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Good morning class and welcome to our continuing lectures on climate dynamics, 

climate variability and climate monitoring. In the previous class, we derived the zero-

dimensional climate model and solutions to zero-dimensional climate models in terms of 

integration of the relative forcing term. And we looked at one or two cases of various 

radiative forcing functions like a constant radiative forcing and how that impacts the 

temperature perturbation over time and a linearly increasing radiative forcing which is 

similar to how the CO2 concentration is affecting radiative forcing today. And how that is 

affecting the temperature, rate of temperature increase which time in the climate system. 

Today we will discuss another little model where we are assuming that the relative 

forcing increases linearly till a certain time t1 say and then it achieves a constant value. 

So, this will happen in case we are able to control our emissions of CO2 and CH4 and 

other greenhouse gases and they reach an eventual new steady state concentration. 

So, that the final relative forcing due to these greenhouse gases becomes a constant again 

say at the end of the 21st century. So, this is called a ramp flat forcing where we have a 

linear growth of RF with time which eventually becomes steady after a certain specified 

time t1. Such a situation can approximate a case where CO2 concentration rises 

exponentially for a certain time and then stabilizes to a fixed mass fraction value as 

emissions decrease to 0. So, this is the best-case scenario we have for our case right now. 

So, then the relative forcing term will look like this. Up to a certain time between 0 to t1, 

it is equal to gamma t. Then beyond t1, it is a constant value which is equal to gamma t1. 

Remember, the functional relationship of the temperature perturbation with time is  

𝑇′(𝑡) =
𝑒−𝑡 𝜏⁄

𝑐
∫ 𝑅𝐹(𝑡′)𝑒−𝑡 𝜏⁄ 𝑑𝑡′

𝑡

0
, this expression. So, here we will integrate this in two 

parts, first from 0 to t1 where it is gamma t and then for t greater than t1, so t1 to t where 



this equals to gamma into t1, okay. So if we do that integration and then again do an 

integration by parts for the various components, the final expression of the temperature 

perturbation with time is 
𝛾𝜏

𝛼
, remember gamma is the slope of the relative forcing term, 

tau is the relaxation time, alpha is the climate feedback parameter equal to 
𝑡

𝜏
 which is our 

non-dimensional time −1 + 𝑒−𝑡 𝜏⁄ . And this expression is between 0 to t1.  

𝑇′(𝑡) =
𝛾𝜏

𝛼
(

𝑡

𝜏
− 1 + 𝑒−𝑡 𝜏⁄ ) , 0 < 𝑡 < 𝑡1 

           =
𝛾𝜏

𝛼
(

𝑡1

𝜏
− 1 − 𝑒−(𝑡−𝑡1 𝜏⁄ ) + 𝑒−𝑡 𝜏⁄ ) , 𝑡 ≥ 𝑡1  

Beyond t1, again we have 
𝛾𝜏

𝛼
, 

𝑡1

𝜏
, now we have a different formula. Minus −𝑒−(𝑡−𝑡1 𝜏⁄ ). So, 

this new expression comes. This is the time, this is the t1, the time at which the relative 

forcing becomes steady by the relaxation time, exponential negative of that plus e to the 

power minus t by tau. This is for t greater than t1. When t is tending to infinity, so at very, 

very long times, Then t minus t1is much, much greater than tau. So, this t minus t1 also 

tends to infinity. So, this becomes infinity power minus infinity. So, this becomes 0. This 

also becomes 0. So, then t prime becomes 
𝛾𝜏

𝛼
× 

𝑡1

𝜏
.  

𝑇′(𝑡) →
𝛾𝑡1

𝛼
 𝑜𝑟 

𝑅𝐹

𝛼
, 𝑡 → ∞ 

So, 
𝛾𝑡1

𝛼
 or 

𝑅𝐹

𝛼
 because RF at that point is equals to 𝛾𝑡1 at very long times. So, this is again 

if you remember is the climate sensitivity term that we defined earlier. Remember in the 

previous case for the constant forcing case we defined this climate sensitivity term RF1 by 

alpha. So, here Rf1 is your gamma t1. So, this becomes RF1 by alpha gamma t1 by alpha. 

So, we are back to the climate sensitivity term. So, t prime at very, very long times again 

becomes equal to the climate sensitivity function S and this we would expect because 

again we have a constant relative forcing and the initial difference does not make an 

impact on the final steady state value of the temperature perturbation. However, the 

growth rates are different, clear. We have this function initially and this function in the 

middle. And finally, it becomes RF1 by alpha, alright. So, what is, how does it look like? 

