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Good morning and welcome to our lectures in climate dynamics, climate variability and 

climate monitoring. In the previous class, we have discussed heating rates for shortwave 

and longwave radiation for various atmospheric layers and evaluated the analytical 

functions as well as plotted the total heating rate as well as the heating rate contributions of 

the various absorbing species in the troposphere and the stratosphere. Now that the heating 

and the cooling rates are known, we can finally go and derive the temperature structure of 

the atmosphere assuming that the atmosphere is at radiative equilibrium. That is, whatever 

heat it is gaining through absorption of radiation, the same heat it is losing through 

emission of that radiation. The problem that we will be solving is the temperature 

distribution for a continuously stratified atmosphere in radiative equilibrium. So, this is a 

more sophisticated way of understanding the temperature distribution of the atmosphere 

rather than looking at an arbitrary set of isothermal atmospheric layers which are radiating 

and absorbing heat from each other as we did in the previous global warming model. 

So, the main assumptions here are for simplicity here and this we can relax in a more 

sophisticated model, but here we will assume that the atmosphere is transparent to short 

wave radiation. So, this is the main assumption which is obviously not true, but we will be 

doing this for to show a simple derivation, and all short wave radiation that is not being 

reflected is being absorbed by the ground and then re-radiated as long wave terrestrial 

radiation. So, we will be neglecting the atmospheric heating caused by the shortwave 

radiation directly. Instead, all the shortwave radiation that is not being reflected by albedo 

effect is absorbed by the ground and then it is being reflected, re-radiated back as longwave 

terrestrial radiation. 

So, we will just look at the longwave radiation case and how the atmosphere is being 

equilibrated by absorption and emission of this radiation. For the atmosphere and ground 

we have the diffuse approximation that is the radiation intensity is independent of direction 

of emission θ, φ. So, whichever direction the radiation is being emitted, it is the same value 

regardless of the direction that is the diffuse approximation. Second and this is also a strong 

approximation that we will be using that, this is called the gray approximation that is the 



mass extinction coefficient is independent of frequency nu in the IR range. Now, the 

question comes of why this is happening, alright. 

So, obviously the mass extinction coefficient is dependent on the frequency. We have seen 

the large scale variations of the mass extinction coefficient value or the absorption cross 

section value. Mass absorption or mass extinction coefficient value with frequency before. 

So, what is the justification of this approximation? We can say, this approximation is 

reasonably valid for lambda greater than say 14 micrometers where H2O based absorption 

is more or less universal. So, if you remember how the absorption coefficient is for water 

vapor, so, whatever is happening before 14, after 14 the absorption coefficient of water 

vapor increases to a certain high value and it remains more or less constant up to 100 

micrometers. 

So, between 14 and 100 micrometers this water based absorption coefficient makes the 

absorption coefficient more or less independent of wavelength lambda. So, this 

approximation is reasonably valid if the lambda is greater than 14 micrometers. So, we will 

make this approximation for the entire IR range, which is of course inaccurate, but that will 

help us develop an analytical solution to get the basic trends, okay. Of course, if you actually 

want the evaluation, you have to find the k with respect to nu and use that, but that will of 

course complicate the problem significantly. So, using the diffuse approximation, we have 

got minus 𝑑𝐹𝑣
↑ at a given altitude z. 

−
𝑑𝐹𝑣

↑(𝑧)

𝑑Ψ𝑣
∗ + 𝐹𝑣

↑(𝑧) =  𝜋𝐵𝑣(𝑇) 

This is the spectral radiation flux density or spectral irradiance upward. that is by delta tau 

nu star, remember tau nu star is related to the optical gap tau nu by the function 1.66, which 

is kind of looking at the effect of, so tau nu is only along vertical direction. Tau nu star also 

takes into account that radiation is emitted in angular directions and thus there is a 1.66 

term that comes to the optical depth term plus 𝐹𝑣
↑(𝑧) equals to 𝜋𝐵𝑣(𝑇). 

This is the spectral blackbody radiation and for the downward irradiance, hemispheric 

irradiance, we have 
𝑑𝐹𝑣

↓(𝑧)

𝑑Ψ𝑣
∗ + 𝐹𝑣

↓(𝑧) =  𝜋𝐵𝑣(𝑇). These two expressions we have derived 

before where, Ψ𝑣
∗ = 1.66Ψ𝑣

 . Because we have using the gray approximation we can 

integrate over the frequencies. Now here I want to note two things. 

 

We have said the gray approximation is valid only for water vapor and it is for above 14 

micrometers. But if you look at the atmospheric heating and the cooling rates in the 

troposphere, they are dominated primarily by water vapor. So, this approximation works 

reasonably well within the troposphere primarily because water vapor contribution 

overwhelms the contribution of all other gases whose frequencies absorption mass 

coefficients or extinction mass coefficients do depend on the frequency nu. So, it is a 

reasonable approximation for the troposphere over the frequencies of IR spectrum we get. 



So, now because we are integrating and because we have the gray approximation, the only 

thing that happens is the nu term goes away. 

So, we have, −
𝑑𝐹𝑣

↑(𝑧)

𝑑Ψ𝑣
∗ + 𝐹𝑣

↑(𝑧) =  𝜋𝐵 (𝑇),  
𝑑𝐹𝑣

↓(𝑧)

𝑑Ψ𝑣
∗ + 𝐹𝑣

↓(𝑧) =  𝜋𝐵 (𝑇), where, 𝜋𝐵 (𝑇) =  𝜎𝑇4. 𝜎𝑇4 

is the blackbody irradiance, this is equals to 𝜋𝐵 (𝑇). So here, basically what we have done, 

we have integrated the spectral blackbody radiation intensity over all frequencies to get the 

blackbody radiation intensity which we are calling as the 𝐵 (𝑇). So 𝐵 (𝑇) is the total 

blackbody radiation intensity. And this 𝜎𝑇4 is the blackbody irradiance or radiation flux 

density and this is equals to pi times the blackbody radiation intensity by the diffuse 

approximation. 

