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INFRARED RADIATIVE TRANSFER IN THE EARTH'S ATMOSPHERE 

Good morning class and welcome to our continuing lectures on climate dynamics, climate 

monitoring and climate variability. In the previous class, we were discussing  how we can measure 

the amount of radiative flux that is being absorbed by the atmosphere, radiative solar flux that is 

being absorbed by the atmosphere as solar energy comes from the top of the atmosphere and hits 

the ground eventually. We saw that the expression for the  solar radiation intensity in a given 

direction theta with respect to the ground normal at a given altitude z above the ground can be 

expressed as the radiation intensity at this direction theta at an altitude z. So, the value of the 

intensity at an altitude z coming from a certain direction theta for a given frequency nu. that is I nu 

z radiation frequency at z for frequency mu for the solar shortwave radiation divided by the 

radiation intensity  at the top of the atmosphere. So, this is infinity for that given frequency nu. 

So, the ratio of the radiation intensity at a given frequency at altitude z by the radiation intensity at 

that given frequency at the top of the atmosphere that is equals to exponential of minus of the 

optical depth tau nu at that altitude z by cos theta, okay. Here note that optical depth tau nu is given 

by minus of infinity to z, the mass absorption coefficient k into the partial density of the absorbing 

species into dz. This is defined as the optical depth tau nu z. Note that the optical depth will be 

different for radiations of different frequencies because the mass absorption coefficient will be 

different at different frequencies. 

 

 

This ties us back to the idea that certain gas molecules will be strongly absorbent at certain 

frequencies while it will not be absorbent at certain other frequencies. So the mass absorption 

coefficient K changes with the frequency. And it also changes, of course, with the identity of the 

absorbing species. So, in this case, if we assume a single species is absorbing, then this will be the 

expression here. If you have multiple species that are absorbing, then there will be a summation 

over all k i rho i from infinite to z. So, that generalization you should keep in mind. So what you 

see here is that if the mass absorption coefficient is large, that is a species is strongly absorbent at 

a given frequency, then the optical depth at the altitude z will also be large because this integral 



will be large. Hence, the exponential term will be greater and this expression will be smaller. Hence, 

what you will get then in that case is that I nu z will be significantly lower than the case when the 

mass absorption coefficient is larger. Note also that the partial density of the absorbing species can 

be expressed in terms of the mass mixing ratio yi which is also the mass fraction yi of that absorbing 

species into the density of the atmosphere at z. Where the mass mixing ratio can also be related to 

the molar mixing ratio in terms of the molecular weight of the absorbing species i by the molecular 

weight of the atmosphere at that altitude z. We also saw that the molar mixing ratios are plotted 

with respect to altitude for the different gases and some gases like CO2, O2,  have reasonably same 

values of molar mixing ratios with altitude and hence their variation with altitude can be neglected. 

Whereas other species like water vapor has very strong variation of molar mixing ratio with altitude 

in the troposphere at least and hence there we cannot we have to use the explicit Z dependence of 

the molar mixing ratio. The density of the atmosphere can be expressed in terms of the hydrostatic 

balance relation where h is the average scale height. Of course if you do not use the like the average 

temperature approximation then scale height itself will be a function of z in which case as we saw 

in our early classes you can take the mean atmospheric lapse rate and hence evaluate the  density 

at any given z of the atmosphere. So, this density of the atmosphere at z can be put in this expression 

here to get the rho i z value.  

 

In the next class, we will have a discussion of how to do this in a worked out example. We also 

saw that  Another way to measure the mass absorption coefficient is in terms of the absorption 

cross section sigma i nu absorption where the absorption cross section is nothing but the mass 

absorption coefficient into the molecular weight of the absorbing species by the Avogadro number 

which unit will become centimeter square per molecule. And for many gases like ozone, the 

absorption cross section with wavelength is plotted from which you can get the absorption cross 

section and hence the mass absorption coefficient which you can put in the expression to get the 

degree of attenuation of the radiation intensity. So, this much we have covered in the previous class. 

