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Shallow Foundation

So, in the last lecture, we discussed the Terzaghi bearing capacity equation. And also
some of the applications have been demonstrated by solving few problems. So, today |
will continue with the same and discuss few more problems and then extend it as the

theory as given by Meyerhof and for the eccentric load footings.
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Ferzaghi's bearing capacity equation in
case of general shear failure

Gu= N+ N, +0.5yBN,

For local shear failure
¢'=(2/3)c and tand' = (2/3)1and

The bearing capacity factors N, N and
N, may be rcad from table

So, Terzaghi bearing, Capacity equation as we have seen, for the general shear failure
case is given by g ultimate equal to ¢ Nc plus 0.5 gamma B N gamma plus g 0 Ng.
Where Nc Ng N gamma factors are determined on the basis of the angle of shearing
resistance tables have been provided and also the figures for the Terzaghi bearing
capacity factors. In case of local shear failure c is taken as two-third of ¢ and phi is
determined by this equation tan phi dash equal to two-third of tan phi. So, these bearing
capacity factors can be read from the table.
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The Terzaghi bearing capacity
equation has been modified for other

shapes of foundations by introducing
the shape factors.

The Terzaghi bearing capacity equation, we have seen has been modified for the other

shapes of foundations like, for the case of.
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Square Foundations
Qux= 1.3¢N.+qN;+04yB N,

Circular Foundations
Qu= 1. 3cN.+qN +03yBN,

Square foundations for the case of circular foundations, in the case of square
foundations, the equation comes out to be 1.3 ¢ Nc plus g Ng plus 0.4 gamma B N
gamma whereas, for the case of circular foundations, it is 1.3 ¢ Nc plus g Nqg plus 0.3

gamma B N gamma.
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Rectangular Foundations

Qe SN (IHO3IBL) ' g N+ 05/B N (1-02 B1)

where,
B= width or diameter and
L= Length of foundation

In the case of rectangular foundations, we use this bearing capacity equation in, which a
it is given by ¢ Nc 1 plus 0.3 B upon L plus g 0 Nqg plus 0.5 gamma B N gamma 1 minus
0.2 B B upon L. Where B is the width of the footing or foundation or the diameter of the

footing and L is the length of the foundation.
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Skempton's Beanng Capacity Factor

For saturated clay soils, Skempton
(1951) has proposced the following
cquation for strip foundation

Qu= ¢ N +7vD;

We have also seen that, in the case of a cohesive soil Skempton has proposed the

following equation for the case of strip footing, g ultimate equal to ¢ Nc plus gamma Df.
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I'he lower and upper limiting values of
N, for strip and squarc foundations may
be written as follows

Type of Ratioof  Valuc of
Foundation D/B N,

Strip 0 5.14
>4 75

Squarc 0 6.2
>4 90

The lower and upper limiting values of Nc for strip and square footings, may be written
in the follows, like for the case of different type of foundations depending upon Df by B

ratio. We can obtain or we can read the values of Nc from this particular table or.
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Ihcaring «apasity lacior, &,

We can use this particular plot between bearing capacity factor Nc and Df by B and D

from using this, particular graph, we can obtain for different values of D by f B D by Df
by B ratio.
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The equaton for rectangular
foundation may be wntten as
follows:

(N‘)R ={ 0.84+0.16x B/L) (N‘)\
where, 3

(N_g = N, for rectangular foundation, and
(N.)s =N_ for squarc foundation

The equation for rectangular foundation may be written, for the case of Nc it is given by
0.8 4 plus 0.1 6 B upon L into Nc S, where Nc S is the Nc for square foundation, Nc R is
the Nc for rectangular foundation. We have also discussed the effect of water table on
bearing capacity of shallow foundation. We know that due to fluctuations in the water
table during different seasons, the bearing capacity is affected. And this bearing capacity

can we corrected for water table using following equation.
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For any position of watcr table within the
depth (D, + B),

gu= ¢N_+q,N.R,, + 0.5yBN, R,

where,

R, = reduction factor for WT above basc
lcvel of foundation

R, = reduction factor for WT below base
level of foundation




So, here if the water table is within the depth Df plus B, we can use this particular
occasion as q ultimate ¢ Nc plus g 0 Ng Rw 1 plus 0.5 gamma B N gamma Rw 2. Where
Rw 1 and Rw 2 are the reduction factor for water table, when water table is above the
level of foundation this is Rw 1 and when water table is below, the base level of

foundation Rw 2.
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Water table above base level of foundation

Now, this Rw 1 and Rw 2 can be obtained using this chart; you can see from here this is
the depth of foundation. This is width of foundation, this is the position of the ground
water table, which is at a depth Dw 1 below the ground surface and using this chart we

can find this, Rw 1 depending upon Dw 1 by Df ratio.
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Water table below base level of foundation

Similar to this, if suppose water table is below the base level of the foundation. And it is
at Dw 2 below the base level. Then and it is within the width, within the depth equivalent
to width of the foundation, then we can use this particular chart to find out Rw 2. So,
here, Rw 2 can be read or it can be calculated by the equation which we discussed in the
last lecture.
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Equivalent effective unit weights may be used
to determmne ultimate bearmg capacity

Qux= C N +7,D N, + 05 y,BN,

Y.: = weighted effective unit weight of the soil

el

lymg above the base level of foundation

Y = weighted effective uninweight of the soil
lying within the depth B below the base
level of foundation

= saturaled umit weight of the soil below W

submerged unit weight of the soil

Another method, for considering water table is by making use of equivalent unit weight

effective, unit weight gamma e 1 and gamma e 2. And these equivalent effective unit



weights can be determined for the 2 cases. When the water table is above the foundation
level and when the water table is below the foundation level. Now, various terms used

are gamma e 1 gamma e 2 gamma saturated and gamma submerged.
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CASE 1: When the water table lies above
basc level of foundation or
when D_,/D <1,

Taa = Ym"D-l Do)y — 1)

For the case, when the water table lies above the base level of foundation or when Dw 1
by Df is less than 1 gamma e 1 is taken as gamma submerged plus Dw 1 upon Df gamma
minus gamma submerged. Whereas, gamma e 2 will simply be equal to gamma

submerged.
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When the water table hies
below base level of foundation
or when D_,/B<I,

Ycl— ?

YC.‘ - ‘!““D‘: B’(y - Y\nb’




When the water table lies below base level of foundation or when Dw 2 by B is less than
or equal to 1 then gamma e 1 is nothing but the unit weight of soil, above the foundation
level. And gamma e 2 is gamma submerged plus Dw 2 by B gamma minus gamma

submerged.

(Refer Slide Time: 07:06)

EXAMPLE

A square footing, founded at a depth of
I.5m below the ground surface m
cohesionless soil, carries a column load of
1280 kN. The soil is submerged having an

cffective unit weight of 11.5 kN/m” and an
anglc of shearing resistance of 30° | Find
the size of the footing for F, = 3, Use
Terzaghi's theory of gencral fhcar failurc.

