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Introduction to Rayleigh-Ritz Method  
 

So, hello students welcome back again let us continue the discussions to develop some 

continuous functions for our nodal variables. And in that context we have the Rayleigh-Ritz 

procedure I will introduce you to this procedure it is a beautiful way of expressing the 

continuity of the nodal variables. And in fact this is a precursor to the current finite element 

analysis based on the numerical methods where the Rayleigh-Ritz method is a mathematical 

one and later with the advent of digital computers the entire things is digitized and let us see. 
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And before we go into the Rayleigh-Ritz procedure let us see what we did in the previous 

lectures. So, in the previous lectures we had seen the; we have defined the conservative 

system and conservative system is where in which the work done is independent of the path 

taken by the load. It is only based on the distance between the 2 points the least distance 

between the 2 points.  

 

And we have seen the application of virtual work and stationary potential energy methods for 

solution of some simple problems both one dimensional and 2 dimensional. And we got the 

solutions in discrete form in terms of nodal degrees of freedom we got a solution but these 

displacements are only particular to the nodes that we have and the solutions that we had 



obtained both by the stiffness method and also by the energy methods we found that they are 

one and the same. 

 

It is because both are solving the same equations and then as I mentioned earlier all these 

Solutions were obtained at discrete points and our next target should be to get a continuous 

variation because we want to move it to continuum because our object is to is to determine 

the response of soil as a medium. The soil is a continuous medium unlike your bar and beam 

element and the spring elements. So, that we will we will do in this today's class. 

(Refer Slide Time: 03:01) 

 

And before that just let me recap our total potential energy of the system. And although the 

concept is applicable universally for one dimensional 2-dimensional and 3-dimensional and 

continuum discrete and all types of systems we had only seen it in the context of uniaxial 

elements in a status class. We write the total potential energy of the system pi as u + Omega 

where u is the strain energy of the system. 

 

See here what we mean by the system is we have a spring and then there is a load P and the P 

is the applied load whereas the spring is the system that we have and that can store the energy 

like if we elongate or compress it can store the energy. And so, if you gradually apply a 

displacement of Delta the average force multiplied by displacement is the energy because to 

start with Delta was 0. So, the spring is not loaded.  

 



So, there is no energy in the system but as your gradual elongating or compressing it, it is 

developing some force and then it is developing some energy that is force times 

displacement. So, the average force is one half K Delta multiplied by your displacement there 

is one half K Delta Square. And then the Omega is the loss of potential of the external load it 

is actually by moving the load by that much it is losing the potential to do the work. 

 

 

 

 

Before the application of this deformation the load has so, much potential to move but out of 

that we have taken out some Delta and that minus P Delta corresponds to the loss of potential 

of the external load. So, we write it as minus P Delta. So, our total potential is one half K 

Delta Square minus P Delta and our stationary principle states that any small variation in this 

total potential should be equal to zero for the system to be in equilibrium. 

 

And that we had seen yesterday with the example of a of a marble moving in a in a in a pan 

and at the top of the pan the marble has a chance to roll down but then at the bottom of the 

pan the marble is stable. And even if you slightly deform or move it a little bit it is still stable 

because it is at the bottom most point within the pan that is what we mean by the by the 

constant potential energy. 

 

And now this is in a discrete form see we have a Delta that is known at one point and the 

energy is defined in terms of that but then what happens inside. Like let us say you take some 

other point here we do not know.  

(Refer Slide Time: 06:43) 



 

And so, it is good to go in for um continuous forms of the same equation so, that we can 

apply this method to a continuum. 
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And before that the Rayleigh-Ritz procedure let me introduce the Rayleigh-Ritz procedure. 

And in 1870 Lord Rayleigh he introduced this concept for vibration problems for determining 

the eigenvalues and eigenvectors and Ritz in 1909 he also proposed a similar methodology 

and combining both these names this Rayleigh-Ritz procedure is developed. And they 

suggested that we can assume the solution in a polynomial series right. 

 

And let us say u is our variable u is let us say displacement and if it is a one dimensional 

problem there is only one coordinate x and you can assume any polynomial like a0 + a 1 x + 

a 2 x square + a 3 x Cube and so on. Like it could be an infinite series of series and in 2 



dimensions will have 2 coordinates x and y and the polynomial could be a0 + a 1 x + a 2 y + 

a 3 xy + so on like we can have any number of terms. 

 

And in 3 dimensional problems u of x y z this could be a0 + a 1 x + a 2 y + a 3 z and so on.  