I am just repeating this here because the next set of derivations will use these concepts a lot. So, it 

is good to be refreshed about this. So the next logical step is to understand the transfer of terrestrial 

radiation, the radiation that is being emitted from the ground and going into the atmosphere. What 

is happening basically in the far infrared region where the earth and the atmosphere are both 

emitting infrared radiation. So, as we saw unlike solar radiation which is happening at a between 

say 0.3 to around 3 micrometers, the terrestrial radiation happens between 5 and 100 micrometers 

and in this region the atmospheric layers also emit a lot of terrestrial radiation at this range. the 

atmospheric layers will not only absorb far infrared radiation, it will also emit a significant amount 

of infrared radiation. So, each of these layers here are not only absorbing the radiation coming from 

say to from the ground, they will also be emitting radiation in these frequencies both upwards and 

downwards, okay. So, here we consider the case of infrared radiation at a given frequency nu that 

is emitted upwards from the surface of the earth as it travels to the top of the atmosphere. The 

radiation is being emitted at an angle theta again with respect to the ground. So, the figure is very 

similar to the figure in the earlier case except now the radiation is traveling upwards. So, we are 

looking at the upward moving radiation flux, okay. And this radiation intensity we are calling I nu 



once more. So, it is a similar terminology we are using. The radiation being emitted from the ground 

at this frequency is I nu S, S meaning surface. However, this time the emission of radiation by the 

gas layers themselves will also contribute to I nu since the atmospheric gases also emit in this IR 

range. So, the gases will absorb some of the radiation at this frequency but will emit some of the 

radiation also. So the radiation amount going outward may be lessened or increased depending on 

the ratio of the absorption and emission. So the increase in the spectral intensity in the upward 

direction as the radiation passes through a gas layer is given by the amount being emitted upward 

by the gas minus the amount being absorbed by the gas layer. So let us assume that in altitude z, 

the radiation passes through a layer of thickness dz. The slanted path length of the radiation through 

the gas layer is ds. So this is ds here as before. And because here dz and ds are in both the same 

direction, dz is also increasing upwards, ds is also increasing upwards. Here dz equal to ds cos theta 

by looking at this right triangle here. Let d nu be the differential amount of radiation intensity. 

 

Just remember this all of this is radiation intensity. Watt per meter square stay radians. Okay. 

Absorb watt per meter square stay radians hertz or nanometers depending on whether you are using 

frequency or wavelength structure. Okay. Then by the Lambert-Bouger-Beer law, we have, so if 

dA nu is the amount being absorbed by the gas layer, then this dA nu is equals to the mass 

absorption coefficient of the absorbing species I, the partial density of the absorbing species I, the 

radiation intensity at Z into dS, okay. So, this is straightforward.  

 

But let dE nu be the differential amount of radiation being emitted upwards by the layer of gas. So, 

as dNu is getting absorbed, dE nu is getting emitted. And this gas is assumed to be at a certain 

temperature Tz at the altitude z, which we can find again using the environmental lapse rate. Now, 

because it is being emitted through radiation, there is a emissivity for this gas layer. So, let E nu be 

the spectral emissivity of the medium, then the upward emitted radiation  is dE nu into the emission 

emissivity, spectral emissivity into the blackbody radiation intensity d nu at the temperature Tz into 

ds. ds is the total length, correct? So, the total energy being radiated is this one into ds, alright. The 

emission, emissivity of this medium into the blackbody radiation intensity into ds. where B nu is 

the spectral blackbody radiation intensity that we have discussed earlier. 

 
 Thus, the net increase in spectral radiation intensity as the beam passes through this gas layer is dI 

nu equals to dE nu minus dA nu.  

 

Note in the previous case for shortwave radiation, it was just minus dN, minus this expression here, 

okay. Here we have the emission added, okay. Now, how do we evaluate this aspect? So, there is 

further simplification that we can do. For gases that are at thermodynamic equilibrium which is a 

good assumption for most of the atmosphere we have the Kirchhoff's law of radiation which holds 

that the fraction of radiation absorbed by a gas will be equal to the fraction of the total blackbody 



radiation emitted by the same gas. 

 

So suppose you have a gas which is emitting say 50% of what a black body would have emitted. 

Then Kirchhoff's law of radiation will say that it will also absorb 50% of the total radiation that is 

passing through it. The same 50% ratio will be applied for both the absorption and the emission. 

This is called the Kirchhoff's law of radiation. What this means is this K nu absorption I into rho I. 

 

This is basically the fraction of I that is being absorbed. And this E nu is the fraction of the total 

radiation intensity. black body, that is the total fraction of the black body radiation intensity. The 

fraction of the radiation passing through that is being absorbed is equal to the fraction of the black 

body radiation intensity. So, this means K nu absorption I into rho I is equals to E. 