So, this is what we have discussed in the last class, last lecture. Now using the same
concept we will solve some more few more problems and so, that the application of these
particular occasions are very clear. One such problem is that of square footing founded at
a depth of 1.5 meter below, the ground surface in cohesion less soil means, c equal to 0O it
carries a column load of 1280 kilo Newton. So, the column load is given the soil is
submerged having an effective unit weight of 11.5 kilonewton per meter cube and an
angle of shearing resistance phi equal to 30 degrees. We will have to find the size of the
footing for a factor of safety equal to 3 and using the Terzaghi's theory of general shear

failure.
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SOLUTION :

For squarc footing,

G =7YD¢N,+04yBN,

Since the WT is close to the ground level,
Y = Y = 11.5 kN/m’

For®=30° N.=225 and N, = 19.7

Substituting the known valucs, we have

Qe =11.5%1.5%22.57+04*11.5*19.7*B
=38813+9062B kN/m’

Now, in order to get solution, we know that the for the case of square footing in the
cohesion less soil g ultimate will be given by, gamma Df Ng plus 0.4 gamma B N
gamma. You can see from here, that this factor is 0.4 is not 0.5, which is in the case of
strip footing. Since the water table is close to the ground level the unit weight will be the
submerged unit weight and which is already given 11.5 kilonewton per meter cube. Now,
for phi equal to 30 degrees from the tables we discussed, we can find out Ng and N
gamma these are 32.5 and 19.3 respectively. Now, when we substitute respective values
in the ultimate bearing capacity equation we will find that the ultimate bearing capacity
equation comes out to be 388 0.13 plus 90.62 B, where B is the width of the column

footing.
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Column load , Q, = 1280 kN
orq, = 1280/B*B kN/m’
G = Q- YD = (1280/B% — 11.5%1.5) kN/m*
F,=3,q, = (1280/B° - 115%15)*3
= (3840/B? - 51.75) kN/m*

Gu= G+ 1D = (3840/B2 —69)+ 11.5%1 5 q, =
IRA/B? — 51.75= 388 13 + 90.62B

or B +4854B° - 4237 =0

Solving for B, wehave B=242m

Size of square footing = 342*2 42 m

Now, from the data given as that of column load is 1280 kilo Newton. We can find out
what should be the ultimate corresponding to this what should be the ultimate bearing
capacity sufficient. So, that this can be taken up by the soil, so, in order to do that, first of
fall we will find out. What is the safe bearing load or safe bearing capacity? That is
nothing, but this load divided by area of the footing, here we have assume width of the
footing as B. So, the area of footing will be B into B, so, 1280 divided by B square. Now,
once g shape is known we can find out q net shape that comes out to be gs minus gamma
Df. So, when we substitute values of gamma Df, we will get this as 1280 by B square
minus 11.5 into 1.5 total in bracket kilonewton per meter square. Now, it is also given

that, the factor of safety is equal to 3.

So, we can find out net ultimate using this factor of safety, we multiplied by factor of
safety, and finally, we find out q ultimate that is g q net ultimate plus gamma Df. So,
when we substitute, we will end up with an equation, which will be 3840 by B square
minus 51.75. Now, we have already, determined this ultimate bearing capacity from the
Terzaghi equation. And when we substitute, we compare this Terzaghi equation with this
value, we will get a cubic equation in this form B cube plus 4.854 B square minus 52.37
equal to 0. This we solve by trial and error, by solving we will get width of the footing
and that comes out to be 2.42. So, the size of the square footing, which will be sufficient
for 1280 kilonewton load will be 42.42 meter by 2.42 meter. Another solved example
which will make in which we make use of the Terzaghi bearing capacity equation is a



footing of 1.5 meter diameter it carries a safe load of 800 kilo Newton, that including its

self weight.
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SOLVED EXAMPLE

A footing of 1.5 m diameter carrics a safe
laod (including its sclf weight) of 808 kN
in cohesionless soil. The soil has an angle

of shecaring resistance @ = 36° and an
cflfecive umit weight of 12 kN/m’
Determine the depth of foundation for F,
= 2.5 by Terzaghi’s general shear fatlure
crilena.

So, it is the total in cohesion less, soil the soil has an angle of shearing resistance phi
equal to 36 degrees. Now, as phi equal to 36 degrees, we will consider this case of the
general shear failure and an effective unit weight of the 12 kilonewton per meter cube.
Determine the depth of foundation for which Fs factor of safety is equal to 2.5 again

using Terzaghi’s criteria.
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SOLUTION :

Using Terzaghi's equation forc = 0
Q= YD(N,+0.3 yBN,

For® = 36°, N = 54, and N_—= 4938

By substituting the known valucs, we have

Qe = 12%4938 D, +0.3%12*] 5%54
(592.56 D, +291.6) kN/m’




Now, using Terzaghi’s equation for ¢ equal to 0, we end up with equation as g ultimate
equal to gamma Df Ng plus 0.3 gamma B N gamma. Now, here you can see this is 0.3
which is for the case of a circular foundation. Now, similar to the other cases for
different values of phi, we can obtain N Ng and N gamma factor. So, here phi for phi
equal to 36 degrees N gamma and Nq can be directly read from the table. And when we
substitute these values? We will get this ultimate bearing capacity, equation in which
depth of foundation is unknown and that will be given by 5 92.56 Df plus 2 91.6

kilonewton per meter square.

(Refer Slide Time: 12:45)

Column load , Q, = 800 kN
q, = 4* 800 'uB’
= 3200/(n * 1.5%) = 45271 kN/m?
Q. =q-yD=452.71 - 12.0* D) kN/'m?
F, =25,

G, = (45271 - 120°D,)* 25
=(1131.77 - 30* D,) kN/o¥®

Qs = G * YD = (113177 30° Dy) + 12.0° D,
Qe = (113177 - 18* D, ) =59256 D, +2916
Solving for B, we have B = 1 376 m

Now, from the given data the column load is 800 kilo Newton. So, 800 kilonewton 4 into
800 kilonewton divided by pi by B square, that will be the g safe that comes out to be
3200 divided by pi into 1.5 square 452.71 kilonewton per meter square. Now, q safe is
known, we can find out q net safe that comes out to be g safe minus gamma Df. If you
know factor of safety we can find out g net ultimate, if you multiply this g net safe by
factor of safety. So, we will get this as 1131.77 minus 30 into Df in which Df is the depth

of foundation which is unknown.

