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Good morning class and welcome to our continuing course on climate dynamics, climate 

monitoring and climate variability. In the previous few lectures, we had been discussing 

about atmospheric stability, what is adiabatic lapse rate for dry conditions, what is 

adiabatic lapse rate for moist conditions  And we looked at the various conditions which 

can create either unconditional stability, unconditional instability or conditional stability 

situations. So, today we will begin with a few extra derivations specifically regarding 

helping you to, helping to show how these things are arrived at. That is why is it that 

atmosphere becomes unstable when you have a specific type of lapse rate condition valid. 

We will also do an explicit derivation of the moist adiabatic lapse rate during the course 

of this lecture. So, let us begin our discussion today. 

So, here we will look at a generic case. Suppose you have two levels, ok. So, this is an 

altitude Z1. This is at altitude Z2 here. 

This is altitude Z. This is your ground level. Suppose we have a parcel of air. that is 

initially at altitude Z1 and due to certain dynamical conditions in the atmosphere this 

parcel of air moves to a new altitude Z2 through an adiabatic process that is there is no 

heat transfer between the air parcel and the surrounding during the course of this upward 

movement. Now initially at altitude Z1 this parcel of air was at equilibrium with its 

surroundings. 

So at this altitude Z1 the corresponding temperature and pressure was T1 and P1. So the 

temperature of air at this altitude was T1, the pressure of air at this altitude was P1. At 

altitude z2, the corresponding temperature and pressure at this location is T2 and T2. 

However, because this parcel of air has moved swiftly to this new altitude Z2,  it has not 

yet thermally equilibrated with its surroundings. So, this has a different temperature than 

P2. 



 So, let us say that the initial temperature and pressure of this parcel was also P1 and P1 

and the final temperature and pressure of this new parcel here  T prime and P prime okay 

and in general because this movement was quick and there is no heat transfer between the 

parcel and the surrounding air this T prime will not be equal to T2 okay so because the air 

parcel is had risen adiabatically, it is not in thermal equilibrium with its surroundings. and 

hence T prime is not equal to T2. In general, pressure equilibration happens much faster 

than thermal equilibration. Because this parcel of air is kind of just parcel of air within 

the surrounding, as it moves up, it is always matching the pressure of the surroundings. If 

it is not matching the pressure of the surrounding, it will just expand or contract to match 

that pressure. 

So, since Pressure equilibration is much faster than thermal heat transfer. The parcel 

quickly attains the pressure of air at its new surroundings and hence P prime is equal  So 

now, since we have an adiabatic process by the adiabatic relations derived earlier we 

have T prime P2  minus R by Cp, P2 to the power minus R by Cp equals to T1 P1 to the 

power minus R by Cp.  

 

See T P to the power minus R by C P is a constant in an adiabatic process. T prime and 

P2 are the final temperature and pressure of the parcel at Z2. So, these are put here and 

T1 and P1 are the final initial temperature and pressure of the parcel at Z1. 

So, this is put here and so this relation must hold. Hence, T prime which is the 

temperature of the parcel at Z 2 will be equals to T 1 into T 1 by P 2 to the power minus 

R by C. So, this will be the temperature of the parcel at Z 2, temperature of parcel at  

Now, this is a dry parcel of air. So, this is a dry parcel of air. And suppose, see for every 

altitude we can define the potential temperature theta, correct? So, suppose we know that 

the potential temperature at Z1 is theta 1. 

So, here the potential temperature is theta 1 and here the potential temperature is theta 2. 

This is for unsaturated conditions. So, potential temperature at unsaturated conditions. 

Now suppose we know the potential temperature of dry air at these two altitudes. as theta 

1 is the potential temperature at Z1 and theta 2 is the potential temperature at Z2. 



 

Now, what is the definition of potential temperature of dry air? Theta is equals to T  P0 

by P at the corresponding altitude Z by R by C, right. So, this implies theta 1 is P1, P0 by 

P1 to the power R by Cp and theta 2 is T2  P0 by P2 to the power R by Cp, where T1 and 

the T2 are the temperatures at these two stations of the surrounding air, okay. Now, 

suppose we know that theta 2  greater than theta 1. That is the potential temperature at Z2 

which is at the higher altitude is greater than the potential temperature of dry air at Z1 

which is at the lower altitude. So, this means this expression is greater than this 

expression. 

So, we get T2  P0 by P2 to the power R by Cp is greater than P1 P0 by P1 to the power R 

by Cp, which means T2 by T1 is greater than P2 by P1 to the power R by Cp. So, this is 

the expression we get if theta 2 is greater than theta 1. However, based on this expression 

here we can write T prime by T1 is equal to T2 by P1 to the power R by Cp. So, this two 

expressions together implies, hence T2 is greater than T prime if eta 2 is greater than 

eta1, clear? So, this expression, if the potential temperature at station 2 is greater than the 

potential temperature at station 1 for dry air, then the temperature of the surrounding air 

at station 2 is greater than the temperature that the parcel of air will have when it reaches 

that station 2. Hence, if theta 2 is greater than theta 1,  then the temperature of the 

adiabatically rising parcel of air will be lesser  than the surrounding air at Z2. 