 

 

And what they said is these a's a0 a 1 a 2 a 3 and so on. These are the degrees of freedom that 

need to be determined to find the solution. They actually previously we defined the degrees 

of freedom at the node points in x direction and y direction and similar to that the Rayleigh 

and Ritz they called these a's as the degrees of freedom are the generalized coordinates that 

we will see later in the context of finite element analysis. 

 

And what they also said this assumed polynomial should meet some requirements and the 

first thing is the polynomial should be admissible and that is it should satisfy all the essential 

boundary conditions and then satisfies the compatibility conditions. So, it is actually there 

should not be any break in the shape of the element or a break in the variation. So, it should 

be a basically it is a continuous function. 

(Refer Slide Time: 09:40) 

 

And say these boundary conditions the simplest ones are essential boundary conditions or 

geometric boundary conditions. 



 

 Let us say we take a we take a cantilever beam a fixed end cantilever beam and we can say 

that at this fixed end your displacement is 0 and then the slope is also zero and these are the 

minimum boundary conditions that any solution should satisfy so, that we get some 

reasonable result it may not be accurate but at least it should be able to represent this 

boundary condition of this fixed end.  

 

So, the beam displacement w is 0 is one boundary condition and then the slope dou w by dou 

x is also zero and apart from this we may have some non-essential boundary conditions that is 

let us say if you look at this beam. We have applied a tip load and within this beam your 

shear force should be constant it is just simply P and then your bending moment should be 0 

at the tip because there is no lever arm for this load. 

 

Then the bending moment should be maximum at this point at the fixed end point that should 

be equal to P times l and these are something that we do not enforce but we need to get out of 

the solution.  

So, our bending moment is  

 

E I dou Square w by dou x square is 0 E I times curvature is your moment and it should be 0 

at the tip that that x is equal to l. And if our solution is admissible it will satisfy the essential 

boundary conditions. 

 

And it may or may not satisfy the non-essential boundary conditions like your shear force is 

constant along the length or your bending moment is 0 at the tip and so on. And if the 

solution is exact it will satisfy not only the essential boundary conditions but also non-

essential. Like for example your shear force is constant and the bending moment is 0 at the 

tip. These non-essential boundary conditions are problem dependent this is whatever I 

explained is only in the context of the of the cantilever beam. And there could be something 

else for different problems. 

(Refer Slide Time: 12:34)  



 

Now let us look at this potential energy if equation in a continuous form and let us apply this 

for an axial element. And from now on our object is to get the solution in a continuous form 

like whatever may be the maybe the point we should have a solution. Unlike in the case of 

the previous examples where we defined the degrees of freedom only at some discrete points 

but now we want a continuous function.  

 

And we have an axial element and it may have some strain and then some stresses and the 

strain and stresses are proportional to each other and it may be subjected to its own self 

weight and then on top of that there could be some external loading and it is an axial element. 

So, there is only one direction and let us say that it is of length l. And so, there could be some 

potential energy because of the internal strain. 

 

Say this train is if u is the displacement axial displacement field within the element dou u by 

dou x is the strain and our Young's modulus times strain is distress and the stress multiplied 

by strain is the work done and we can integrate this over the full length of l and we are taking 

the average stress. So, that is one half E times dou E by dou x multiplied by The Strain dou E 

by dou x and then we have an area cross sectional area A. 

 

 



And we integrate this of the length of l we will get the potential energy of the system and this 

a could be anything it need not be constant because now we have an integral equation now 

we can have a A bar with a variable cross section. So, it may be varying along the length. So, 

in that case we can put an A of x and then define some function and then 

because of the self weight um.  

 

So, if u is your axial displacement field within the element gamma times dx times A is the 

force right at any point that multiplied by the displacement at that point is the work done and 

then because we have a length and this unit weight is acting over the length of the element. 

So, it is 0 to integrated over 0 to l. So, gamma times a cross

the force multiplied by displacement at that particular Point u and we integrat

length of l. 

 

Then on top of that there could be some externally applied forces along the length of the bar 

and let us say that Vector is P i, P i is the load at location one and location i multiplied by the 

corresponding displacement u i rig

section is constant along the length we can bring it out of the integral A E by 2 integral 0 to l 

Epsilon x square Epsilon x is nothing but dou u by dou x.

 

And here we are assuming that our disp

can be the first order variation of the of your displacements dou u by dou x the rate of change 

of displacement is called as this strain and minus gamma a integral u dx minus of the sum 

total of u i and P i and this is our total potential energy of the system. And what Rayleigh and 

Ritz have proposed is that we can assume u in terms of some polynomial expansion as a

1 x + a 2 Y and so on. And our a

similar to our previous degrees of freedom.