Now, after getting this g net ultimate, we can find out g ultimate by adding gamma Df to
the net ultimate. So, it comes out to be 1131.77 minus 30 Df plus 12 in into Df. Now, we
have already; obtain 1 expression for ultimate bearing capacity using Terzaghi criteria.
When we compare this, with the that equation and we solve it by trial and error we will



get the width of the foundation, that is the diameter of the foundation as 1.376 meter it

means, this much even if you provide 1.4 that will be for this particular case.
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SOLVED EXAMPLE

If the ulumate bearmg capacity of a | m
wide strip footing resting on the surface of
sand is 250 kN/m” , what will be the net safe
bearing pressurc that a 3*3 m square footing

resting on the surface can carry with F, =3.
Assumc that the soil is cohcsionless. Use
Terzaghi’s theory

Now, if you see another example, again we use Terzaghi bearing capacity if the ultimate
bearing capacity of 1 meter wide strip footing resting on the surface of sand is 250
kilonewton per meter square. What will be the net safe bearing pre pressure? That a 3 by
3 meter square, footing resting on the surface can carry. So, using the data of strip

footing, we can use it for the square footing and obtain the solution.
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SOLUTION :
We may write the following equations for
cohesionless soil with D, = 0
Q. (squarcy= 0.4 yB,N_

Q. (stnp) =05yB,N,

I'herefore, q, (squarc)/ g, (strip)
= (0.4 yB,N_ (0.5 yB,N,)
=08 B, /B, =0.8*3/1 =24




We may write the following equations, for cohesion less soil with depth Df equal to 0 q
ultimate for square footing equal to 0.4 gamma B 1 N gamma. Where B 1 is the width of
a square footing and q ultimate for strip footing is 0.5 gamma B 2 N gamma, where B 2
is the width of strip footing. So, the ratio of q ultimate of the square and q ultimate of the
strip, that will come out to be 0.8 B 1 upon B 2 that is 0.8 into 3 upon, 1 that is equal to
2.4.
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Q.» (squarc) = 2.4 q, (strip)
=2.4%*250 =600 kN/'m?

Qe = G, SINCC D, =0

Qe = G, (Square)/3

= 600/3
= 200 kN/m’

Now, g ultimate of square will be equal to 2.4 times g ultimate of the strip and that g
ultimate of the strip is given as 250. So, g ultimate of the square will be equal to 2.4 into
250 that is equal to 600 kilonewton per meter square. Now, g net ultimate will be equal
to g ultimate since the footing is resting on the ground itself. And hence q net safe can be
equal to g net ultimate of the square, divided by factor of safety that is 3. That is equal to
600 by 3 comes out to be 200 kilonewton per meter square.
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SOLVED EXAMPLE

A circular plate of diameter 1.05 m was
placed on a sand surfacc of umit weight
16.5 kKN/m' %tnd loaded 1o failure. The

failure load was found to give a pressure of
1500 kN/m’. Determine the value of the

bearing capacity factor N, The angle of
shearing resistance of the sand measured in
a triaxial test was found to be 39°. Compare
this value with the theoretical value of
corresponding to N_Use Terzaghi's theory

Now, in another solve problem, that is the case of a circular plate of diameter 1.05 meter
was placed on a sand surface of unit weight 16.5 kilonewton per meter cube. And loaded
to failure the failure load was found to give a pressure of 1500 kilonewton per meter
square. We will have to determine the value of bearing capacity factor N gamma, the
angle of shearing resistance of the sand measured in a triaxial test was found to be 39
degrees. We will have to compare this value with the theoretical value of corresponding

to N gamma using Terzaghi theory.
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SOLUTION :

Since the plate is placed on the surface

D, =0, the equation for the g, (circular) is
G “03yBN_ = 03*165%1.05* N,
since g, = 1500 kN/m” |

we have N_ = 1500/5.1975 = 289

For® =39 N_ = 888 which is very less than
that obtmned from the plate load test. Ths
partly due to the scale cffect and partly due to
sensitiveness of N at higher values of @

»




Now, in order to get solution, we know that the plate is placed on the surface. So, Df
equal to O plate is circular. So, q ultimate is 0.3 gamma B N gamma and when we
substitute the values. We will get 0.316.5 into 16.5 into 1.05 N gamma, since g ultimate
equal to 1500 kilonewton per meter square. So, N gamma will come out to be equal to
1500 divided by 5.1975 that is equal to 289. Now, for phi equal to 39 degrees, N gamma
equal to 88.8, which is very less than we obtained from the plate load test. This is partly
due to the scale effect and partly due to the sensitiveness of N gamma at higher values of

phi.
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SOLVED EXAMPLE

Find the net safc bearing load per meter
length of a long wall footing 2 m wide
founded on a sulfl saturated clay at a
depth of | m. the unit weight of the clay

is 17 kN/m’ | and the shear strength 1s
120 kN/m* . Assumc the load to be
applicd rapidly such that undrained
condition (@ = 0° ) prevail. Use F, = 3
and Skempton’s method.

The next solve problem is, about to find the net safe bearing load per meter length of a
long wall footing 2 meter wide founded on a stiff saturated clay at a depth of 1 meter the
unit weight of the clay is 17 kilonewton per meter cube. And the shear strength is 1020
kilonewton per meter square, assume the load to be applied rapidly such that undrained
condition phi equal to O prevail use factor of safety equal to 3 and use the Skempton’s

parameter.
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Now, Skempton parameter Nc can be obtained by this chart, which we have discussed in
the last lecture.
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SOLUTION :
Using Skempton's cquation we have
Quu = ¢N, + Dy orgq,, =cN,
From figure, for D/B = 05,

N, = 6 for strip footing.
Therefore q,, = 120%6 = 720 kN/m’
Qy = 720/3 = 240 kN/m’

»

Now, using this chart and the equation given by Skempton we have find out this q
ultimate equal to cNc plus gamma Df where this Nc is obtained by the previous chart and
as it is on the surface. So, this Df equal to 0 we will end up with g net ultimate, that is
equal to cNc. Now, from this figure for Df by B equal to 0.5 Nc comes out to be 6 for

square footing strip footing therefore, q ultimate equal to 120 into 6 that is 712



kilonewton per meter square q net safe comes out to be 720 divided by three that is 240

kilonewton per meter square.
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GENERAL BEARING CAPACITY
EQUATION

So, for we have discussed about the Terzaghi, bearing capacity equation. And we have
taken different problems, variety of problems by which we can either find out ultimate
bearing capacity. We can find out net safe bearing capacity, we can find out safe bearing
capacity and also in few of the problems, we have discussed such that depending upon
the unknown. Let us say, whether it is width of the footing or the depth of the footing or
the bearing capacity factor N gamma, we can obtain using Terzaghi bearing capacity
equation. Similar to this we have also discussed about how to apply the water table
correction? Whether, the water table is above the base of the foundation or below the

base of the foundation.

Now, this general bearing this bearing capacity safe bearing capacity, equation has been
extended by many researchers. And the, they have obtained general bearing capacity
equation, the form of the equation has been found to be similar to that of Terzaghi
bearing capacity equation. Only, difference is in the parameters like Nc Ng N gamma
basically you will find that Nc and Nq are almost similar as that of Terzaghi. But there
will be difference only in the value of N gamma, they have also extended it for the
different safe factors. So, now, onwards | am going to discuss the modifications, which



are being done by various researchers in the Terzaghi bearing capacity equation. So, that

is general bearing capacity equation.
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Meyerhof (1963) presented a general
bearing capacity cquation which takes
mto account the shape and the inclination
of load. The gencral form of cquation
suggested by Mceyerhof for bearing

capacity 1s

Quu=cNsdi +g Nsdi +05/BNs d i

It was Meyerhof in 1963, who presented a general bearing capacity which takes into
account the shape of shape and the inclination of the load the general form of equation.
Suggested by Meyerhof for bearing capacity is given as cNc sc dc ic plus q 0 dash Nq sq