 

 

 Okay. So, if we put this expression here, then we get di nu equals to rho i k nu absorption i. So, 

now these two terms basically this minus this, but e nu and k nu absorption i rho i are the same. So, 

we can take that as a common. into the blackbody radiation intensity minus the intense radiation, 

the intensity of radiation entering this layer of atmosphere at altitude z and Bs is dz by cos theta 

from this expression. So, this becomes the final expression which we can also simplify as di nu by 

dz equals to partial density of absorption species into absorption coefficient, mass absorption 

coefficient into blackbody radiation intensity minus intensity of incident radiation at z by cos theta 

where theta is the angle of incidence. So, this we can integrate directly with respect to Z if you 

know all the explicit formulations or we can use the concept of optical depth again for simplicity, 

ok. So, introducing the concept of optical depth of IR radiation we have. The optical depth at z for 

anything coming from the surface upwards is from the surface where z equal to 0 to that given 

altitude z equal to z rho i k nu absorption i dz. So, this is the optical depth.  

 

 

So, d tau nu is basically this expression here. This optical depth is along the altitude. Now, this is 

again related to the optical path length which is along the path of the ray of radiation which is at an 

angle theta. This is given by  So, this is tau nu, this is x nu at S which is S0 to S, where S0 is the 

earth surface in this case. In the previous case S0 was the top of the atmosphere, here S0 is the 

beginning point of the radiation which is the earth surface to the final S value and this is k nu 

absorption I rho I dS prime where S prime is basically the dummy variable. These two are again 

related because ds prime is equal to dz cos theta. 



So, you can express this in either case. However, so we will do it using the optical depth position. 

So, here dz is being replaced by d tau nu by rho i k nu absorption i, this expression. So, di nu d tau 

nu equals to the black body radiation intensity, black body spectral radiation intensity minus the 

actual intensity at altitude z by cos theta. where the blackbody radiation intensity as we discussed 

earlier is expressed by this expression here, watt per meter square stay radiation hertz. 

 

Now, this is a fairly complicated integration, so I will skip the steps. This is the final expression if 

we integrate this and try to find the intensity of radiation, intensity of infrared radiation at the 

altitude z, okay, for frequency nu at the given direction theta. So, theoretically I should also write 

this as of actually a function of both theta nu and z. This is the intensity of radiation being emitted 

by the surface exponential minus the optical depth by cos theta. 

 
 

 So, this is again as before. plus this complicated expression. Firstly, this expression is very easy to 

understand. This is the amount of the surface radiation that is actually reaching the altitude z after 

it is being progressively absorbed by the intervening atmospheric layers up to the altitude z. And 

this extent of absorption is given by this exponential minus optical depth by cos theta term. Now, 

on this side, we have  the contributions of a series of emissions in the frequency nu and along the 

theta direction by the atmospheric layers below the altitude z. 

So, basically what we are saying is  Below this layer is another layer, then another layer and many, 

many, many, many layers till you get to z equal to 0. All of these layers are adding some radiation 

in the direction theta in the frequency nu. The sum of these contributions is this integral going from 

the optical depth of 0 to optical depth at z. of the blackbody radiation intensity by cos theta into 

this exponential term minus tau nu z minus tau prime by cos theta. So, the first term represents the 

fraction of the terrestrial radiation that reaches the height z after being absorbed by the intervening 

medium between z equal to 0 and z equal to z. I nu s is the radiance or the radiation intensity from 

the surface in the direction theta from the normal. The second integral term represent the upward 

emission contributions from all the atmospheric layers between the surface and the altitude z with 

each contribution being attenuated by the exponential factor due to absorption by the thickness 

between the emission layer and the final z location. This is very important. This is the emission of 

any blackbody radiation term at a certain altitude. This is the attenuation that emission from a 

certain atmospheric lens happening has experienced till it reaches the altitude z. 

What do we mean? Suppose there is an atmospheric layer here at certain location, it is emitting in 

this direction. Of course, between this layer and this final layer, there is a series of atmospheric 

layers and these will absorb some of this emitted radiation from this atmospheric layer as it moves 

upward. So, the contribution is an integral of all the emissions by the atmospheric layers below Z 

and all the attenuations of all of these radiations due to the intervening atmospheric layers. So, that 

is what makes this integral have both this exponential term, this is basically the measure of the 

distance between the actual optical depth and the optical depth at altitude z and this is the B nu 

term. Remember this is B nu t at tau prime actually. So, this is B nu T at the optical depth tau prime 

which is the dummy variable here. So, the temperature is also changing for each of these optical 



layers, correct. A certain, at a certain location the atmospheric layer will have a certain temperature. 

at that given optical depth and that temperature comes here. So, this is the emission from an 

atmospheric layer which is at optical depth tau prime. 

