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Good morning class and welcome to our lectures in climate dynamics variability and 

monitoring class. We will continue our discussion on the various aspects of climatic 

variables that we have been covering. In the last class we completed our discussion on 

atmospheric composition and started our discussion on  atmospheric pressure or the more 

accurately the vertical variation of atmospheric pressure with altitude. In this context, let 

me discuss a few worked out examples today that will help in fully understanding how 

these various composition and hydrostatic variable pressure relations can be used to find 

useful aspects of our atmosphere. So let us look at an example and let us see how that 

example can be solved. So the example is we have 0.934% by volume of argan present in  

the atmosphere. We have to ask we are asked to find out what is the total volume of sorry 

total not total volume its total mass  total mass of argon that is present where we are told 

that the mass of air m air is equals to 5.14  into 10 to the power 18 kgs. So, the volume 

fraction of argon is given. We have to find the mass of argon that is present in the 

atmosphere when the total mass of air is 5.14 into 10 to the power 18 kgs. Now, using the 

ideal gas law, this is the answer. we have PV equals to mass of air, gas constant for air 

into T and P into Vi, V of argon equals to mass of argon, gas constant of argon into T. So, 

here we have used the partial volume approach that we discussed in the previous class. 

 



The pressure into the partial volume of argon equals to mass of argon, gas constant of 

argon into the temperature.  

 

So, if we divide these two, we get V of argon by V of air is equals to the pressure cancels 

out. mass of argon gas constant of argon by mass of air into gas constant for air okay now 

gas constant for air is 0.287  kilojoules per kg kelvin or 287 joules per kg kelvin 

whichever unit you prefer gas constant for argon is 8.314 by the molecular mass of argon 

which is 39.95 equals to 0.208 kilojoules per kg kelvin okay so r of argon r of air are 

known mass of air is known v of argon by v of air is 0.934 percentage so the total 

expression becomes  0.934 into 10 to the power minus 2. This is the V of argon by V of 

air equals to mass of argon into gas constant of argon which is 0.208 by mass of air into 

gas constant of air 0.287. So mass of argon is equals to 0.934  into 10 to the power minus 

2 into 0.287 by 0.208 into the mass of air which is 5.14 into 10 to the power 18 kg. Solve 

this and you get the mass of argon as 6.63 into 10 to the power 16 kg.  

 

Alright, so this is how you can use the ideal gas relationships and the idea of partial 

volume. Similarly, we could have given partial pressure also and we would have gotten 

similar kind of expressions and you would get the mass of argon. Alright, now let us go 

back to our discussion on the hydrostatic pressure iterations. We will complete the 

discussion and then look at a few worked out examples for the hydrostatic pressure 

balance equations. So, here what we have found is we balance the static pressure with the 

gravitational mass for a differential volume of air and we found the hydrostatic balance 

relation to be equal to g which is acceleration due to gravity equals to minus 1 by rho dp 



dz the gradient of pressure with altitude. where dp dz will be negative because pressure is 

decreasing with increasing altitudes.  

 

Then we use the ideal gas constant values for air. So P equals to rho RT. So 1 by rho 

becomes RT by G, RT by P. And we use that expression and you define the scale height 

variable as R into T by G and got a new form of hydrostatic balance relation as DP by P, 

which is differential of log of pressure equal to minus DZ by the scale height H.  

 

Now, in general, the scale height h is a variable of temperature, but we can use a mass 

averaged atmospheric temperature T0, which is the mean atmospheric temperature when 

we are taking into account the mass averaged one. So, it is basically integral rho into T 

into dV by m. And then the scale height H, if you give the mass average temperature of 

T0 here, the scale height H becomes 7.6 kilometers. So this expression can be put here 

directly to get an approximate expression of how the pressure is changing with altitude. 

This is not exact because we have assumed an average temperature instead of the actual 

temperature gradient with Z. But we get that the pressure at any given altitude Z must be 

equal to the sea level pressure PS into exponential of minus that altitude Z by the average 

scale height. So we will get an exponentially decreasing value of pressure as we move up 

in altitude. And this is seen in the altitude versus pressure plot where we have plotted this 

expression 19  

and we see here the pressure unit is in hectopascals which is 100 pascals. So, Ps is 

basically 1013.25 hectopascal this is the value here and it kind of decreases steadily as we 

move upwards. So by 4 kilometers, it has decreased to around like 700 hectopascals. By 8 

kilometers, around 500 hectopascals. And at the top of the troposphere, around 12 

kilometers, it has gone up to 300, down to 300 hectopascals. Okay. So a rapid decrease in 

pressure. 

All right. Another important parameter in this context is the mass of a column of air per 

unit area of the earth's surface. So you have the mass per unit area on which the mass is 

standing. So you can think of the air as separated into multiple columns, each which man 

one meter square cross-sectional area on the surface of the earth. So what is the mass per 



unit surface area of the earth? So that is what given by this M wavy M, M hat kind of a 

profile. So in this context what we see is this total mass dM is density into dy dx into dz. 