dg iq and plus 0.5 gamma B N gamma s gamma d gamma | gamma now here.
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where
¢ = unit cohesion
q',= cffective overburden pressure at base
level of the foundation
=vD,
y = cffective unit weight above base level

of foundation

= effective unit weight of soil below
foundation basc




C is the unit cohesion g 0 dash is the effective overburden pressure, at the base level of
foundation. Which can be determined, if we know effective unit weight gamma dash and
the depth of foundation Df. Where gamma dash is the effective unit weight above the
base level of foundation and gamma is the effective unit weight of soil below the base

level of foundation.
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D, = depth of foundation
S.. Sg. S, = shape factors
d.d, d, = depth factors

i, I, i, = load inclination factors

B = wadth of foundation

N., N,. N.= bearing capacity factors

Df is the depth of foundation Sc Sq S gamma are the shape factors, dc dq d gamma are
the depth factors, ic iq | gamma are the load inclination factors, B is the width of

foundation and Nc Ng and N gamma are the bearing capacity factors.
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» Hansen (1970) extended the work of
Mecyorhofl by including two additional
factors to takc carc of basc ult and
foundations on slopces.

Vesic (1973) used the same form of
cquation suggested by Hansen

All three mvestigators have used
cquations proposcd by Prandtl (1921) for
computing the values of N_ and N
wherein the foundation base 1s assume
as smooth with the angle a = 45° + @72

Hansen in 1970 extended the work of Meyerhof by including 2 additional factors to take
care of the base tilt and the foundations on slopes. Another researchers Vesic in 1973
used the same form of equation, suggested by Hansen all 3 investigators have used
equations proposed by Prandtl 1921 for computing the values of Nc and Ng. Where in
the foundation base is assumed as smooth and it is incline at an the the sides of the

wedge are incline at an angle of 45 plus phi by 2.
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However the equations used by them for

computing the values of N, N, and N,
arc,
c;l!nnObN@

tan’ (45% @/2)

N.=(N,— 1) co®

N,=(N,— 1) tan(1 4®) - (Meyerhof)
N,= L3N, 1) tan® - (Hansen)
N, =20(N,— 1) tan® - (Vesic)




However, the equations used by them for computing the values of Nc Ng and N gamma
are slightly different from that of Terzaghi. And are given by like Nqg equal to e to the
power pi tan phi multiplied by N phi where N phi is tan square 45 plus phi by 2 Nc equal
to Ng minus 1 into cot of phi. So, Ng and Nc are similar only difference by different
researchers, like Meyerhof Hansen and Vesic are in the value of N gamma as per
Meyerhof N gamma equal to Ng minus 1 tan of 1.4 phi. Whereas, as per Hansen N N
gamma equal to 1.5 Ng minus 1 tan of phi and as for Vesic N gamma, equal to 2 Nq

minus 1 into tan phi.
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C at Sq and N gamma are given by these equations, like as per Meyerhof Sc is given by
1 plus point 2 N phi B upon L. Whereas, by Hansen it is 1 plus N phi upon Nc B upon L
whereas, the shape and depth factors of Vesic are similar to those of Hansen. Similar
equations have been given by for Sq, similar equations have been given by S gamma.
They have also proposed equations for dc dq and d gamma like 1 plus 0.2 and a root of N
phi Df by B is given by Meyerhof 1.4 Df by B is Given by Hansen. Similarly, they have
also proposed like this the these 2 equations for dg, and this equations for d gamma.
They have included the inclination factors are ic, iq and 1 gamma like Meyerhof has

given this value of ic as 1 minus alpha by 90 square.

Where alpha is the inclination and iq equal to 1 minus ig upon Ng minus 1 for 5 greater

than 0, given by Hansen. And for 5 equal to 0 it is 0.5 1 minus Qh upon Af into ca to the



power half for 5 equal to 0. Whereas, Hansen has given 1 minus Ngh upon Af ca into Nc.
So, similar expressions have been suggested by Meyerhof Hansen and Vesic for Iq
expression is like this, for I gamma expression is like this. So, using this table, we can
find out the inclination factors the safe factors. And depth factors, which are to be used
in the general bearing capacity equation the different terms which have been used in

calculating the parameters are given as follows?
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The following terms arce defined with
regard to the inclination factors,

Q,* horizontal component of inclined load
Q.= vertical component of inclined load
¢, = unit cohesion on the base of footing

A, = cffective contact arca of footing
m = my, = (2+B/L)V(1+B/L))

with Q, parallel 1o B
m =m,= (2H{B/L)(1+B/L))

with Q, parallel to L

Like Qh is the horizontal component of the inclined load, Qv is the vertical component
of inclined load, ca is the unit cohesion on the base of the footing. Af is the effective
contact area of the footing, m equal to mb is given by this particular equation which says
2 plus B upon L divided by 1 plus B by L with Qh parallel to B and if Qh is parallel to L.
Then it will be m equal to mb 2 plus B upon L plus 1 divided by 1 plus B upon L.
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Henson recommends the following
cquation for @ = 0 casc;

Qu=CcNc(l+s.+d -1.)+q,

s, d and 1 are the Henson's shape, depth and
mclination parameters

Henson recommends, the following equation for phi equal to O case, that is equal to q
ultimate cNc in bracket 1 plus sc plus dc minus ic plus g 0. Whereas, d and | are the
Henson's shape depth and inclination parameters and these can be read from the table
given in the book by V N S Moorthy.

(Refer Slide Time: 27:33)

Validity of the Bearing Capacity
Equations
There has been hittle expenmental venficabion

of any of the methods except by using model
lootings

lerzaghi’s equation, bemng the first proposed
has been quite popular with designers

Both Meyerhof and Hansen methods are
widely used

I'he Vesic method has not been much used

Validity of bearing capacity equations, there has been little experimental verification of

any of the methods. Except by using model footings Terzaghi’s equation being the first



proposed has been quite popular with the designers. Now, both Meyerhof and Hansen

methods are widely used the Vesic method has not been much used.

(Refer Slide Time: 27:59)

* It is good practice to usc at lcast two
methods and compare the computed
values of q,

* [If the two values do not compare well,
usc a third method.

It is a good practice to use at least 2 methods and then compare the computed values of g
ultimate. Now, if the 2 method values do not compare well then we use a third method

out of these, as | said the Terzaghi bearing capacity equation is widely used.

(Refer Slide Time: 28:32)

BEARING CAPACITY OF

SHALLOW FOUNDATIONS AS
PER 15:6403-1981

Now, as per our Indian Standard 6 4 0 1 9 8 1, they have consider the equation which

was given by Brinch and Hansen.
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IS: 6403-198]1 recommends following
equation for the computation of net
ulimate bearing capacity of a shallow
foundation in general shear failure,

Qe CNS A1+ @ (N-1)s,d i

Vg 99

+0.5yBN s d i R’,
N. ., N, and N, arc bearing capacity

factors suggested by Vesic (1973). R'_ s
a factor which takes in to account the

cffect of water table.

