1–2, ν multiplied by 1–ν, 2ν, ν and 1 and this should be 

multiplied by the strain vector which σσcomprises of the two components which is the axial 

and the radial normal strain. ν(Refer Slide Time: 12:16) 

 

So, the strain in the elastic body they are caused by the displacement. So, there should be a 

relationship between strain and displacement and we should be aware of that. So, let us say 

that displacements in x, y and z directions they are respectively u, v and w. So these x, y, z 

these three directions they are mutually perpendicular to each other. So, let us say this is your 

x, this is y and this is going to be z.  



 

So, these three are the mutually perpendicular directions. So, in x direction the deformation is 

u, y direction it is v, and z direction it is small w.  

(Refer Slide Time: 13:13) 
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What is the relationship between displacements and strains? Let us see. Again, we will write 

it in the form of the matrix. So, we have the strain vector as ∈x, ∈y, ∈z. Then you have the 

shear strain γxy, γyz, and γzx. So, this is our strain vector that is equal to a matrix which is ∂/ 

∂x,0, 0, 0, ∂/∂y,0, 0, 0, 0, ∂/∂z, then ∂/∂y, ∂/∂x and 0, then 0, ∂/∂z,∂/∂y, then ∂/∂ z, 0, ∂/∂x.  

 

So, this matrix into multiplied by you will have the displacement vector which is u, v and w. 

So, this is your strain vector and this is your displacement vector. So this is what defines the 

relationship between displacement and strains. So, in case if the material is following the 



linear elasticity then this is how one can obtain the stress-strain relationship for different 

types of loading condition. It can be plane strain, plane stress and axisymmetric loading.  

 

Now we will learn about the effect of confining pressure on the strength characteristic of rock 

and after this we will learn about the Mohr's failure theory. So, most of the rocks they are 

significantly strengthened by confinement. In some of our earlier lectures when we were 

discussing the laboratory testing on rocks, we touched upon this particular aspect that when 

we were increasing the confinement, we were seeing the betterment in the strength 

characteristic of the rocks. 

 

What is the reason behind that? There are various theories. So, the one theory we are going to 

discuss now. So, this significant strengthening by the confinement is really very striking in a 

highly fissured rock.  

(Refer Slide Time: 16:31) 

 

So, a highly fissured rock can be imagined as a mosaic of perfectly matching pieces like it 

has been shown in this figure. You can see that these are the planes of the discontiνity in case 

of your fissured rock and these discontiνity planes they are matching perfectly with the next 

piece. So, let us say this is one piece, this is another piece, so it is matching with this other 

piece in a very nice manner.  

 

Now for this fissured rock to deform what should happen? There should be the application of 

the energy or exertion of the energy which should be there in order to have the movement 



along any fracture plane. Now that fracture plane can be anything. So, let us say for example 

that you have an average fracture plane say along this okay like this.  

(Refer Slide Time: 17:47) 

 

Say for example you can have any fracture plane along any of the combination which is 

shown here in this figure. So, you see that a typical fracture plane has been shown here. So 

this dotted line portion that is this portion is the original version and now you see when the 

load is applied, so sliding along the fissure is possible only if the rock is free to displace 

normal to the average surface of rupture.  

 

So, say this is the average surface of rupture, this one. This is the average surface of rupture, 

so sliding will be possible only when this rock is free to displace normal to this plane. So, you 

can see here that some branches have been shown like this. So, these are typically showing 

the cracks which are taking place in the direction normal to the average surface of rupture. 

Now under confinement what will happen?  

 

That the normal displacement which is required to move along such a jagged rupture path 

will require additional energy input. So, you see if this specimen has no confinement what 

will happen? It will be easy for the rock to displace along that average rupture surface. But 

when you have the presence of the confining pressure what will happen? Because of that 

confining pressure it has to exert more energy to displace along that jagged rupture spot or 

the surface.  

(Refer Slide Time: 19:56) 



 

Now this is not uncommon for a fissured rock to achieve an increase in strength by about 10 

times the amount of a small increment in mean stress, so what do we mean by this? Let us say 

that you have initially 0 mean stress or the confinement, then we increase it to let us say σ31, 

then it has to exert some additional energy in order to have the displacement along the jagged 

rupture path. Now what I do is I further increase it to σ32 let us say.  