 

 

And we integrate this of the length of l we will get the potential energy of the system and this 

could be anything it need not be constant because now we have an integral equation now 

we can have a A bar with a variable cross section. So, it may be varying along the length. So, 

in that case we can put an A of x and then define some function and then the loss of potential 

So, if u is your axial displacement field within the element gamma times dx times A is the 

force right at any point that multiplied by the displacement at that point is the work done and 

e have a length and this unit weight is acting over the length of the element. 

So, it is 0 to integrated over 0 to l. So, gamma times a cross-sectional area multiplied by dx is 

the force multiplied by displacement at that particular Point u and we integrat

Then on top of that there could be some externally applied forces along the length of the bar 

and let us say that Vector is P i, P i is the load at location one and location i multiplied by the 

corresponding displacement u i right. And so, this we can equate like if you are area of cross 

section is constant along the length we can bring it out of the integral A E by 2 integral 0 to l 

Epsilon x square Epsilon x is nothing but dou u by dou x. 

And here we are assuming that our displacements and the strains are so, small that our strains 

can be the first order variation of the of your displacements dou u by dou x the rate of change 

of displacement is called as this strain and minus gamma a integral u dx minus of the sum 

and P i and this is our total potential energy of the system. And what Rayleigh and 

Ritz have proposed is that we can assume u in terms of some polynomial expansion as a

1 x + a 2 Y and so on. And our a0 a 1 a 2 and so on. These are the degrees of fre

similar to our previous degrees of freedom. 

And we integrate this of the length of l we will get the potential energy of the system and this 

could be anything it need not be constant because now we have an integral equation now 

we can have a A bar with a variable cross section. So, it may be varying along the length. So, 

the loss of potential 

So, if u is your axial displacement field within the element gamma times dx times A is the 

force right at any point that multiplied by the displacement at that point is the work done and 

e have a length and this unit weight is acting over the length of the element. 

sectional area multiplied by dx is 

the force multiplied by displacement at that particular Point u and we integrate this over a 

Then on top of that there could be some externally applied forces along the length of the bar 

and let us say that Vector is P i, P i is the load at location one and location i multiplied by the 

ht. And so, this we can equate like if you are area of cross 

section is constant along the length we can bring it out of the integral A E by 2 integral 0 to l 

lacements and the strains are so, small that our strains 

can be the first order variation of the of your displacements dou u by dou x the rate of change 

of displacement is called as this strain and minus gamma a integral u dx minus of the sum 

and P i and this is our total potential energy of the system. And what Rayleigh and 

Ritz have proposed is that we can assume u in terms of some polynomial expansion as a0 + a 

a 1 a 2 and so on. These are the degrees of freedom that are 



Then any variation in this total potential with respect to any of these degrees of freedom 

should be zero for the system to be in equilibrium.  
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And so, what we do is we can assume some solution in terms of a polynomial and then and 

then work out this total potential and then determine the constants a0  a 1 a 2 and so on. So, 

let us as an example illustration let us take a bar and it is applied a load of P at the tip and this 

bar is of length l and previously we had defined these bars with some certain nodes node 1 

node 2 and so on.  

 

But here we do not have any such notation this is just a simple bar it is a continuous bar of 

length l then at the tip there is a load of P applied and we want to find a solution for this and 

let us say that our solution is to start with u of x is a0 + a 1 x right is just a simple assumption 

like you can assume anything you want you can assume a0 + a 1 x + a 2 x square and so on. 

And to start with I have assumed this and our boundary condition is that at x is equal to zero 

our displacement is 0 because this is a fixed end.  

 

So, our u is 0 at x is 0. So, that means that a0 is zero. So, u of x is a 1 x and this is called as an 

admissible solution because it is already automatically applied the required boundary 

condition. And instead of 0 let us say we put some constraint that the tip the displacement at 



this end is some delta that a0 could be equal to Delta right and the strain within the element is 

dou u by dou x and that is equal to a 1 and our total potential Pi is integral 0 to l one half A E 

dou u by dou x times dou E by dou x it is actually basically one half a times Epsilon x square 

and minus of u i P i. 

 

And if we integrate this you substitute u of x here and integrate you get one half A E a 1 

square because we have dou u by dou x times dou u by dou x and then l because the strain 

does not have any x we just have an l and the displacement at the tip is a 1 times l multiplied 

by the load at that point P right and if you apply the stationary principle dou Pi by dou a 1 

should be 0 for our equilibrium. And so, if you differentiate with respect to a one we get A E 

times a 1 l minus LP that is 0. 

 

So, our a 1 is P by A E and our u is a P x by A E right and then at the tip the displacement is 

P l by AE that is our familiar equation from the strength of materials and how do we know 

that this is a this is an exact solution. So, for that we can determine the strain dou u by dou x 

and if you do that that comes to P by A E P by A is the stress and divided by E is your strain 

and that is constant along the length. 