So, it kind of depends on the value of this 
𝑡1

𝜏
, your non-dimensional time fundamentally. 

So, we have here, we have plotted the dimensional cases, alright. So, this is T prime t and 

time and dimensional perturbation. This is your relative forcing term, gamma t1up to this 

point here. What is your case of the temperature term for two cases? In one case, the 
𝑡1

𝜏
 is 

much much greater than 1. So, this is the time at which the radiative forcing becomes 

constant. 



That time is much much larger than the relaxation time tau. So, the relaxation time tau is 

say 30 years say and t1 is say 300 years. So, for 300 years radiative forcing was increasing 

linearly and at the 300th year it kind of became constant. So, in that case you have 
𝑡1

𝜏
 is 

equal to 10 which is much more than 1 for example. There the temperature response 

reaches steady state just beyond t1. So, the steady state value is reached quite close to the 

time at which the relative forcing becomes a constant. The other case is where 
𝑡1

𝜏
 is equal 

of the order of 1. So, if tau is 30 years, t1 is say 20 years or 40 years or 50 years or 60 

years, like that. So, of the order of 1, say 0.5 or 2, whatever. In that case, we see that the 

temperature continues to increase for a very long time even after the relative forcing has 

become constant, that is the greenhouse gases have stabilized. So, this is kind of called 

the history effect that even after we have stabilized the greenhouse gas concentration that 

is we are no longer emitting any further CO2 and greenhouse gas concentration because 

we have emitted over a very short period of time. which is of the order of the feedback 

response time. So, we have emitted say over a 90 years or something like that. There will 

still be a kind of pent-up effect that will cause the temperature to continue to rise till it 

reaches the steady state level which is 
𝑅𝐹1

𝛼
. 

Eventually, it will reach that but it will take a long time beyond at which we have 

stabilized the greenhouse response time. So, as again we see that initially the temperature 

response lags behind the relative feedback response. So, we have seen this effect before 

here. In the ramp forcing case, the temperature response lags behind the climate response 

and then it linearizes, right? And then it kind of starts to level up. So, this difference 

becomes if, say for example, this difference is quite large in the initial cases and then 

kind of becomes stable. So, this is what is happening here. Here, this difference has kind 

of linearized by the time t equals to t1 has reached. So, this has become linear. Here, the 

linearization has not happened. We are still in the kind of the slow rising case of the 

temperature response. Alright. So, it kind of has to linearize and then level off. Alright. 

So, as a result, we will have a long duration even beyond the stabilization of the 

greenhouse gas concentration for which the temperature is going to continue to rise till it 

reaches the 
𝑅𝐹

𝛼
 value. So, it is kind of critical to understand the value of tau, understand 

when we are kind of stabilizing the greenhouse gas concentration in order to fully predict 

how much warming is still left after the greenhouse gas concentration has failed. So, 

these we are going to more sophisticated models, but these very simple models kind of 

gives us a picture of what type of trends to expect for different cases. 

One final expression that we will do is an exponentially decaying pulse forcing. So, what 

happens? Suppose you have a large volcanic eruption or a large meteor strike and a huge 

amount of aerosols get injected into the stratosphere. These aerosols will start to reflect 

sunlight and decrease the net incoming shortwave radiations and hence the net outgoing 

longwave outgoing radiation will increase. So, we have a negative radiative forcing due 



to a net decrease in the incoming radiation at the tropopause level, alright. So, this has, 

because if you have inputting a lot of aerosols in a very quick amount of time, you have a 

rapid negative RF1 and this effect as the aerosols then slowly again descend back in onto 

the ground, this negative radiative forcing effect kind of decays back exponentially to 0. 