And that equation is recommended for, used to determine net ultimate bearing capacity
of a shallow foundation, in the case of a general shear failure case. And this equation is q
net ultimate equal to cNc plus sc dc ic plus g O dash. Where this is the effective
overburden pressure at the level of foundation Ng minus 1 sq dq iq plus 0.5 gamma, B N
gamma, s gamma, d gamma, | gamma and Rw Rw dash. That is the reduction factor for
water table or correction factor for the water table. Now, all these safe factors are given
in the tabular form in IS 6 4 0 1 9 8 1. So, here again Nc Ng and N gamma are the
bearing capacity factors, that are suggested by Vesic and Rw dash is a factor which takes

into account the effect of water table.



(Refer Slide Time: 29:40)

| if water table 1s likely to remain

permancently at or below a depth of
(D, +B) below ground level or D

B where D, i1s the depth of water
table mcasured from basc of

foundation
ForD_=0 R_=05

Lincar interpolation between 0 and 1 for
0<D_<B,

Rw will Dash will be equal to 1, if water table is likely to retain permanently at or below
a depth of Df plus B means, at a large depth below the ground level or Dw dash is
greater than B. Where Dw dash is the depth of water table measured from the base level
of foundation. For Dw dash equal to 0 means the water table is just at the level of
foundation then this Rw dash is taken at equal to 0.5. Now, for the intermediate values
we can use linear interpolation between 0 and 1, when the Dw dash is ranging between 0
and width of the foundations. So, this is the width and we will have to go up to the width

of the depth equivalent to width of the foundation.

(Refer Slide Time: 30:32)

For a cohesive soil, the net ultimate bearmng
capacity of a footing immediately upon
construction (¢ _= 07) is given by
tLlll‘ L.Il \C'\J‘L'C

where N _=5.14 and ¢, 1s obtained either from
unconfined compression test or  from
correlations with stalic cone penetration
resastance

¢, vancs between 1718 1o 1/15 of static cone
penctration resistance for normally
consolidated clay and 1726 1o 1722 of static
cone penctration regstance for  normally
consolidated clay :




For a cohesive soil, the net ultimate bearing capacity of a footing immediately, upon
construction immediately, upon construction, we know that the undrained conditions
prevail. So, we take phi u equal to 0 and for that case this net ultimate bearing capacity
will be given by cu Nc sc dc ic. Where Nc is taken as 5.14 and cu is obtained either from
the unconfined compression test or from correlations with static cone penetration
resistance, that is of field method to determine the resistance of the strata. Cu varies
between 118 to 115 of static cone penetration resistance for normally consolidated clay
whereas; it is 126 to 120 second of static cone penetration resistance value for over

consolidated clays.

(Refer Slide Time: 31:37)

BEARING CAPACITY OF

FOUNDATIONS SUBJECTED
TO ECCENTRIC LOADS

Now, so for we have considered the case of the foundations, in which the load is vertical,
application of the load is vertical. However, inclination factor, inclination parameters
given by Meyerhof Hansen and Vesic can be used for inclined loads. But when there are
many situations, in which we get the load, which is applied on the foundation

eccentrically.
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If a foundation is subjected to lateral
loads and moments m addition to vertical
loads, cccentricity in loading results.

The pomnt of application of the resultant
of all the loads would lic outside the
geometric centre of the foundation.

So, in order to determine bearing capacity of foundations subjected to eccentric loads
like due to such as if a foundation is subjected to lateral loads and moments in addition to
vertical loads, eccentricity in loading results. It may be inclined load or it may be a
moment, which is acting on the column. And then finally, foundation is subjected to that
moment, the point of application of the resultant of all the loads, would lie outside the

geometric centre of the foundation.

(Refer Slide Time: 32:50)

The cccentricity e i1s measured from
center of foundation to the pomt of
apphication normal to the axis of the

foundation.

The maximum cccentricity normally
allowed 1s B/6, where B 1s the wadth of
the foundation




The eccentricity e is measured from the center of foundation to the point of application.
Normal to the axis of the foundation the maximum eccentricity normally, allowed is B

upon 6, where B is the width of the foundation.

(Refer Slide Time: 33:09)

Now, we can see from this particular figure, let us take the case of a foundation, which is
resting at this particular depth. Now, this load Qd, which is applied not applied at the
center, but it is centrically placed at this particular location. So, the eccentricity measured
is e. Now, when this, when this eccentric load is applied then the pressure, which is
exhausted on the side of the eccentricity is more than the pressure exhausted on the other
side. And this becomes effective the width of the footing becomes, effective that comes
out to be B dash minus 2 e. Now, the same case you can see for in the plan let us say we

have a rectangular footing and eccentricity is in the direction of the width.

So, length will remain as it is, but width will be reduced by B minus 2 e, if this is e then
it will come out to be 2 e. Now, in another case, let us say that the eccentricity is applied
in the direction of the length. Then the effective length will be equal to L minus 2 ey,
where ey is the eccentricity, which is measured from the center of this foundation. Now,
it is quite possible, that the load, which is applied may be eccentric in both the directions.
Like, if you have this point and this is the center of the footing, then this ex in the x
direction. That is the in the width direction and ey is in the y direction, that is in the case
of length direction similar is the case, when the circular foundation is considered.
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When a foundation is subjected to an
cccentnic  vertical load, as shown m
previous figure, it tults towards the side
of the cccentricity and the contact
pressure increases on the side of tilt and
decreases on the opposite side.

»
When the vertical load rcaches the
ultimate load, there will be a failure of
supporting soil on the side of
cccentricity

So, when a foundation is subjected to an eccentric vertical load as shown in previous
figure, it tilts towards the side of the eccentricity. And the contact pressure increases on
the side of tilt and decrease on the opposite side. Now, when the vertical load reaches the

ultimate load, there will be a failure of supporting soil on the side of the eccentricity.

(Refer Slide Time: 35:18)

As a consequence, scttiement of the
footing will be associated with tilting of
the base towards the side of eccentricity

If eccentricity is very small, the load

required to produce this type of failure 1s
almost cqual to the load required for
producing a symmctrical general shear
failure.

As a consequence, settlement of the footing will be associated with tilting of the base

towards, the side of eccentricity. If eccentricity is very small the load required produce,



this type of failure is almost equal to the load required, for producing a symmetrical

general shear failure.

(Refer Slide Time: 35:40)

Failure occurs due to intense radial shear
on onc side of the planc of symmetry,
while the deformations in the zone of
radial shcar on the other side arc stll
msignificant.

For this rcason, the failurc is always
associated with a hecave on that side
towards which the footing tilts.

Failure occurs, due to the intense radial shear on 1 side of the plane of symmetry. While
the deformations in the zone of radial shear on the other side are still insignificant for
this reason, the failure is always associated with a heave on the on that side towards,

which the footing is tilting.
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In order to take in to account the cffect of
cccentricity on  the ultimate bearmg
capacity of the foundation, Mcycrhol
(1953) suggested to take cffective footing
dimensions as follows,

L'=L-2¢,.B'=B-2¢

The cffective arca is given by

A'=B'* LU

where ¢, and ¢_are the cccentnicitics
the direction of axcs.