 

And we know that if you apply a tip load the displacement at the tip is PL by AE and the 

strain is constant. So, we can say that this polynomial that we had assumed for the 

displacement is will give us exact solution for the tip loaded the problem. And now let us 

look at some other problem. 

(Refer Slide Time: 22:18)  



 

Let us say that we have a bar of length l and then it is subjected to its own self weight see it is 

hung from the from the ceiling like this right and then because of its own self weight it will 

elongate and we want to get the displacement field under this self weight.  

 

And so, let us see that minimum conditions that we have are the displacement at this point is 

zero. And then along the length our strain is going to vary linearly right. 

 

Then at this point at this tip we know that this strain is zero because that the free end and 

there cannot be any strain associated with this right and at this point the strain should be the 

maximum right. And then we do not know what is your tip displacement that we can easily 

determine let me just try this let us say we take any arbitrary length of dx and our weight 

oops sorry our weight is a gamma times A times dx right. 

dw = γ . A . dx 



And our d d Delta is actually it is let us say dw d Delta is dw by A times x let us say this is at 

some distance x from the from the origin.  

dδ = ( dw . x ) / A 

And so, we have this as oh sorry d Delta right we should have a Young's modulus E that is 

the this the stress divided by E times x. So, gamma dx times x by E and our Delta is we can 

we can integrate from 0 to l gamma by E x dx. So, that comes to gamma l Square by 2E. 

 

This is what we can easily derive theoretically and let us see what happens with our solution. 

Let us let me go back to my lesson. Let us assume A first order polynomial let us say u is a0 

+ a 1 x and at x is equal to 0 our a0 is zero and server our u is zero. So, a0 is zero. And so, 

our u of x is a 1 x and the strain is dou u by dou x that is a one and we see that we can say at 

this stage itself that this polynomial is not sufficient. 

 

 

Because our strain is constant but then because of the increasing weight your strain is going 

to vary linearly with the distance but let us anyway let us do the problem and then find out 

later. But at this stage itself even at the time of assuming the polynomial itself we can say that 

our solution is not going to be accurate. So, our total potential pi is integral 0 to l one half AE 

Epsilon x square dx minus gamma A dx that is the force multiplied by u integrated over 0 to l 

that is the total loss of potential. 

 

 

And if you integrate if you in substitute your E u as a1x and integrate we get one half A E a 1 

square l minus gamma a 1 l Square by 2 right. And so, we can apply the principle of the 

stationary T and the dou pi by dou a 1 should be 0. And if you go through this integral we get 

our a 1 is gamma l by 2 E and our displacement at any point is a gamma l x by 2E right. And 

our displacement at the tip if you if you substitute x is equal to l the displacement at the tip u 

is gamma l Square by 2E. 



And if you just look at this result it looks accurate. Now that is what the theoretical result is 

also gamma l Square by 2E. So, our tip displacement is also exactly matching with the exact 

result. So, can we say that the solution is accurate but then we have to look at 

like we can evaluate the displacement at some other point and see. And so, let us go for 

higher order term that is dou u by dou x. And so, if you do this gamma l by 2E and that is 

constant that is coming out as constant.

 

Actually here itself we could have seen that the strain is constant a 1 and w

strain should vary linearly but then our solution is saying that the strain is constant. So, that 

means that whatever solution that we have obtained is not sufficient it is it is admis

because it is it is satisfying the boundary conditions but then it is not sufficiently accurate we 

need to improvise it. And let me just now let us include one more term in the polynomial and 

see what happens. 

(Refer Slide Time: 29:05)  

Now we are saying u is a 1 x + a 2 x square we have added one more polynomial term and 

our strain is Epsilon x is dou u by dou x that is a 1 + 2 a 2x and our Phi is integral 0 to l one 

half A E dou u by dou x and dou u by dou x minus integral 0 to l gamma 

the integration. And then set up 2 simultaneous equations by taking dou Pi by dou a 1 and 

dou Pi by dou a 2 to 0 and set them to 0.

look at this result it looks accurate. Now that is what the theoretical result is 

also gamma l Square by 2E. So, our tip displacement is also exactly matching with the exact 

result. So, can we say that the solution is accurate but then we have to look at 

like we can evaluate the displacement at some other point and see. And so, let us go for 

higher order term that is dou u by dou x. And so, if you do this gamma l by 2E and that is 

constant that is coming out as constant. 

we could have seen that the strain is constant a 1 and we know that the 

ry linearly but then our solution is saying that the strain is constant. So, that 

means that whatever solution that we have obtained is not sufficient it is it is admis

because it is it is satisfying the boundary conditions but then it is not sufficiently accurate we 

need to improvise it. And let me just now let us include one more term in the polynomial and 

 

Now we are saying u is a 1 x + a 2 x square we have added one more polynomial term and 

our strain is Epsilon x is dou u by dou x that is a 1 + 2 a 2x and our Phi is integral 0 to l one 

half A E dou u by dou x and dou u by dou x minus integral 0 to l gamma A u dx and if you do 

the integration. And then set up 2 simultaneous equations by taking dou Pi by dou a 1 and 

dou Pi by dou a 2 to 0 and set them to 0. 