 

So earlier it was 0, then it was σ31, and now it says σ32. So, the difference between this 

confining pressure which I have increased is this much. Now just by increasing the confining 

pressure by this amount one can observe the increase in the strength as 10 times this 

difference that is 10 times σ32 – σ31, this is so prominent. That is the reason why rock bolts 

are quite effective in strengthening the tunnels especially in case of the weathered rock. 

(Refer Slide Time: 21:29) 

 



Now another aspect that what happens when we increase the confining pressure or we are 

calling here as mean pressure. Have a look here, there is a plot between ∈ axial and σ 1 – p, p 

is being represented as the mean pressure which is nothing but the confining pressure. And 

you can see that the 4 plots are there, they are corresponding to the mean pressure of p 1, p 2, 

p 3 and p 4.  

 

So, the condition here is that p 1 is less than p 2, p 2 is less than p 3, and p 3 is less than p 4 in 

this case. That means in this direction we are increasing the mean pressure. Now what is the 

observation? Take a look at these four plots. When this mean pressure is small you can see 

that after the peak that means this location there is a sudden reduction in the stress-strain plot. 

Then as you increase the mean pressure that is when you go to this p 2. 

 

You can see that the slope of this post peak part it reduces and when you increase it further 

that is to p 3 this slope gets even milder and a stage will come where you will have this type 

of situation where after the peak the branch does not come down but it goes like this here. So, 

with increase in the mean pressure there is a rapid decline in load carrying capacity after the 

peak load and this rapid decline becomes gradually less striking as we increase the mean 

pressure.  

 

At the value of the mean pressure which is known as brittle-to-ductile transition pressure, the 

rock behaves fully elastic. This is a very important phenomenon in case of the rock 

mechanics. That means that the same rock can behave as brittle as well as ductile depending 

upon the value of the confining pressure at which the test on that specimen has been 

conducted. Now the question comes what can be the value of this transition pressure or at 

what value of the confining pressure the material will start behaving from brittle-to-ductile? 

Let us see that.  

(Refer Slide Time: 24:57) 



 

After the peak the contiνed deformation here in this case, see here after the peak in all these 

three cases there is a sudden reduction and this is less striking when you are increasing the 

value of p. But when the ductile behavior is there that is in this case, so the contiνed 

deformation is going to take place, so you see that this is after c. That means c is the point 

kind of a peak and beyond this the contiνed deformation of the rock is possible without any 

reduction in the stress.  

 

So, if you just take more or less here the stress level is more or less constant and contiνously 

you can see that the strain is increasing, here it is ∈ axial and this is σ 1 – p. So, contiνously 

strain is increasing without any reduction in stress. Now how should the failure mode will 

look like when we increase the confining pressure on the rock? Is it going to be the same 

throughout or with increase in the confining pressure there is going to be any change in that 

as well? Let us see.  

(Refer Slide Time: 26:42) 



 

This brittle-to-ductile transition that occurs at a pressure which are far beyond the region of 

interest in most of the civil engineering application. 

(Refer Slide Time: 26:54) 

 

However, in some rocks like evaporate rocks or soft clay shales, this plastic behavior can be 

seen at engineering service loads itself. So, I mentioned to you once again when you have the 

ductile kind of behavior after the peak you are going to get the contiνous deformation without 

any reduction in stresses. This brittle-to-ductile transition pressure in most of the rocks is 

beyond the engineering service loads, but in case of the soft clay shales or evaporate rocks it 

can be seen at engineering service loads.  

(Refer Slide Time: 27:57) 



 

Now without the confining pressure when we test the rocks, most of the rocks they show one 

or more fractures parallel to the axis of loading. Take a look here. You have more or less 

parallel to the plane of the loading you have these fracture planes. When the ends are not 

smooth, the rock will sometimes split in nearly two which is parallel to the axis like a 

Brazilian specimen.  

 

So, in this case you see it will be something like this. So, it will be like the one piece and this 

is going to be the other piece just in case if the ends are not smooth then you can get this type 

of situation.  

(Refer Slide Time: 28:50) 

 

Now when you increase the confining pressure, the failed specimen it demonstrates faulting 

with an inclined surface of rupture which is traversing the entire specimen. Take a look at the 



figure νmber B in this case. So, this means here there is the more confining pressure and you 

can see this kind of inclined surface of rupture which is traversing the entire specimen that is 

from this end of the specimen to this end of the specimen.  

 

Now in case of these soft rocks, this phenomenon may occur even with unconfined specimen 

that means when you say σ 3 = 0 in case of the soft rocks then also you can get this type of 

situation. 