So, this is equation 3, this is equation 4. Okay, we have previously assumed that atmosphere 

is transparent to shortwave radiation, correct? That is there is no shortwave heating effect. 

So, shortwave heating of the atmosphere 𝑄̇𝑆𝑊 = 0. Now, volumetric heating rate is given by 

𝜌(𝑧)𝑄̇𝑣
𝐿𝑊 = −

𝑑𝐹𝑧,𝑣

𝑑𝑧
, where, 𝐹𝑧,𝑣 =  𝐹𝑣

↑(𝑧) − 𝐹𝑣
↓(𝑧), correct? So, this is the volumetric heating 

rate and we do not have any other volumetric heating rate because the shortwave heating is 

0 in this specific case, ok. But, since the atmosphere is at radiative equilibrium, that is at 

steady state, so, there cannot be any net heating or cooling of its layers. 

So, if you average over say an entire year and for all times of day and night and assume that 

atmosphere is at a radiative equilibrium that is the mean temperature, say mean annual 

temperature or the mean temperature over multiple years or something like that is 

constant at any layer of the atmosphere, then it must be that there is no heat entering that 

atmospheric layer or leaving the atmospheric layer. Such that its temperature is changing, 

because as soon as there is a unbalanced heat flux into or out of that atmospheric layer its 

mean temperature is going to change. So, we are looking at the mean values and assuming 

that because of radiative equilibrium the radiation incoming and the radiation outgoing 

must be matching. So, this means this expression here must be equal to 0 by radiative 

equilibrium assumption ok. So now, within the anthropogenic global warming perspective, 

this term is not equal to zero. 

Because of the increasing in the absorber gas concentration, there is a net heating of 

atmospheric layers, which is why this term is non-zero. As a result, the temperature is rising 

over the decades. But here we are first taking the steady state case, assuming that all of 

these things are constant and so on average the temperature is not changing. If this is 

accepted for now, then this means that 
𝑑𝐹𝑧,𝑣

𝑑𝑧
= 0 implies 𝐹𝑧,𝑣 is constant. Only if the net 

radiative flux at any given 𝑧, 𝑣 is constant, it is not changing with z, only then is this gradient 

0. 

What this means then is 𝐹𝑧,𝑣 =  𝐹𝑣
↑(𝑧) − 𝐹𝑣

↓(𝑧) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 or over the IR frequency band 

𝐹𝑧,𝑣 =  𝐹𝑣
↑(𝑧) − 𝐹𝑣

↓(𝑧) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, independent of z.  This is the spectral flux density, this is 

the total upward flux density equals to the net upward flux density equals to total upward 



flux density minus total downward flux density and this is independent of z in the IR 

spectrum. At the top of the atmosphere, is z tending to infinity, Ψz = 0, optical depth is of 

course 0 at the top of the atmosphere. Hence, Ψ𝑧
∗ is also equal to 0 and 𝐹𝑣

↓(𝑧 → ∞) =0 

because, there is no long wave radiation coming from space. So, 𝐹 
↓(Ψ 

∗ = 0) = 𝐹 
↓(0). 

So, here we are saying that the variable with which we are evaluating the upward and the 

downward radiation flux density is the modified optical depth Ψ 
∗ which is of course a 

function of z rather than z itself. So, Ψ 
∗ = 0 is z tending to infinity which is f downwards at 

the top of the atmosphere is equals to 0. This is at the  top of atmosphere. However, this 

term will always be a constant. So, 𝐹𝑧
 (Ψ 

∗ = 0) = 𝐹 
↑(Ψ 

∗ = 0) = 𝐹 
↑(0) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

So, at the top of the atmosphere basically since the downward long wave radiation flux is 0, 

the net upward radiation flux is basically the total upward long wave radiation flux at the 

top of the atmosphere which is F upward 0. So, just to note Z is in this direction from 0 to 

infinity. This is the direction of tau star which is at 0 and whatever is tau ground, tau star 

ground. So, the variable z is going this way, the variable tau star is going this way. Now, The 

earth is at radiative balance. 

What this means is the total outgoing long wave radiation flux must be equal to the total 

incoming short wave radiation flux. Since the earth as a whole is in radiative equilibrium, 

hence, ↑ 𝐹𝑧
𝐿𝑊 = ↓ 𝐹𝑧

𝑆𝑊 =
𝑆0

4
(1−∝), correct? Yes, which is equals to around 240 watt per 

meter square. So, this 𝐹𝑧
  which is the net upward moving long wave radiation must be 

equals to the net downward moving short wave radiation which at the top of the 

atmosphere is basically 
𝑆0

4
(1−∝) where alpha is the albedo value, 𝑆0 is the solar radiation 

constant, radiation flux constant which gives you 240 watt per meter square. So, 

𝐹𝑧
 (Ψ 

∗ = 0) = 𝐹0
 
 
 ≅

𝑆0

4
(1−∝) ≅ 240 𝑤/𝑚2, which is the value of the constant. 

So, at any given z or tau star value,  

𝐹𝑧(Ψ𝑧
∗) =  𝐹 

↑(Ψ𝑧
∗) − 𝐹𝑣

↓(Ψ𝑧
∗) =

𝑆0

4
(1−∝)  ≅  240 𝑤/𝑚2  

So, this must be the net upward moving radiation flux density or irradiance at any location z 

or at any modified optical depth tau star z, these two expressions here may be changing, but 

the difference must be a constant. So, this simplification we can use.  

We will stop here right now. We will continue the derivation in the next class. Thank you for 

listening and see you in the next class. 