 

look at this result it looks accurate. Now that is what the theoretical result is 

also gamma l Square by 2E. So, our tip displacement is also exactly matching with the exact 

result. So, can we say that the solution is accurate but then we have to look at other things 

like we can evaluate the displacement at some other point and see. And so, let us go for 

higher order term that is dou u by dou x. And so, if you do this gamma l by 2E and that is 

e know that the 

ry linearly but then our solution is saying that the strain is constant. So, that 

means that whatever solution that we have obtained is not sufficient it is it is admissible like 

because it is it is satisfying the boundary conditions but then it is not sufficiently accurate we 

need to improvise it. And let me just now let us include one more term in the polynomial and 

Now we are saying u is a 1 x + a 2 x square we have added one more polynomial term and 

our strain is Epsilon x is dou u by dou x that is a 1 + 2 a 2x and our Phi is integral 0 to l one 

A u dx and if you do 

the integration. And then set up 2 simultaneous equations by taking dou Pi by dou a 1 and 



 

And then solve we will see that a 1 is gamma l by E and a 2 is minus gamma by 2E these are 

the 2 constants that we determine. So, our solution u is a 1 x + a 2 x square and a 1 is gamma 

l by E server solution u is gamma l by E x minus gamma by 2E x square right. So, if you 

substitute x is equal to l our tip displacement is comes out as gamma l Square b

equal to the exact theoretical result.

 

But then before we conclude whether it is a good or bad our strain along the length is dou u 

by dou x and that comes out as a gamma l by E minus gamma x by E right. So, our strain is 

going to change along the length and that at the free end let us look at the free and that x is 

equal to l if you substitute your strain comes out as zero that is what we have and then at x is 

equal to 0 your strain is gamma l by E gamma l is the is the total stress and the 

because of the total length of the element and divided by E is your strain. 

 

And so, basically if you plot your strain variation will come out like this. So, our strain is 

maximum at the top and then it is in decreasing to zero let us say this is 

gamma l by E and that is natural. Because we can easily see the variation because as your 

moving along the length you are stress is changing the stress is maximum here gamma times l 

and the stress is 0 here. And so, our strain is 0 here

 

 

And then solve we will see that a 1 is gamma l by E and a 2 is minus gamma by 2E these are 

onstants that we determine. So, our solution u is a 1 x + a 2 x square and a 1 is gamma 

l by E server solution u is gamma l by E x minus gamma by 2E x square right. So, if you 

substitute x is equal to l our tip displacement is comes out as gamma l Square by 2E which is 

equal to the exact theoretical result. 

But then before we conclude whether it is a good or bad our strain along the length is dou u 

by dou x and that comes out as a gamma l by E minus gamma x by E right. So, our strain is 

ng the length and that at the free end let us look at the free and that x is 

equal to l if you substitute your strain comes out as zero that is what we have and then at x is 

equal to 0 your strain is gamma l by E gamma l is the is the total stress and the 

because of the total length of the element and divided by E is your strain.  

And so, basically if you plot your strain variation will come out like this. So, our strain is 

maximum at the top and then it is in decreasing to zero let us say this is zero and here it is 

gamma l by E and that is natural. Because we can easily see the variation because as your 

moving along the length you are stress is changing the stress is maximum here gamma times l 

and the stress is 0 here. And so, our strain is 0 here and Gamma l by E.  

 

 

And then solve we will see that a 1 is gamma l by E and a 2 is minus gamma by 2E these are 

onstants that we determine. So, our solution u is a 1 x + a 2 x square and a 1 is gamma 

l by E server solution u is gamma l by E x minus gamma by 2E x square right. So, if you 

y 2E which is 

But then before we conclude whether it is a good or bad our strain along the length is dou u 

by dou x and that comes out as a gamma l by E minus gamma x by E right. So, our strain is 

ng the length and that at the free end let us look at the free and that x is 

equal to l if you substitute your strain comes out as zero that is what we have and then at x is 

equal to 0 your strain is gamma l by E gamma l is the is the total stress and the divided 

And so, basically if you plot your strain variation will come out like this. So, our strain is 

zero and here it is 

gamma l by E and that is natural. Because we can easily see the variation because as your 

moving along the length you are stress is changing the stress is maximum here gamma times l 



So, that means that whatever solution that we got this is our solution this is a exact solution. 