(Refer Slide Time: 29:59) 

 

For too short a specimen: Contiνed deformation past the faulting region will drive the edges 

of the fault blocks into the testing machine platens thereby producing complex fracturing in 

these regions and possibly apparently we will get strain hardening kind of behavior. What do 

we understand by the strain hardening kind of behavior? That means if we have the stress 

here and strain here, then what we will get is this kind of behavior. That means beyond this 

yield limit, the resistance will be there in the specimen like this.  

(Refer Slide Time: 30:58) 



 

So, at the pressures above brittle-to-ductile transition, there is not going to be any failure 

because the material is behaving in a ductile fashion. But the deformed specimen is found to 

contain parallel inclined lime which are the loci of intersection of the inclined rupture 

surfaces and the surfaces of the specimen that is the condition νmber C. So, you can see here 

that you are getting these two sets of inclined lines which are intersecting the surface of these 

specimens.  

 

So, one is in this direction and another one is in this direction which is kind of perpendicular 

to the earlier one. So, this is the situation that you will get at the pressures above brittle-to-

ductile transition.  

(Refer Slide Time: 32:12) 

 



Now the examination of the deformed rock will show intracrystalline twin gliding, inter-

crystal slip and finally the rupture in such situation. Now Mogi in 1965 he talked about this 

brittle-to-ductile transition pressure and suggested that when your σ 1 – σ 3 is approximately 

equal to 3.4 times the confining pressure or σ 3. Then this condition, this stress state will 

correspond to the brittle 2 ductile transition. 

 

Later on, when other researchers carried out the research in this direction, they said that when 

you have σ 1 in the range of 3 to 5 times σ 3, then you can have the brittle 2 ductile transition. 

Now after getting the idea about the effect of confining pressure on rocks, let us start our 

discussion on the first failure theory which is relevant to the material rocks. Let us see what is 

this failure theory. 

 

Because this was one of the earlier works that is being referred even today for the 

representation of the strength characteristic of the geomaterials.  

(Refer Slide Time: 33:57) 

 

So, in this case the assumption which is made is that the failure of a material is represented 

by a fundamental relationship between shear stress which is acting along the plane of failure 

and the normal stress acting across such plane and that relationship is given by tau = f of σ n. 

That means what? Let us say that you have a plane of failure, then the shear stress along this 

plane this tau is a function of the normal stress along normal stress on this plane that is σ n.  

 

Now this normal stress whether it is compressive or whether it is tensile, it contributes 

towards the failure. It is not assumed in this theory that the material is equally strong in 



tension as well as in compression. Mohr only suggested that there is going to be a 

relationship between tau and σ n. However, he never said what kind of this relationship it is 

going to be.  

 

Whether it is going to be linear, whether it is going to be non-linear, it was not mentioned. 

So, the only thing which was there is that the shear stress is a function of the normal stress on 

the plane of failure.  

(Refer Slide Time: 35:45) 

 

In this theory, the effect of intermediate principal stress which is σ 2 is ignored. As per this 

theory, it was suggested that the fundamental relationship between tau and σ n is the 

characteristic of the material concerned and it must be determined by experimental tests. So, 

say we conduct the tests in the lab, let us say that we conduct the triaxial test in the lab and 

then we try to plot the relationship between tau and σ n. 

 

And then we try to see what kind of relationship that experimental data is honoring. So that is 

going to define this function f. Depending upon the characteristic of the material, this 

function f can be linear or it can be parabolic, it can be hyperbolic, it can be anything. It will 

be the characteristic of the material. So, Mohr's failure theory in the most simple manner 

states that the shear stress at a failure plane is a function of the normal stress on that plane. 

 

Now, this theory was further modified by Mohr Coulomb and you know the very well aware 

Mohr-Coulomb failure criteria and you all know that it is a straight line. So, this we will 

discuss in the next class. So, to summarize what we discussed today? We discussed about the 



stress-strain relationship for the plane stress condition, axisymmetric loading. Then we saw 

what is the effect of the confining pressure on the rocks.  

 

How it is going to influence the failure pattern when you increase the value of σ 3 or the 

confining pressure? How the failure pattern in the rock specimen got changed? And then we 

had the discussion on Mohr’s failure theory. So, in the next class we will start our discussion 

with Mohr-Coulomb failure theory. Thank you very much. 