If we divide it by the cross sectional area at the bottom of this volume, which is dx dy, 

you get rho into dz, which is the mass per unit cross sectional area on which that mass is 

standing. Correct? so this dm hat the differential mass of a column of differential air is 

basically rho dz which if you use the hydrostatic balance relationship given here rho dz is 

minus dp by g so we put here dm d of this hat mass hat equals to minus dp by g   

 

Now, we can integrate from certain arbitrary altitude z1 to final arbitrary altitude z2. So, 

this becomes mass of air per unit area at z2 minus mass of air per unit area at z1 equals to 

the change in pressure between z2 and z1 by g negative of that. So, this basically gives 

the mass of a column of air whose height is z2 minus z1 per unit area of the surface. And 

this value will be positive because if z2 is higher than z1 then the pressure here is lower 

so you get a negative value here so you get a positive. 

 

So now we can extend this from the sea level. So Z1 is sea level altitude which is 0. So P 

at 0 and the top of the atmosphere where pressure is 0 because it's at vacuum of the space. 

So at the top of the atmosphere the pressure is 0 and the bottom of the atmosphere the 

pressure is Ps. So this becomes 0 minus Ps. 

And this becomes the total mass of a column of air from the sea level to the top of the 

atmosphere, just m. So this just becomes Ps by g, which is 1.03 into 10 to the power 4 kg 

per meter square. Now one useful thing that we can use here is that you can use this 

expression where the mass of a column of air of arbitrary height per unitary of earth's 

surface can be evaluated. And we can show that most of the mass of a column of air lies  

below the troposphere. 

 

So we can put z2 as the top of the troposphere and z1 as the surface of the earth and use 

the pressure variations we have evaluated here. So this is the where we can get the Pz 

value. So Pz value we put here directly and we get the mass of the column of air from the 

surface to the troposphere and compare with the total mass of the column of air to the top 



of the atmosphere. And we will see that most of the mass of the column of air is actually 

concentrated within the troposphere itself. And this is something that we can show also. 

All right. So let's do a workload example of that format here and see how this can be 

evaluated. All right. So. Evaluating. the mass present in a column of air extending from 

sea level to 5 km above the sea level  per unit area of the earth's surface and what fraction 

is this mass  compared to the total mass per area of the atmospheric column Okay, so the 

idea is suppose this is the surface of the earth we have the total this is the atmospheric 

column say 1 meter square and 1 meter on the length and 1 meter width. 

So, you will have a kind of a column of air like this. This is the top of the atmosphere, top 

of atmosphere and here is the first 5 kilometers. So, we have to find the total mass 

content within this and see what fraction of this is the total mass content up to the top of 

the atmosphere. Now, Ps is 101.325 kilopascals. This is the pressure at the sea level. So, 

at z equals to 0. All right. Scale height h0 is 7.6 kilometers. Correct.  

So, the pressure at z equals to 5 kilometers is equals to Ps into exponential minus z by h0, 

correct. So, 101.325 exponential minus 5 by 7.6, okay. This becomes equals to  52.48 

kilopascals okay this is the pressure at 5 kilometers above the ceiling then mass of a 

column of air extending  from sea level to 5 kilometer above sea level is m with z equals 

to 5 minus m at sea level equals to minus p at z equals to 5 minus ps by g correct this is 

minus 52.48 minus 101.325 we will use we will use the units of pascals because that is 

what we want when we have the units so be careful to use the units correct units okay  

So, this unit is in pascals and this unit is meter per second square. 

 



 

Express this formula to get 4979.1 kg per meter square. So, this is the mass per unit area 

of a column of air extending from sea level to the top of the atmosphere. However, total 

mass per unit area of the atmosphere is  m equals to Ps by g which we saw before is 1.03 

into 10 to the power 4 kg per meter square. So, fraction of total mass present  Below 5 

kilometers is m(5) by m, which is equals to 4979.1 by 10300. zero zero. which is equals 

to 0.48. So, 48% of the total mass of air is present below 5 kilometers only. 

 

 If you go up to 12 kilometers to the top of the atmosphere, you will see this goes up to 

80%, which kind of shows that the majority of the air, mass of air at least, is present 

within the first layer of the atmosphere itself. And this is because of the much higher 

density and hence much higher pressures of the atmosphere at the bottom than as we go 

above in the altitude. 

So while the atmosphere may extend up to 100 kilometers, within the first 10 or 12 

kilometers, 80 to 85 percent of its mass is present. So, this is a very important factor 

when we are looking at mean quantities. We need to have mass averaged quantities 

because if you do just the average with respect to height, you will not get the actual mean 

value where the most of the air is present. So, in these examples, what we used was a 

average value of H0 where we have taken an average T0 value. 



But we can do a little bit better than that. For example, when we were looking at the 

temperature variation with altitude,  we saw a curve like this okay so within the 

troposphere for example we have a nearly linear decrease of temperature with height and 

we saw that delT delZ is minus 6.5 Kelvin per kilometer which was called the lapse rate 

of the atmosphere or the mean lapse rate within the troposphere okay So, we can use this 

expression to evaluate a linear function of temperature and put that linear function within 

the scale height H expression. So, the next kind of problem that we will do is we will not 

assume a mass averaged constant temperature for the atmosphere, but within the 

tropospheric region we will impose the  temperature fall off curve gamma which is del T 

by del Z of minus 6.5. So, we will use that and let us see how that works out. 

 

So, we will look into this in the next class. How we can use a variable temperature plot to 

get a more accurate estimation of scale height h and get a more accurate expression of 

pressure falloff with altitude. Thank you for listening and see you again in the next class. 