So, we can conclude that this is this is it like we do not need to increase any further this 

polynomial need not be changed any further. And we can we can stop at this polynomial let 

me just see I think I am getting better at writing because if you write anything at one shot you 

will get a it will get erased easily. 
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Now let us move on to other problem like let us go on to the flexural problem beam element. 

And let us consider a beam element like this and the letters neglect axial displacements 

because axial we have already done with the bar elements with the axial elements and let us 

also assume that it is a it is a Pure flexural Element and there will not be any Shear induced 

bending. 

 

And the shear deformations are neglected and we can write our total potential energy 

equation as integral one half E i dou Square w by dou x square whole square is actually dou 

Square w by dou x square is the curvature and your moment times the sorry E i times this 

curvature is your moment. And the moment times curvature in the integral form is the work 

done right an integral of curvature is your Theta that is the rotation.  

 



And so, this is your integral expression for the work done by the moment and then the 

rotation. And let us say that w is the transverse deformation and let us have some applied 

force q that is varying along the length and let there be some Shear forces applied at along the 

length. And then some moments and we can calculate the loss of potential corresponding to 

these like this let us say our q is a continuous function. 

 

And let and this could continue with the full length 0 to l w times q dx where w is our 

transverse displacement and the q is the traction and then say at this point your displacement 

is w 1 the loss of potential is F 1 times w1 and corresponding to F 2 let us say the 

displacement is w2. So, the loss of potential is F 2 times w 2. Similarly the loss of potential 

because of the rotation and the moment is Theta times M at some discrete point i right.  

 

 

And our w's are the transverse displacements at the discrete points like 0.1.2.3 and so on. And 

our w of x is the deflection of the beam as a function of length l x and Theta of x is the 

rotation of beam as a function of x.  

 

And F i is the externally applied the shear Force at some discrete points. And m i is the 

external applied moments at discrete points and the q is the applied the attraction it is it is a 

surface force or surface pressure.  

 

And this is your total potential of the flexural element this is coming from the internal 

moment and then the rotation integral curvature is rotation. And so, we can actually apply 

this total potential energy equation and then get some limit solutions for simple problems as a 

demonstration but it is applicable for any problem any like let us say even if you have a 

building frame you should be able to solve it using this methodology. 

(Refer Slide Time: 37:35)  



 

 

 

Let us apply for a simple problem of cantilever beam with the tip load and since we do not 

have this q and other things we can write the total potential is one half E i dou Square w by 

dou x square the whole Square integrated over 0 to l minus P times at the tip displacement 

and what is the polynomial that we can assume. See this polynomial can be in the form of a0 

+ a 1 x + a 2 x squared + a 3 x Cube and so on.  

 

But the essential boundary conditions are at x is equal to zero our displacement is 0 and then 

our rotation is zero the slope should be 0 at this point. So, if you do that w 0 at x is equal to 0 

means a0 is 0 and dou w by dou x is 0 at x is equal to 0 means a 1 is 0. So, our admissible 

polynomial can start with a 2 x square and so on. And let us assume only a single term just 

for Simplicity and let us say that our w is A 2 x square. 

 

And we can see how good the solution is with just a single term and dou square w by dou x 

square is 2 A 2 and dou Square w by dou x square whole square is a 4 A 2 square and we can 



substitute these terms dou Square w by dou x square and then w of l this equation and then 

the total potential energy is is this and then variation with respect to A 2 should be 0 so, that 

means that our A 2 is a P l by 4 E i and we can substitute that back here.  

 

 

 

So, our w is Pl by 4 E i times x square. And so, our w of x is a P l x square by 4 E i. So, at x 

is equal to l our w is P l cube by 4 E i which is not correct because our displacement tip 

displacement is P l cube by 3 E i and the so, actually if you look at this solution w of x is P l x 

square by 4 E i you are the shear force should be constant with with within the beam section 

and that is not coming out and w by dou x is q because actually it is coming out as a zero 

which is which is not correct. 

 

Sorry I think it should be only and dou square w by dou x square is x gets disappeared and 

your bending moment should be 0 at x is equal to l and that is not coming out and your 

bending moment should be increasing linearly along the length. So, in fact at the fixed end it 

should be P times l which is not coming like your bending moment is is constant and then the 

shear force is zero.  