 

  

  

This is the degree of attenuation that emitted radiation undergoes as it moves from depth tau prime 

to the final tau. So, this is the very important point. In many cases the earth surface can be assumed 

to be a black body and hence I nu s is equals to the black body radiation intensity at T s where T s 

is the surface temperature. This simplification we can easily do. Now in both the case for the 

terrestrial radiation as well as the solar radiation we have looked at the radiation intensity that is 

going at a particular direction at a particular frequency. However, what we want to know is usually 

the total radiation intensity over the entire short wave range and the entire long wave range 

separately, of course, and throughout the entire hemisphere, not just at any particular direction. So, 

we have to integrate these over all frequencies and throughout the hemisphere to get the radiation 

flux density F. So, for the total upward radiation transfer, we have to integrate over all directions 

and over all frequencies, which will give you the upward infrared radiation flux, which is called F 

upward Z in watt per meter square. The atmosphere also emits IR radiation downwards towards the 

ground. So this is upwards, but there is a downward moving infrared radiation intensity also 

because the atmospheric layers will emit upwards and downwards as well. 

 

Thus the net downward IR irradiance incident on a gas layer at altitude z is the integral of the 

downward emission contributions from the all the gas layers between z and the top of the 

atmospheres. So at any point a downward moving radiation is the integration of all the radiations 

emitted for all the atmospheric layers from the top to the atmospheric layer at altitude z. minus the 

attenuation happening in the intervening atmospheric layers, ok. So, this term will be there, this 

term won't because there is no infrared, far infrared source of radiation at the top of the atmosphere. 

So, this term will go out, this term will exist, here it will be infinity at the top of the atmosphere, 

ok, going to this point, ok. 

The integrating this irradiance over all downward angles and over all frequencies will give you the 

downward IR radiative flux by the atmosphere towards the ground. This we represent as F 

downward z in watt per meter square. So, for this case, we have a expression very similar to the 

second term here, the first term does not exist. At any given altitude, the infrared radiation flux is 

the difference between the upward going flux and the downward going flux. So, F net, the net 

emission, atmospheric emission at a level Z is the upward going hemispherical flux minus the 

downward going hemispherical flux and this is the net infrared flux at any given altitude. 

 



Okay. Now here also we can make a very useful approximation called the diffuse approximation 

where we can assume that the atmospheric layer emits  equally in all directions. So, there is no 

directional dependence of I nu. So, I nu is not a function of theta. So, if the diffuse approximation 

is valid, which it is for atmospheric layers, then we get a very simple set of equations relating the 

flux and the blackbody radiation intensity. So, the change in the upward flux for a given frequency 

divided by the by a modified optical depth term. 

So, the gradient of the upward moving flux for at a given frequency with respect to a modified 

optical depth term plus the upward moving flux equals to pi times the spectral blackbody radiation 

intensity. pi B nu t is equals to this ordinary differential equation in terms of the upward going 

spectral flux density with respect to the modified optical depth term tau star nu. Similarly, the 

downward moving flux also has a similar ODE expression in terms of the black body spectral 

radiation intensity, where this tau star is basically 1.66 times the optical depth tau nu. Where the 

optical depth tau nu is from the z to the top of the atmosphere. So, here remember this is the 

expression that you have to use if you use these expressions. The optical depth is z to the top of the 

atmosphere rho i k nu absorption i dz prime. Note that here the optical depth tau nu is being 

measured from z, altitude z to the top of the atmosphere. And this, if you solve this expression, you 

get the upward moving flux and the downward moving flux in the infrared zone. The 1.66 term is 

obtained upon integrating over radiations coming from all directions with different optical path 

lengths. So, here the idea here is if there is a correction to be made because the earth surface is 

spherical instead of flat. If it was flat, all the radiation is going parallely upwards and parallely 

downwards. Okay, that was the assumption. But here because it is spherical, the angles change 

slightly and that effect comes by this 1.66 tau nu. So, this is the final set of expressions that will 

give us the upward and the downward going total hemispherical fluxes for the infrared zone for the 

atmosphere.  

 

In the next class, we will have a brief discussion on the physical significance of these expressions 

as well as a few worked out examples. Thank you for listening and see you in the next class. 


