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Good morning class and welcome to our continuing lectures on climate modeling, climate 

variability, climate dynamics and climate monitoring. In the previous lecture, we started our 

discussion on climate instrumentation and measurements, and we were discussing the 

general principles measurements. We discussed some of the ideas about instrument 

response, instrument sensitivity, instrument resolution, instrument calibration, instrument 

dynamic range. Today, we will continue our discussion on understanding the measurement 

quality of an instrument. It is how reliable the instrument is in measuring the physical 

parameter that it is measuring. Every measuring instrument has some uncertainty, which is 

previously called errors. 

Uncertainty is defined as the variability in output of an instrument on repeated 

measurement of the same physical parameter value. So, for example, suppose you are 

measuring the temperature of boiling water at one atmosphere. We know that its 

temperature will be 100 degrees centigrade exactly. What is the instrument measuring if it 

takes a 100 repeated temperature samples of boiling water? We know the fixed input; we 

look at the output and the spread will be the uncertainty. 

So, this is one way, it is called physical standardization of the measurement. Another way is 

to compare the instrument's output with respect to a better instrument, a calibration 

standard whose uncertainties are low and about which we have very high confidence that 

its values are accurate. When we do this, we see two types of uncertainties. The first type is 

systemic uncertainty, which is a consistent repeated offset in the measurement as a result of 

a fixed and regular discrepancy in the instrument response. So, the values that we are 

getting are consistently of corresponding to the real physical value by a certain amount and 

this amount is not changing from one measurement to another measurement. 

The calibration process can help quantify such systemic uncertainties and they can be offset 

in further post-processing. The other type of uncertainty is random uncertainty. These are 

variations in measurements due to statistical fluctuations in either the quantity being 



sensed or the internal operations of the instrument. So, it can either be small random 

fluctuations in the actual physical parameter that is being measured or the internal 

operations that are statistical fluctuations within the internal operations of the instrument. 

These are random in nature and hence they are called random uncertainties. 

Random uncertainties can be quantified and you will see the quantification process in this 

class and reduced by averaging procedures. So, in this context then we can define something 

called instrument precision and instrument accuracy. Precision is defined as the ability of 

the instrument to give the same output value for a given input parameter. So, an instrument 

is precise if on repeated trials it is able to give the same output value for the same value of 

input parameter. So, if we are keeping the input parameter constant, The instrument is 

giving a constant output value. 

Then the instrument is precise. More practically, the output is within a narrow band of 

statistical variables. Usually, the same output value will not be achieved. However, it will be 

within a very narrow band of statistical variables. So, precision requires that the systemic 

uncertainty remain constant during repeated measurement processes. 

So, if the systemic uncertainty remains constant, then if the physical parameter is not 

changing, then the actual output value will not vary as well. So, that makes the instrument 

precise. Okay. However, note that a precise instrument may not give the physical variable 

value correctly. Suppose you have a systemic uncertainty. 

Suppose your temperature measurement has a systemic error or systemic uncertainty of 2 

kelvins. Then, even though you are measuring water boiling at 1 atmosphere, whose 

temperature is 100 degrees centigrade, it is consistently giving you 102 degrees centigrade. 

It is precise because it is giving the same temperature value in say 50 to 100 rounds, but it is 

not accurate. So, how do we quantify accuracy? Accuracy is the measure of the overall 

deviation or uncertainty in the output value of the parameter measured compared to the 

actual value. So, accuracy is the overall measure of the deviation or uncertainty that the 

actual that the output value has compared to the actual value of the parameter that is being 

measured. 

Measurements by a calibration standard is used as a stand-in for the actual parameter value 

during accuracy determination. So, you have a good calibration standard whose value we 

already know matches well with the actual physical parameter value. Then those values and 

the values you are getting from your instrument, become the two series that are compared 

to evaluate the overall accuracy of your instrument. It is determined by a combination of 

systemic and random uncertainties in the instrument. We have already seen that if you have 

a systemic uncertainty you have to identify that and there are statistical means by which 

you can also evaluate the extent of random uncertainty, both should be low in an accurate 

instrument. 

So, an instrument is accurate if its systemic uncertainty is low and random uncertainty is 

low. Accuracy is reported either as an absolute accuracy, that is say for example in a 



pressure measuring device, it can be reported as ±0.1 kilopascals. So, whatever it is 

measuring, it should be accurate by ±0.1 kPa or as relative accuracy, ±0.1 percent of the 

measured value. So, depending on the instrument type, one measure is used in some 

instrument, another measure is used in other instruments. So, it can be 0.1 percent of the 

value being measured, plus minus or an absolute value. Note that an accurate instrument 

must be precise, its systemic uncertainty will be low or should be constant, but a precise 

instrument need not be accurate. 