 

So, that means that this polynomial is not able to give us the required solution and we can try 

to improve the solution by assuming a higher the polynomial A 3x Cube. And once again we 

see that our solution is not good enough because we are not able to get a constant Shear Force 

and then the bending moment is not zero at the tip and it is not equal to P times l at this fixed 

end.  
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So, now we can actually try another thing let us include the 2 polynomial terms the one 

quadratic term and one cubic term.  

 

a 2 x square + a 3 x cubed and inherently we also have a0 and a 1 x but only thing is a0 and a 

1 are 0 but we can technically say that we have those terms also in this polynomial. So, dou w 

by dou x is 2a 2 x + 3 a 3 x square and dou square w by dou x square is 2 a 2 + 6 a 3x. 

 

And the whole square of that is this and so our total potential of the system is this and we can 

differentiate this with respect to a 2 and a 3 and set them to zero and find our constants.  
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So, if you go through this your a 2 comes out as P l by 2 E i and a 3 is minus P by 6 E i. So, if 

you substitute these 2 constants a 2 and a 3 in our equation for w; w is P l by 2E i x square 

minus P by 6 E I x Cube. So, if you substitute x is equal to l your w is P l cube by 2 E i minus 

P l cube by 6 E i that is P l cube by 3i which is the same as what we get from the flexural 

theory. And let us calculate the bending moment at the tip of the beam dou Square w by dou 

x square at x is equal to l is a P l by E i minus P x by E i. 

 

And if you substitute x is equal to l that is 0. So, at x is equal to l it is 0 and then at x is equal 

to 0 your bending moment is P l because actually it is E i times dou Square w by dou x square 

then as you are moving inside your your bending moment is going to increase. And then 

Shear Force within the beam is E i dou Cube w by dou x Cube that comes out as minus P and 

that is constant along the length right. 

 

So, we see that considering 2 terms a 2 x square + a 3 x Cube is able to give us the exact 

solution it is predicting the tip displacement correctly then it is giving us the constant Shear 



Force and then bending moment of 0 at the tip and then bending moment of P times l at x is 

equal to l. So, we can say that this polynomial is able to satisfy both essential and non-

essential boundary conditions and so, it must be exact. 

 

And what is the difference between the earlier polynomials under this polynomial actually 

earlier we had considered only one term a 2 x square or a 3 x Cube and then with a 2 x square 

our solution was not correct because the so, this polynomial order was not sufficient but then 

if you if you assume x Cube term by neglecting the lower ordered term also we have a 

problem. We had in fact the solution is has become worse now it is a P l cube by 12E i. 

 

Previously it was P l cube by 4 E i which is at least close enough to P l cube by 3i but now 

the solution has become even worse and our bending moment and the shear Force are not 

what we expect. And so, the reason for this is we are not including the complete polynomial 

and what Rayleigh and Ritz have suggested is you include a complete polynomial for any 

problem to improve the solution accuracy.  

 

And so, by including this and in fact this is a complete polynomial because this is also 

including a0 + a 1 x but only thing is a0 and a one not zero. So, we do not see those terms 

here. So, we have a cubic polynomial complete polynomial and we are able to get the exact 

solution. 
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And let us say that we assume one more term a 4 x to the power 4 because let us say we are 

not sure of the solution that we get with the previous polynomial and if we assume one more 



term and continue what will happen. So, actually the solution is a bit more tedious because 

now we have 3 simultaneous equations to solve for 3 unknowns a 2 a 3 and a 4 it is a very 

tedious problem but then if you do that you will see that ever a 4 will come out as 0.  

 

Because already the solution is accurate or exact with these 2 terms a to x square and the a 3 

x Cube I will not do it here but you can try it out on your own it takes a long time it might 

take about 2 hours if you do it systematically and then you will find that a 4 is 0. And so, if 

you have access to any of the programs like Matlab you can set it up in the Matlab program 

and then do all these problems like you can solve simultaneously questions in a symbolic 

form. 

 

Because in a calculator you can only solve in the numerical form but in Matlab you can do it 

in the symbolic form and get your a 2 a 3 a 4 and so on whatever may be the equation that 

you have. So, the lesson that we have to learn is when we assume any polynomial it should be 

complete and it should include all the lower ordered terms for better accuracy. So, when we 

had a2 x square the solution was more accurate compared to the solution that we got with a 3 

x Cube as the single term. 