Where t0 is some constant based on the stabilization. So, the aerosols slowly again kind 

of accumulate back onto the ground. They cannot stay in the atmosphere forever. So, you 

have a slow decrease in this negative radiative forcing due to the aerosol cause increase 

in the reflection of shortwave radiation. So, relative forcing is 0 for t less than 0. At t 

equal to 0, it becomes minus RF1 and then it slowly decays as minus RF1 equal to minus t 

by t0. This is also a very interesting case because more recently there has been 

discussions of artificially injecting aerosols in the stratosphere to decrease the impact of 

warming. So, instead of a volcano or meteor, we can use say aeroplanes or balloons to 

inject silicate particles in the stratosphere that are highly reflective and will reflect more 

of the short wave radiation. So, the albedo will increase and hence the net effective 

downward coming radiation will decrease and hence you have a negative radiative 

forcing. So, those cases also you have a pump injection human made or natural which 

will cause a decrease in the radiative forcing which will slowly decay back over time, 

alright. So, in this case we can again plot the results and get the expressions. We will not 

do it here. But the basic idea we can write like this. The temperature profile will look like 

this. While the relative forcing is exponentially decaying, The temperature will decrease, 

the temperature perturbation will reach a peak and then will slowly exponentially 

decrease as well.  

So, temperature will rapidly decrease to a certain peak value and then slowly get back to 

its original steady state value over a certain period of time. So, because radiative forcing 

is decaying back to zero, temperature will go back to its original steady state mode, and 

this is what happens in case of a volcanic, large volcanic eruption or a meteor strike that 

you will have a few years to a decade of cold temperatures because of the negative 

radiative forcing. And as the aerosols again go back down onto the earth's surface, the 

temperature recovers once more. And it is proposed that an aerosol injection in the 

stratosphere will also do the same thing. It will give us a certain time over which the 

temperature is going to be lower and help us mitigate though not completely remove the 

impact of the positive radiative forcing due to CO2, methane, etc. So this kind of gives us 

a few cases of how the various radiative forcing functions can work together to have 

different types of temperature responses. Now we will discuss a little bit more complex 

models. Models which does not just look at one greenhouse gas or one feedback 

parameter but multiple  parameters, all of which may have an impact on the overall flux. 

So, in the previous simple models, we assume that the net downward energy flux is only 

dependent on the temperature of the climate system and the concentration of the 

greenhouse gas. That is, the net downward flux is the incoming absorbed shortwave 

radiation minus outgoing emitted long-wave radiation at the topophos level, which is the 



function of the temperature of the climate system and the one greenhouse gas 

concentration alone. All right. Now, this is not really true, as we know. In actuality, the 

climate system, in a climate system, the net downward energy flux will depend on three 

things. Firstly, the direct dependence on temperature, the temperature of the climate 

system itself. Then second, a set of temperature dependent climate variables which we 

define as V1(t), V2(t), going up to say Vn(t). So, these are variables that depend on 

temperature and impact the net incoming flux. Examples of such variables include water 

vapour concentration, very important, we will discuss this. So, water vapour 

concentration in the atmosphere depends on the temperature of the climate system 

because how much total water vapour is present increases exponentially as the 

temperature of the climate increases. We have seen this from the Clausius Clapeyron 

relations that we discussed very, very early in our course. 

Concentration of clouds. Again, a very strongly temperature dependent parameter. Higher 

warmer the oceans, greater is the rate of evaporation, greater is the amount of clouds. 

And we have not discussed cloud feedback in a lot bit of detail and we will not discuss it 

today, but it is a very strong area of research of how the concentration of clouds as well 

as where the clouds are forming has an impact on the net incoming radiation. Albedo. So, 

albedo is temperature dependent. If you increase the temperature, the snow cover 

decreases. So, albedo increases. Right, so albedo is also temperature dependent 

tropospheric lapse rate of course a temperature dependent term it also has a strong impact 

on the net incoming radiation and the radiation because it impacts the temperature at 

which the atmospheric gases are emitting and absorbing the greenhouse the radiation the 

long wave and the short wave radiation for example okay. So, these are all variables that 

are dependent on temperature and also impact the net incoming radiation is the 

tropopause level. The third set is a set of climatic variables that do not depend on 

temperature. 

These are usually the concentration of the various gases and aerophores. The 

concentrations of various gases like CO2, methane, NOx, CFC, concentration of ozone, as 

well as solar insulation. The sun itself has its own cycle, so that also is a variable that 

needs to be taken into account in this set. So, a set of variables that impact the net 

incoming radiation without being dependent on temperature of the system, a set of 

variables that are dependent on the temperature and impacts the net incoming radiation 

and finally the temperature itself. So, then the actual net incoming energy flux at the 

tropopause is F downward absorbed minus F upward is a function of temperature, the set 

of variables V1 to Vn which depend on temperature and the set of variables X1 to Xm that 

do not depend on temperature. And this helps us to define, A generalized formulation of 

both the climate feedback parameter and the radiative force term. The climate feedback 

parameter, the complete expression then becomes 
−𝜕𝑓

𝜕𝑇
, the gradient of this net incoming 

flux with temperature at the steady state greenhouse gas concentration minus summation i 



equals to 1 to n, that is over all these variables, 
𝜕𝑓

𝜕𝑉𝑖

𝜕𝑉𝑖

𝜕𝑇
. the gradient of the net incoming 

flux with the temperature determinant variables vi into the gradient of these variables 

with temperature, summation of that.  