Now, how do we quantify random uncertainty? That is the next question. Let us assume that 

we have already evaluated the systemic uncertainty and we have taken that out of the 

picture. So, now we are left with only random uncertainty. These uncertainties are caused 

by stochastic fluctuations in the quantity itself or noise in the measuring instrument. So 

stochastic fluctuations in the quantity can be causing it or it can be caused by random noise 

that is generated within the instrument processes. 
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Then the measured output variable values x will have a normal probability distribution 

around the parameter mean 𝜇 which is the actual value that the parameter has, but the 

measured values will be normally distributed around this 𝜇 with a standard deviation of 

sigma. So this gives you the probability density function 𝑓(𝑥). What 𝑓(𝑥) is giving is the 

probability of measuring the variable as having a certain value x, okay, where the mean 

value or the expected value is 𝜇. What is the probability of finding the value to be x? All 

right. And that is given by 
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), and this is the probability distribution in such cases. 

Here x is basically you can think of is a normal distribution product for mean x of 0. Suppose 

we are measuring say melting ice. Ice melting at 1 atmosphere is 0 degree centigrade. The 

mean mu is 0. And what is the probability of finding its temperature to be 1 degree 

centigrade, 2 degrees centigrade or -1 degree centigrade, -2 degree centigrade, something 

like that. 

This will be given by a normal distribution. So, finding it as -2 degree centigrade, the 

probability is this much. whether this is the probability of finding it as exactly 0 degree 

centigrade is of course much higher. If the values of the mean are not 0 as is the case, this x 

can be 𝜇, then it will be 𝜇 − 1, 𝜇 + 1, etcetera. Here, remember that the standard deviation is 

1. 



 

So, we have basically normalized this solution. We have taken the mean to be 0 and the 

standard deviation is 1. Of course, actual variable will have a certain non-zero mean and a 

certain non-unit sigma. Then the corresponding values will be plotted, the dashed vertical 

lines enclose 95 percent of the probability. 

So, ±1.96 sigma is the range within which, there is 95 percent chance that the instrument 

will be measured. As long as we have eliminated all systemic uncertainties. Given that the 

stochastic PDF follows a standard deviation sigma, then ±2 sigma is the range within which 

it is probable that 95 percent of the measured values will lie, if it is a normal distribution. 

Suppose the instrument takes N measurements. Then the mean of these measurements 

called the sample mean, we can call as 𝑋̅ is 1 by 
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Suppose we take a 100 measurements of this melting ice. Then the sample mean, the mean 

temperature as obtained from these 100 measurements is 1 by 100 summation of all the 

temperatures. So the question that is asked is how far away is the sample mean x bar from 

the true mean 𝜇? That is the question. Is the sample mean also 0 degree centigrade or how 

far away is the expected value of the sample mean from the true mean 𝜇? Alright, that is the 

question. How do we go about evaluating this? Let us take M sets of repeated N samples 

using the instrument. 

What does this mean? Suppose again we are measuring boiling water. 100 degrees 

centigrade is the expected value. So, 𝜇 is 100 degrees centigrade. We take 100 temperature 

measurements of this boiling water and we take 50 such sets of 100 temperature 

measurements. So, 15 to 100, 5000, 5000 measurements in sets of n. 

Each individual 100 set, each individual set contains 100 samples of temperature data and 

you get a corresponding sample mean 𝑋𝑗̅. where j is varying from 1 to m. So, each set will 

have its own sample mean. There will be 50 such sample mean temperatures, 𝑋1, 𝑋2, 𝑋3 up 

to 𝑋50. Since the error is stochastic and the measurements are independent, the distribution 

of the sample means about the true mean will also follow a normal distribution. 



This is the key point. Since the error in measurement is stochastic and the measurements 

are independent of each other, the sample mean probability distribution will also follow a 

normal distribution with the true mean being 𝜇. The standard deviation of the sample 

means about the true mean is given by 𝜎𝑚. So, the actual case the standard deviation was 

sigma. The standard deviation will be different. It will be the standard deviation of the 

sample mean PDF about the true mean. 

And this 𝜎𝑚 is given by 
𝜎

√𝑁
. So, note this again is a theory we will not derive here. The 

standard deviation of the PDF of the sample means is sigma by root n where n is the number 

of samples taken in each set. So, if there is 100, Then 𝜎𝑚 is 
𝜎

√100
, so sigma by 10. 

Notice what is happening. The standard deviation has reduced significantly. If the original 

standard deviation was ±1 degree centigrade, because you have taken 100 samples, the 

standard deviation for the sample means is ±0.1 degree centigrade. Here sigma is the 

standard deviation of the variable period. Now, the question is how do we know the 

standard deviation of the variable period? Theoretically, we can show that it can be 

modeled as being equal to the standard deviation of that sample s. 

So, we have a sample of 100 temperature points. The standard deviation of this sample 

which we call s is {
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. So, we can find the standard deviation of our 

measured sample. That standard deviation s can be said to be equal to the standard 

deviation of the random error sigma. As a result, we can then write that 𝜎𝑚, the standard 

deviation of the sample mean period is almost equal to the sample standard deviation by 

root n. 

Now that we know this, because it's a PDF, the true mean has a 95% chance of lying within x 

bar ±1.96 𝜎𝑚. correct. So, the true mean mu has 95 percent probability because it is a 

normal deviation distribution applying between ±1.96 𝜎𝑚 . So, if the original center 

deviation was 1 degree centigrade in the sample 𝜇, in the and you have taken 100 samples, 

then the 𝜎𝑚 is 1 by root 100 or 1 by 10 or 0.1 degree centigrade. So, your true mean should 

lie between x bar ±1.96 into 0.1 degree centigrade or approximately 0.2 degree centigrade. 