 

Because a 2 x square had included the 2 other lower ordered terms the constant and then the 

linear term and but when we can included the cubic term we have neglected the square term 

the quadratic term. So, the solution um the accuracy has come down.  
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So, now let us do one more term one more polynomial and then see what happens let us 

assume w of x is a 3 x Cube + a 4 x to the power 4 and we have neglected the x square term. 
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Then if we go through the solution that we get is this and the solution really does not match 

any of the theoretical solution then it does not give us the required boundary conditions and 

the higher order derivatives like our Shear Force should be constant along the beam at the P 

and your bending moment is 0 at the tip that does not happen. So, you can the solution is 

given and you can see that the tip the displacement does not match your equation P l cube by 

3 i and then along the length your Shear force is not constant.  
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So, and this procedure can be continued for other problems like let us say you have a 

cantilever Beam with a loading at some other point not at the tip but somewhere else or let us 

say you have a simply supported beam with a central load. And we can apply it for any 

problem. 
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But only thing is we do not know how many terms polynomial terms we need to include 

previously for the tip loaded problem. Our solution with the 2 polynomial terms or an exact a 

2 x square + a 3 x Cube and let us see whether this will work out for this problem of the 

cantilever Beam with a load applied at the mid length midpoint l by 2. 
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So, if you do this your solution is is

minus P by 12 EI x Cube. And so, actually see when we do this problem beyond this length 

of l by 2 your bending moment should be zero Beyond this length but our solution that we get 

does not give that. 

 

 

 

 

So, if you do this your solution is is coming out as a 3P l cube sorry a 3P l by 16 E

I x Cube. And so, actually see when we do this problem beyond this length 

of l by 2 your bending moment should be zero Beyond this length but our solution that we get 

16 EI x square 

I x Cube. And so, actually see when we do this problem beyond this length 

of l by 2 your bending moment should be zero Beyond this length but our solution that we get 



 

 And so, that means that we need to include one more polynomial term and redo the problem 

and we can continue until we get the solution that satisfies both the essential and non-

essential boundary conditions. 

(Refer Slide Time: 52:48)  

 

But beforehand we cannot say how many terms we need. And this is the problem with a 

uniformly distributed load now the potential equation is 2 times w integral 0 to l because your 

q is varying along or it is continuing along the length. 
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And if you have a simply supported beam the essential boundary conditions are the 

displacement is 0 at both ends at x is equal to 0 and x is equal to l we need to enforce that 

apart from all the other required boundary conditions. 
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 And let us do one more thing like let us look at the potential equation for a 3-dimensional 

continuum it is for a continuum. And a Continuum is characterized by different stresses 

Sigma x Sigma y Tau xy and then Sigma z Tau x z and Tau yz and so on. And let us say that 



our Continuum has got some strain Vector Epsilon and say if D is the constituted Matrix D 

times Epsilon is stress and that multiplied by strain is your work done. 

 

And half because the average stress is half d Epsilon that multiplied by your Epsilon is your 

strain and integrated over the full volume. Now since we have a continuum we are integrating 

over the volume and then say if your Epsilon naught is the pre-existing strain and the current 

stress Epsilon transpose d times Epsilon naught is your work done because of your initial 

strains and then the stresses. 

 

And there could be some initial stresses also and then say if your b is your body Force vector 

and u is your displacement Vector internal displacement vector you can write this loss of 

potential as u transpose b dv. And then you may have surface traction and where our u is the 

surface displacements T is the surface traction and this integrated over the surface area is 

whereas the others are integrated with volume. 

 

And on top of this you may have some discrete loads concentrated loads at different points 

and the work done is A E transpose times P where a is your vector of displacements P is the 

vector of applied loads. So, the potential equation for a 3D Continuum is a bit more 

complicated. And so, this is our object like we will move on to the to the Continuum from the 

next class onwards.  

 

So, what we have seen in this lecture is by following the Rayleigh-Ritz procedure we can 

obtain solution in a continuous form. We do not need to discretize our mesh into certain 

number of nodal points get our solution but by applying this we will get a continuous solution 

and we can assume some polynomial and that polynomial should be admissible at the 

minimum and the admissible polynomial will satisfy the boundary conditions. 



 

And if it is going to be exact it should satisfy even the required boundary conditions and 

higher order derivatives like your bending moment and Shear Force and see these you should 

remember that we are not solving for bending moment and Shear first we are only solving for 

displacements. And from the displacements we are getting your bending moment and the 

shear Force has E i times dou Square w by dou x square and d i dou Cube w by dou dou x 

Cube. 

 

And then the same procedure we can continue for 3D Continuum and this we will we will see 

later in a slightly different form not in the potential equation form but in the virtual work 

form. So, that is my last slide. So, I hope you understood the Rayleigh-Ritz procedure is 

actually it is a very beautiful procedure and it is a it is actually it is more mathematical but it 

has got some relevance to what we are going to do in finite element analysis because even 

here we assume some polynomial. 

 

And depending on the type of polynomial that we assume our Solutions might be totally 

different. So, if you have any questions you please write an email to this to this address 

profkrg@gmail.com and then I will be able to respond back to you. So, thank you very much.  

 