 

Hence, it will be colder and denser than the surrounding air at Z2 and will tend to sink 

back down. Thus for dry air if theta 2 is greater than theta 1 for  Z2 greater than Z1, then 

atmosphere is stable. So this is something that we asserted without demonstrating it in the 

previous class and now we are showing the demonstration. We have shown now that if 

the potential temperature gradient is such that for dry air it is increasing with altitude then 

we have an atmospheric stability condition field that is any adiabatically rising parcel of 



dry air will be colder than its surroundings and hence will tend to sink back down hence 

large scale convection currents cannot form. One important point, we have said that a 

colder parcel of air will be denser than its surroundings. 

This can also be easily proved though it is intuitive. So, just for completeness, I will just 

prove this because the air is an ideal gas. So, at  station 2 for the parcel of air we have P2 

alpha 2, alpha 2 is a specific volume if you remember is equals to RT prime, implies P2 

by rho 2. Remember, density is the inverse of specific volume alpha. So, we are writing 

P2 by rho 2 equals to R theta. 

So, this implies that rho 2, if you go back, you take rho 2 here, it is P2 by RT prime 

equals to P2 by RT prime. Sorry, let us go back. I made a mistake. This will be alpha 

prime, the specific volume of that parcel of air. And this will be rho prime, the density of 

that parcel of air as it has moved adiabatically to the station Z2. 

This need not be equal to the specific volume or density of the surrounding air. In fact, it 

will not be. That is why we are keeping alpha prime, alpha as alpha prime and rho as rho 

prime. The pressure is the same between the surrounding and the parcel of air, but 

temperature and density values will be different. So, we are keeping the prime symbol 

here. 

So, this expression also becomes rho prime equals to P2 by RT prime. So, this is the 

density that the parcel of air  will have at z2. Now, for the surrounding air at Z2, it is P2 

alpha 2 equals to RT2 which implies P2 by rho 2 equals to RT2 which implies  rho 2 

equals to P2 by RT. So, this is the density of the surrounding air at Z2. So, this implies 

rho prime  rho 2. 

So, rho prime by rho 2, P2 P2 cancels out, R R cancels out, gas constant for air. So, this 

will be equal to T2 by T prime, correct. So, if T prime is less than T2 as has been shown, 

this implies  rho sorry rho prime is greater than rho 2. So, parcel of air will be denser than 

surrounding. So, we have derived this point as well just using ideal gas law. 

 



 So, here the main consideration is the pressure is the same between the parcel and the 

surroundings. The temperature and density therefore tracks the relationship of the 

adiabatic processes. And based on that we can derive all these relations of what will be 

the stability condition, what will not be the stability condition etc. So, next up we will 

start the derivation today, we will continue in the next class and this is about we have 

evaluated the lapse rate for dry air. We have not derived the lapse rate for the saturated 

parcel of air and we will do that as well. 

So, we will start the derivation today and we will continue in the next recording. So, next 

set is  deriving the expression for saturation adiabatic lapse rate. So, here  we are looking 

at a small change. So, we have a saturated parcel of air at a location z. This parcel of air 

rises adiabatically to another location just a little bit above this which is at z plus dz. 

Very simple z plus dz, let us call it del z for now. No, let us just do dz ok, alright. Now, 

this is a saturated parcel of air ok. The amount of water vapor present in the saturated 

parcel of air at z is given by omega s, ok. The saturated specific humidity, saturated 

specific humidity, ok. 

So, just remember, just for recall. omega s is equals to mass of water vapor at saturation 

condition by mass of dry air ok. This is also called humidity ratio or humidity ratio. 

Better to write this as humidity ratio only for now. 

Saturation humidity ratio. basically, m of water under saturation conditions by m of air, 

m of dry air. So, next because of this increment there are changes in temperature and 

pressure. So, what you will get is that the omega s at this station will be different from 

omega s at z. So, change in humidity ratio due to rise of this saturated parcel is d omega s 

equals to omega s at z plus dz minus omega s at z. So, because the parcel has risen a 

small amount, saturation humidity ratio has changed ok it has changed from the original 

value which was omega s value at the altitude z to the omega s value at altitude z plus dz 

now remember here because the temperature is changing here ok so here this is Tz  

Because it has moved upwards, there is a change in temperature. 

So, that is why your parcel of air's temperature has changed and hence its saturation 

specific humidity value itself has also changed. So, we will explore those things and that 

will be based on what we will discuss on saturation adiabatic lapse rate. So, we will 

continue this work in the next class, how the explicit derivation happens. So, stay tuned 

for the next recording. Thank you. 