This is conventionally adopted as the random uncertainty estimate of the reported results. 

So, when we say that the random uncertainty of a measuring instrument is say ±0.01, that 

0.01 is basically 1.96 into this sigma n value. So, that way then we can evaluate the 

measurements. It is important to note here that if you increase the number of samples, this 

expression decreases. And the other point to note is the sample standard deviation is kind 

of the intrinsic measure of the accuracy of your instrument. Because if the original sample 

standard deviation is low, then your sigma m will be low even for a small number of 

samples taken. 

Otherwise, it will be almost equals to S. So, if you take one measurement, then n is 1. So, 

sigma m is equal to S. Clear? All right. Now, the point is, you have to combine these 



uncertainties together. So, for example, you can have another parameter Z, which is a 

combination, either some product, a division or a power of the actual measured samples. 

So, for example, if you think of the ideal gas law, T equals to rho RT, and you are trying to 

find the  density rho while you have measured pressure and temperature. So, rho is p by RT. 

You are measuring pressure and you are measuring temperature. So, rho z is equals to its 

proportional constant is of course constant is basically pressure measurement value by 

temperature. Now the question is, how do the uncertainties in the pressure measurement 

value and the temperature measurement value be combined to give you the estimate of the 

uncertainty of the density that you are calculating out of it? That is one thing. 

Similarly, many instruments do it directly inside of them, that they measure two or three 

physical parameters, then combine them to give us the physical parameter we want. In that 

case also, the uncertainties in the measured parameters have to be combined appropriately 

for the instrument to tell us what is the uncertainty it is actually giving us. So, here I have 

not derived this. This is not the class to do that. If z is a plus minus b, then the uncertainty in 

z is equals to root over of the square of the uncertainty in A plus square of the uncertainty in 

B. 

 

Remember, delta A and delta B are basically this one, 1.96  𝜎𝑚 for each of those individual 

measurements. So, it is the sum root, sum of the squares root of that. If z is a by b, then the 

fractional uncertainty becomes important, del z by z square is equals to sum of the 

fractional square of the fractional uncertainty between a and b, delta a by a square plus 

delta b by b square. This is also true when z equals to a by b. 

So, that is your answer here. And when z equals to a to the power n, then delta z by z equals 

to n times delta a by a So, the power is particularly vulnerable of being increasing the 

uncertainty values. So, this kind of gives a snapshot of the uncertainties. We will start the 

instrument response times today as well and then we will continue in the next class. Now, 

what is instrument response time? It is the time it takes for the instrument to respond to a 

step change in the physical parameter. So, this you can see here that the physical parameter 

suddenly changed from 0 to 1 value at time t equal to 0. 

Now we have three instruments, a fast responding instrument that rapidly rose as a 

response to this physical parameter value and went up to near the value of 1 by time 1 as  

moderately responding instrument takes more time, around time equals to 4, while a slow 

responding instrument may take up to 10 time, 10 seconds. So, this is a unit, 10 seconds to 



go to the instrument, the new physical parameter value. So, signal abruptly changes from x0 

to xa at time t equal to 0. The rate of the change of the instrument output x, 
𝑑𝑥

𝑑𝑡
, how rapidly 

the instrument output is changing with time is given as −
𝑥−𝑥0

𝜏
. the response at the given 

time minus the original response x0 by 𝜏 where, 𝜏 is the exponential response time. 

This dx dt is negative because as you can see the slope slowly decreases with time. The rate 

of change of the output value with time slowly decays as it reaches steady state. If we 

integrate this, we get the time varying instrument response as x which is a function of time 

equals the actual new parameter value xa plus the difference between the old parameter 

value and the new parameter value (𝑥0 − 𝑥𝑎)exp (−
𝑡

𝜏
), exponentially decaying at t equals 

to tau, so x at 𝜏−𝑥0. So, this is the change in the actual instrument response from its time t 

equal to 0 value is given as (𝑥𝑎 − 𝑥0)(1 − 𝑒−1) 

𝑥(𝑡) = 𝑥𝑎 + (𝑥0 − 𝑥𝑎)exp (−
𝑡

𝜏
) 

You can evaluate this directly also. So, this is equals to 0.63 into (𝑥𝑎 − 𝑥0). So, at the 

instrument response time value tau, the instrument has reached 63 percent of the total 

change it has to get to properly record the actual change in the physical parameter. And at t 

equals to 3𝜏,  𝑥(3𝜏) − 𝑥0 is of the order of 0.95. So, 95 percent of the change has already 

been registered. So, if the response time is tau, it is actually takes around 3𝜏 seconds for the 

instrument to actually go up to the new parameter value. If tau is small, the device responds 

fast to step changes in the parameter value and vice versa. Hence, response time is an 

important parameter when it comes to various instruments. We will look at those things 

later in the class. 

So, we will stop here today. We will continue the instrument response time in the next class 

and also start discussing how to record the physical parameter values. Thank you for 

listening. 