In order to take into account, the effect of eccentricity, on the ultimate, bearing capacity
of foundation, Meyerhof suggested to, take effective footing dimensions as follows. If
the eccentricity is on the length direction, then and if, suppose the load is acting at a
distance of e by from the center of the footing L dash will be written as L minus 2 ey,
whereas, if it is in the width direction. And if the load is acting on at a distance of ex
from the center, then the effective width will be given by B minus 2 ex. Now, if it is,
eccentric in both the directions, so, we will be considering this effective length and then
effective width. So, the effective area will simply be given by B dash into L dash, where

ex and ey are the eccentricities in the direction of the axes.

(Refer Slide Time: 37:03)

The Ultimate load bearing capacity of a
footing subjected to cccentric loads may
be expressed as

Qu=qu A’

where, q, = ultimate bearing capacity of
the footing with the load acting at the
center of the foéting.

The ultimate load bearing capacity of a footing subjected to eccentric loads may be
expressed as Q ultimate. That will be equal to g ultimate bearing capacity and this is the

Q ultimate load multiplied by the effective area.
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Determination of Maximum and

Minimum Base Pressures Under
Eccentric Loadings

Now, in order to determined, a maximum and minimum base pressures, base pressures

under eccentric loading.

(Refer Slide Time: 37:28)

When a footing 1s eccentrically loaded,
the soil cxperiences a maximum or
minimum pressure at one of the comers
or edges of the footing

Consider the plan of a rectangular

footing given in next figure subjected to
cccentric loading.

Let the coordinate axes XX and YY pass
through the center O of the footing.

Now, when a footing is subjected to eccentrically loaded the soil experiences as we have
seen a maximum or minimum pressure, at one of the corners or edges of the footing.
Now, let us, consider the plan of a rectangular footing, given in the next figure subjected
to eccentric loading. Let the coordinate axis are XX and Y'Y pass through the center O of

the footing.
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So, this is the case of a rectangular footing the dimensions are L and D and the, a
coordinate axis are XX and YY passing through center of the footing. Now,
corresponding elevation is shown here now it is the case when this load is acting a the
eccentricity may be resulting due to the load which is acting at a distance ex in the
direction of x. Or it may be resulting due to load is applied from a at the center, but there
is a moment mx which is acting in this direction. So, there will be eccentricity e .

similar to this is the case when the load there is 2 way eccentricity in the x direction.

As well as in the y direction when this particular foot, footing foundation is subjected to
the moments in both the directions or the load is not applied at the center. And it is at a
distance of ex from the in the x direction and it at a distance of ey from the y direction.
Now, here you can see that there is a dashed area shown in which this allowed it
eccentricity is B by x B by 6 shear and B by 6 on the other the side. Similarly L by 6
shear and L by 6 on the other side this area is known as cone as for as the bearing cap the
load is applied within this area. Then you will find that no tension is developed anywhere

in the foundation which will be more made more clear by the following discussion.
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If a vertical load passes through O, the
footng s symmetrically loaded . If a
vertical load passes through O, on the X-
axis, the footing is loaded with onc way
eccentricity. The distance of O, from O,
designated as ¢, is called eccentricity in

X-direction. If the load passes through
O, on the Y-axis, the cccentricity is ¢, in
the Y-direction. If the load passes
through O, the eccentricity is called
with two way ecccentricity or double
eccentricity

If a vertical load passes through O the footing is symmetrically loaded if a vertical
loaded passes through Ox on the X axis the footing is loaded with 1 way eccentricity.
The distance of Ox from O is designated as ex is called the eccentricity in the X
direction. Similarly, if the load passes through Oy on the Y axis the eccentricity is ey in
the Y direction if the load passes through Oxy the eccentricity is called with 2 way

eccentricity or double eccentricity as we have seen in the previous figure.
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For the load passing through O_ n the
figure, the points C and D at the comers
of the footing experience the maximum
and mmimum pressurcs respectively

The general equation for pressure may be

wrilten as,

q=(QA)=(Q%. x/1)=(Q%, yv/I)
or

g=(QA) =M x/L)xMy/L)




Now, for the load passing through Oxy in the figure the point C and D at the corners of
the footing experience the maximum and minimum pressure respectively. And these
maximum and minimum pressures can be determined by following equation where q is
the pressure Q is the load A is the area and ex and ey are the eccentricities and Ix and ly
are the moment of inertia. So, this q will be given by Q upon A plus minus Q into ex into
x upon ly plus minus Q into ey into y upon Ix or Q upon A equal to g equal to Q upon A
plus minus Mx into x where Mx is the moment. So, here this Q into ex is nothing but the
moment which is applied in the x direction similarly Q into ey is nothing but my which is
applied in the y direction.

(Refer Slide Time: 41:18)

where,
q = contact pressure at a given point (x,y)
= total vertical load
= arca of footing
Q*c, = moment about axis Y-Y
= Q*%c, = moment about axis X-X

= moment of inertia of footing about
XX and YY axcs

So, these are self exploratory g equal to contact pressure at a given point whose
coordinates are given by x. And y Q is the total vertical load A is the area of footing Mx
is the Q into ex moment about axis YY My is Q into ey. That is the moment about axis
XX and Ix and xy are the moment of inertia footing about XX and Y'Y axis.
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Qo and q... at points C and D may be
obtamed by substituting in eqn., for
I, =(LBY 12)

»

I, = (BLY 12)

x =(L/2)
y =(B/2)

Q max and g minimum at point C and D may be obtained by substituting in equation for
IX that is equal to LB cube upon 12 and ly that is equal to BL cube upon 12 x equal to L
by 2 and y equal to B by 2.

(Refer Slide Time: 42:06)

We have.
Qe = (Q/A)*( 1 +(6¢, /L) +(6¢c,/B))

Qe = (Q/AY*( 1 - (6¢, / L) - (6, / B) )

For onc way cccentnicity put cither ¢, = 0,

or ¢, = 0 mn the equation

When we substitute these values, we will get @ max as Q upon A 1 plus 6 ex upon L plus
6 ey upon B g minimum will be equal to Q upon A 1 minus 6 ex upon L minus 6 ey upon
B. For one way eccentricity put either ex equal to 0 or B ey equal to 0 in the equation we
will get g max and g minimum.
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When ¢, or ¢, exceed a certamn limit, the
above cquation gives negative valuce of g
which indicates tension between the soil
and the bottom of the footing

The above cquations arc apphcable only
when the load 1s applicd within a limited
arca known as the Kemn as shown in
figurc so that the load may fall within the
shaded area to avoid tension

When ex or ey exceed a certain limit the above equation gives negative value of g which
indicates tension between the soil. And the bottom of footing the above equations are
applicable only when the load is applied within a limited area known as the Kern as
shown in the figure. So that the load may fall within the shaded area to avoid any tension
in the subsoil.

(Refer Slide Time: 43:03)

Example: 1
A water tank foundation has a footing of
sizc 6m* 6 m founded at a depth of 3 m
below ground level in a medium dense
sand stratum (® = 337 of great depth

The foundation 1s subjected 1o a vertical
load at an eccentricity of B/10 along one
of the axes. The soil profilc with
remaining data is shown in figure on next
shide. Estimate the ulumate load, Q, . by
Mecycerhof™s method

Now, we can discuss the, this with an example. Let us consider and this example in
which a water tank foundation has a footing of size 6 meter by 6 meter founded at a



depth of 3 meter below ground level in medium dense sand for which phi equal to 33
degrees. That is extending up to a great depth the foundation is subjected to a vertical
load at an eccentricity of b upon 10 along one of the axis the soil profile with remaining
data is shown in figure on the next slide. Estimate ultimate load Q ultimate by Meyerhof

method.