𝛼 =
−𝜕𝑓

𝜕𝑇
− ∑

𝜕𝑓

𝜕𝑉𝑖

𝜕𝑉𝑖

𝜕𝑇

𝑁

𝑖=1

 

So, this extra term as a summation for all of these variables are put into and becomes the 

actual climate feedback parameter we have to deal with in a more complicated model. 

And all of these derivatives are evaluated steady state value of temperature, Vss and Xss. 

So, as we remember, 
−𝜕𝑓

𝜕𝑇
 at Xss, right? Similarly, 

𝜕𝑓

𝜕𝑉𝑖

𝜕𝑉𝑖

𝜕𝑇
 at Xss. So, these X values are 

being held constant, okay? We can define the feedback parameter for the ith variable Vi 

as 𝛼𝑖 as −
𝜕𝑓

𝜕𝑉𝑖

𝜕𝑉𝑖

𝜕𝑇
,  i going from 1 to n. 

𝛼𝑖 = −
𝜕𝑓

𝜕𝑉𝑖

𝜕𝑉𝑖

𝜕𝑇
 , 𝑖 = 1,2,3 … . . 𝑁 

 And the direct temperature feedback value as  

𝛼0 = −
𝜕𝑓

𝜕𝑇
. So, this is −

𝜕𝑓

𝜕𝑇
 where all the other terms Vi's Xi's are held constant. For alpha i 

all the other terms are held constant. So, v not equal to Vi is held constant, X, all the X 

terms are held constant. So, the total feedback then becomes the direct temperature 

feedback alpha 0 plus summation over all the variables i to n which depend on 

temperature and also impact the incoming radiation. So, 𝛼𝑖 this is −
𝜕𝑓

𝜕𝑉𝑖

𝜕𝑉𝑖

𝜕𝑇
. So, this is the 

total feedback. 

𝛼 = 𝛼0 + ∑ 𝛼𝑖

𝑁

𝑖=1

 

So, this expression is basically this expression. So, here then we can model and evaluate 

the values of each of this alpha, alpha 0, alpha 1, alpha 2, alpha 3 for all the variables. 

Alpha 0 is the direct temperature feedback, alpha 1 may be the water vapor feedback, 

alpha 2 may be the cloud feedback, alpha 3 may be the radiation balance feedback 

etcetera. The radiative forcing term can also be generalized in that format that the total 

radiative forcing is summation over all the non-temperature dependent variables X1, X2, 

X3, X4 till Xm, summation j equals to 1 to M, RFj; where, 𝑅𝐹𝑗 =
𝜕𝑓

𝜕𝑋𝑗
𝑋𝑗′. the incoming 

radiation flux, the gradient of that with respect to the concentration of the mixing ratio of 

the greenhouse gas species Xj into the perturbation of that species Xj prime, the 

concentration, perturbation of concentration of that species Xj prime. This one we only 



did for CO2, now we can do for CO2, methane, aerosol particles, NOx, CFC, all of that 

summation becomes the total radiative forcing for our climate system, all right. 

We can still use the zero-dimensional energy balance model, 𝐶 =
𝑑𝑇′

𝑑𝑡
+ 𝛼𝑇′ = 𝑅𝐹(𝑡), just 

that the 𝑅𝐹 becomes this expression here and alpha becomes this expression here, all 

right. So, we have just expanded that reach of 𝑅𝐹 and alpha to contain all possible 

variables temperature dependent or temperature independent and we are using the zero-

dimensional energy balance model. So, we will stop here today. In the next class we will 

try to evaluate alpha 0 and alpha 1 and then we will evaluate 𝑅𝐹 for CO2. 

So, that will give us a very good idea of how to do these analytical expressions and how 

to model them before we move on to the next section of our course. So, thank you for 

listening and see you again in the next. 