(Refer Slide Time: 43:47)

Solution:

B=B-2¢= 6 - 2(06)=48m
L'=L=B=6m

Mcycrhof cquation

Q= cN s d i+ QN s da +0 SYBN s d 1

Herec=0,i =i~1=1

From Meyerhof Tables

For ®=33° Nq =26.3and N, = 26.55
=1+ 0.1 N, |B/L]

=1+ 0.1 tan® (45° + 3392)1)= 1.34

Sq

So, in order to get the solution B dash can be determined as B minus 2 e 6 minus 2 into
point 6 that is equal to 4.8 meter L dash will remain as it is, because it is eccentric only
in the width direction. So, L dash equal to L that is equal to B because it is a square
foundation equal to 6 meter. And the Meyerhof equation is given by cNc sc dc ic plus g 0
Ng sqg dg iq plus 0.5 gamma B N gamma s gamma | gamma d gamma here ¢ equal to 0.
So, ic equal to ig equal to | gamma equal to 1 from Meyerhof tables for phi equal to 33
degrees Ng comes out to be 26.3 and N gamma equal to 26.55 sq will be equal to 1 plus
0.1 N phi B upon L where phi equal to 33 degrees. And phi equal to tan square 45 plus
phi by 2. So, substituting value of phi we will get this sq as 1.34.
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R 1.34 for® > 107

y

d, = 1+ 0.1 (No)** [D,/B']

= 1+0.1*1 84[3/4.8] = 1115
Substituting d,=d, =1.115 for ® > 10°
Qu=18.5%3%26.3%1.34*1.115

+0.5%18.5%4.8%26.55%1 34*1 115
2181 + 1761 = 3942 kN/m’
Q= B*B*q,~ 6*4.8*3942 = | I4MN

S gamma and sq will be equal to 1.34 for phi equal phi greater than 10 degrees and dq
will be equal to 1 plus point 1 N phi to the power 0.5 Df upon B dash. So, here this is
1045 plus phi by 2 1 plus 0.1 when we substitute these values we will get dg as 1.115.
Now, substituting d gamma equal to dg equal to 1.115 for phi greater than 10 degrees in
the ultimate bearing capacity equation, we will get ultimate bearing capacity as 3942
kilonewton per meter square. And hence the ultimate load that will be equal to B into B
dash here this is the effective area. And this effective area is reduced due to the
eccentricity multiplied by ultimate bearing capacity. And that comes out to be 114 Mega
Newton.
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Example:2

A chimney . with a ngid base 2 5m square, 1s
placed at a depth of Im below the ground level
The soil 1s clay with an unconfined compressive
strength of 60 KN/m® and the unit weight of 20
kN/m’. The weight of the chimney is 60 kN. The

chimney has a resultant wind load of 19.5 kN
acting parallel to onc of sides of the chimney base
at a haght of 1.5 m above the ground surfuce
Determune the FOS wiath respect 1o beanng
capacity. Use Meyerhof™s recommendition

There is another example of eccentricity a chimney with a rigid base 2.5 meter square is
placed at a depth of 1 meter below the ground level. The soil is clay with an unconfined
compressive strength of 60 kilonewton per meter square. And the unit weight of is 20
kilonewton per meter cube the weight of the chimney is 60 kilonewton. The chimney has
a resultant wind load of 19.5 kilonewton acting parallel to 1 of the sides of the chimney
base at a height of 1.5 meter above the ground surface. So, that we can find out what will
be the moment? Determine the factor of safety with respect to bearing capacity again
using Meyerhof recommendations.
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Solution:
I'he wind load will have the effect of mtroducing
both inclination and eccentncity of loading. The
resultant of the wind load and weight force will be
mchned at an angle a to the vertical

tana = honzontal wind foree / vertical weight force
= 195/60 =0325 and thercfore a = I8°
Height of the honzontal load above the base

15 +1= 25 m Eccentncity of the resultant
load, ¢ can be calculated from,

¢2.5 = tan a =0.325 e=25%325=081m




Now, the wind load will have the effect of introducing both inclination and eccentricity
of loading the resultant of the wind load. And the wind force will be inclined at an angle
of alpha to the vertical where this alpha will be given by this particular equation tan
alpha equal to horizontal wind force divided by vertical weight force that will be 19.5
divided by 60 equal to 0.325. And therefore, alpha equal to tan inverse of 0.325 comes
out to be 18 degrees. Height of the horizontal load above the base of the footing is 1.5
plus 1. That is the depth equal to 2.5 meter eccentricity of the resultant load e can be
calculated from e upon 2.5 equal to tan of alpha equal to 0.325 which we have obtained

from here. So, e can be taken calculated as 0.81 meter.
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Reduced dimension B' on account of
cccentricity of loading 1s given by
B=B-2¢=25-2%8] =088 m
A'=R*L=088¢*25=22m?
For®=0" N.=5.14, N,=1,N~=0,

tan(45° + ®2)= |

S. = (1+ 02B7L) an*(45° + ®2) = 1.07
d. = 1+ 02(D/B") tan (45° + ®2) =123
Sy =1 d =1

L =1, = (1- @90)= (1-1890) = 0.64

Once e is known we can find out reduced dimension B dash and that B dash will be
equal to B minus 2 e. So, substitute value of eccentricity here that is 0.2 8 0.81, you will
get B dash equal to 0.88 meter and effective area will be equal to B dash into L 0.88 into
2.5 that is equal to 2.2 meter square. Now, for phi equal to 0 Nc will be equal to 5.14 Nq
equal to 1 and N gamma equal to 0 tan of 45 plus phi by 2 equal to 1 sc by using
different equations suggested by Meyerhof. We can find out sc that comes to be 1.07 dc
that comes out to be 1.23 and sq equal to 1 dq equal to 1. Similarly, we can also obtain
inclination parameters ic and ig both are equal equal to 1 minus alpha by 90 and when

we substitute value of alpha we will get this as 0.64.
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Mecyerhof cquation
Qu=cNsdi +qNsda +05BNs d.1
¢, = 6072 =30 kN/m’
Q= 30*5.14%1.07%1.23%0.64
+20%1*1*1*0.64
= 142.7 kKN/m’
Q.= qu A = 142.7*22 =314 kN

Factor of safety = 314/60 5.2

When we substitute all these parameters in the Meyerhof equation which is given by cNc
sc dc ic plus g 0 Nqg sqg dq ig plus 0.5 gamma B N gamma s gamma d gamma. And |
gamma cu is equal to 60 by 230 kilonewton per meter square based on the unconfined
compressive strength g ultimate. When you substitute all these values here we will find
that it comes out to be 142.7 kilonewton per meter square. And hence the ultimate load is
equal to ultimate bearing capacity multiplied by effective area and that comes out to be
314 kilonewton. Now, for a factor of safety we will get the factor of safety we will get as
314 divided by 60 that is equal to 5.2. So, the factor of safety for this particular case will
be 5.2.
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Example:3

Calculate net ultimate beanng capacity of a

rectangular footing 2m * 4m m plan, founded
at a depth of 1.5m below the ground surface
I'he load on the footing acts at an angle of 15°
to the vertical and cccentne m the direction of
width by 15 cm. The saturated umit wewght ol
the sol s 18 kKN'm’. The effective stress
shear strength parameters ¢ = 15 kKN/'m” and
@' = 25° can be used in analysis. Natural water
table 15 at a depth of 2m below the ground
surface. Use 1S 6403-1981 recominendations

Now, another example calculate net ultimate bearing capacity of a rectangular footing 2
meter by 4 meter in plan, founded at a depth of 1.5 meter below the ground surface. The
load on the footing acts at an angle of 15 degrees to the vertical and eccentric in the
direction of width by 15 centimeter. The saturated unit weight of the soil is 18
kilonewton per meter cube the effective stress shear strength parameters ¢ dash equal to
15 kilonewton per meter square. And phi dash equal to 25 degrees can be used in the
analysis natural water table is at a depth of 2 meter below the ground surface. Now, we
will have to determine the bearing capacity using the IS 6403 1981 recommendations

which we have discussed previously.



(Refer Slide Time: 50:38)

Solution:
Q. =cN_sd.i + q(N ol b_xd.lxq'() SYBNs d LR’
¢ =¢ =15 kNm? P = @'=25°

D_=20-15=05m
For ®=25° N_=207, N=10.7 and N =109

Y o 7= 18 kN'm* q= 18*1.5 =27 kN/m*
For IV B =025 R'_ = 0.625 (by mterpolation)
e.=0.15m; effecive width B'=B-2¢, = 1. 70m
s, =5, = I+ 0287, = 1.025

5.=1-04B. =083

Now, in order to get solution, what we will have to do? We will have to find? All the
parameters which are there in the bearing capacity equation like sc dc ic safe factors sq
dg iq and s gamma d gamma | gamma and the water table correction factor. Now, c is
equal to 15 kilo Newton per meter square phi equal to phi dash. That is given 25 degrees
Dw dash is the depth of the water table below the base level of the foundation at that
comes out to be 2 minus 1.5 that is equal to 0.5 meter. Now, for phi equal to 25 degrees,
we can obtain from the table Nc equal to 20.7 Nq equal to 10.7 and N gamma equal to
10.9 gamma saturated is given as 18 kilo Newton per meter cube.

So, we can find out the, g or q 0 that is equal to 18 into 1.5 that is 27 kilo Newton per
meter square. Now, from the graph by interpolation, we can find out the value Rw dash
for Dw dash by B ratio equal to 0.2 5 that comes out to be 0. 6 2 5 eccentricity is given in
the x direction as 0.1 5 meter 15 centimeter. So, effective width will be equal to B dash
minus 2 ex that is equal to 1.7 meter. And safe factor will be given by 1 plus 0.2 B dash
upon L here, effective width will be used in the expression and it comes outto be 1.02 5

similarly s gamma comes out to be 0.8 3 using this particular expression.
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_ =1+ 0.2(D,/B) tan (45 + ®/2) = 1.28

. 1401 (D/BYtan (45 +92) = 1.14
e =i =(1- @90y = (1-1590)° =069
L= (I-a/®) =(1- 1525y =0.16

Substituting these values,
Q. = 15%20.7%1.085*1 28%0.69
+27%9.7*%1 085%1 14%0.69
FOSYIR*L.7*10.9%0.83*%] 14%0.16%0.625
=2975+2235+158=5368 kN'm’

Similarly, if we know phi and different parameters like, depth and width, we can obtain
parameters dc dq ic and I gamma. Now, these values can be obtained by respective
equations. So, here these comes out come out to be 1.2 8 1, 1.1 4, 0.6 9 and 0.1 6 is
respectively, when we substitute these values in the net ultimate bearing capacity
equation, when then after calculation. We will get this net ultimate bearing capacity as

536.8 kilo Newton per meter square.
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Now, this is another example of 2 way eccentricity now, this is of footing of size 6 meter
by 6 meter load is acting here, which is eccentric by 0.75 meter in this direction and by

0.6 meter in the other direction.

(Refer Slide Time: 53:26)

Figure shows the plan of a footing
subjected 1o eccentric load with two way
eccentricity. The footing is founded at a
depth 3m below the ground surface.
Given that ¢ =060m, ¢ =075m,

determine Q.

The soil propertics are:

c=0,®=33%and y~= I8.SkN/m’.

Use N, (Mecyerhof) and Hansen's shape
and depth factors.

Now, figure shows, the plan of a footing subjected to eccentric load with 2 way
eccentricity the footing is founded at a depth of 3 meter, below the ground surface. Given
that ex equal to point 6 meter ey equal to 0.75 meter, we will have to determine Q
ultimate load. The soil properties are given like this ¢ equal to 0 phi equal to 33 degrees
and gamma equal to 18.5. We will have to use N gamma parameter given by Meyerhof

and shape and depth factors given by Hansen.
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Solution:
For two way eccentricity, the cffective

length and breadth of he foundation arc
B=B -2¢.=6 - 2%0.75 =4 5m.

L'= L -2¢,=6 — 2*0.60= 4. 8m.
Effective arca,

A=L'*B'=45%8 = 2] 6m’

We have

Gu= Y DNs 4 05/B' Ns d,

Now, again in the case of 2 way eccentricity, we will have to find out effective width.
And effective length which is given by B minus 2 ey L minus 2 ex when we substitute
this we will get effective width as 4.5 meter effective length as 4.8 meter. So, effective
area is the multiplication of these 221.6 meter and we have the ultimate bearing capacity

equation as this.

(Refer Slide Time: 54:23)

For ®=33° N =263 and N, = 26.55
Using Hansen equations

s,=1+(B' /L") tan 33° = 1 6]

= -0 4B )=063

d,= 142 tan 33°(1- sin 33°) *3/45= 1183

d =]
qu=18.5%3%26.3%1 61*1 183+
0.5*%18.5%4 5%26.55%0.63%] = 2780 + 696
= 3476 kN/'m’
Qu = A’ q, = 21.693476 = 75082 kN

For phi equal to 32 degree 33 degrees we get Ng and N gamma. And using Brinch
Hansen equation we can find out sq s gamma dg d gamma. And when we substitute these



values in we will get ultimate bearing capacity as 3476 kilonewton per meter square.
And hence the ultimate load multiplied by the effective area will be 75082 kilonewton.
So, through this lecture we have discuss the modifications made by Meyerhof Vesic and
Hansen. They have given safe factors inclination factors and depth factors. And we have
also discussed the cases of eccentric loads in which eccentricity is either in one direction.
Or maybe two way eccentricity when the footing is subjected to the moments like a ven
force. We have also tried to discuss solved problems which will take into account all
these factors and also the eccentric loads.

Thank you.



