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Virtual work & amp and principle of stationary potential energy  
 

So, hello students let us continue from where we stopped in the previous lectures. In the 

previous lectures we had seen how to develop our equilibrium equations for bar and beam 

elements starting from the fundamentals by applying a unit deformations in different 

directions we got the equilibrium equations. And we have seen the local coordinate system 

and then global coordinate system and so on.  

 

And now in this lecture let us go a little bit more mathematical let us look at the energy 

methods for deriving our equilibrium equations and also look at the principle of stationary 

potential energy that gives us a very good platform for doing a lot of mathematical analysis. 
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See in this process we are going to look at only the conservative systems.  



 

A conservative system is a system in which the work done does not depend on the path. Say 

for example let us say we move the load from point A to point B and we could move it along 

the least the length direction directly AB a straight line path or along the curved path one or 

along curved path 2. Whatever path that you take the work done is exactly the same that is 

the load multiplied by the least distance. 

 

And so, those systems are called as conservative systems and you might ask why we cannot 

consider the path dependence that is a different thing because that requires different 

mathematical formulation. But for now we will only look at this the work done is 

independent of the path taken and if you consider some other methods maybe it is possible. 

So, and already we have seen the virtual work calculation in lecture 4. 

 

Where we had derived the transformation matrix for the bar element based on the and the 

virtual work principle like virtual work done whether you calculate in the local coordinate 

system or in the global coordinate system both are the same. And through that we have got K 

global is Lambda transpose K element times Lambda. And there also we had calculated the 

work done but we did not give any importance to the path taken and so on. But this is a the 

assumption that we make we consider only the conservative systems where the work done 

does not depend on the path. 
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Let us look at one of the oldest principles the virtual work principle. So, if any admissible 

virtual displacement field is applied on a system and the external and internal virtual worker 

works are equal system is said to be in equilibrium.

 It is let us say that we have a spring under a load of P and it is subjected to a to an elongation 

of u on top of this let us say we give some virtual displacement d.

 

And the internal force within the spring is K times u right and

us assume let us apply a virtual displacement of Delta on the system. And the internal work 

done is the force in the spring multiplied by d K u times Delta that should be exactly equal to 

the external work done by the appli

 So, if you cancel out Delta both from the left hand side and right hand side we are left with

 K times u is P that is our familiar equation stiffness times displacement is equal to P now the 

load.  

 

And so, this is what we have seen for one dimensional element and in fact even the spring is a 

one dimensional element. 

(Refer Slide Time: 05:18) 

 

Let us look at one of the oldest principles the virtual work principle. So, if any admissible 

virtual displacement field is applied on a system and the external and internal virtual worker 

to be in equilibrium. 

 

It is let us say that we have a spring under a load of P and it is subjected to a to an elongation 

of u on top of this let us say we give some virtual displacement d. 

And the internal force within the spring is K times u right and the external force is P and let 

us assume let us apply a virtual displacement of Delta on the system. And the internal work 

done is the force in the spring multiplied by d K u times Delta that should be exactly equal to 

the external work done by the applied force that is P times Delta. 

 

So, if you cancel out Delta both from the left hand side and right hand side we are left with

K . u = P 

K times u is P that is our familiar equation stiffness times displacement is equal to P now the 

is what we have seen for one dimensional element and in fact even the spring is a 

Let us look at one of the oldest principles the virtual work principle. So, if any admissible 

virtual displacement field is applied on a system and the external and internal virtual worker 

It is let us say that we have a spring under a load of P and it is subjected to a to an elongation 

the external force is P and let 

us assume let us apply a virtual displacement of Delta on the system. And the internal work 

done is the force in the spring multiplied by d K u times Delta that should be exactly equal to 

So, if you cancel out Delta both from the left hand side and right hand side we are left with 

K times u is P that is our familiar equation stiffness times displacement is equal to P now the 

is what we have seen for one dimensional element and in fact even the spring is a 



 

And let us look at the same principle but from a different point of view the principle of 

stationary potential energy. Actually it is it is very easy to imagine that when you have a 

system under equilibrium if you move a little bit the potential energy does not change. I will 

illustrate that a bit later but let us look at the statement of this principle. Say among all 

admissible configurations of a conservative system. 

 

Those that satisfy the equations of equilibrium make the potential energy stationary with 

respect to small admissible variations of displacement. Say the potential energy is a constant 

when we apply some small deformations. Like for example you take it you take some object 

and keep it at some height if you move it a little bit like apply some deformation there is 

some change in the potential energy.  

 

So, that means that this is not a stable thing but then say keep it on a Surface like this and 

move it a little bit to the left or the right and its potential energy is not changing with respect 

to my hand or to the surface on which it is resting. So, we can say that that is the most stable 

system. And so, this mathematically we can pose this problem so, that we can derive some 

useful relations.  

 

So, let us take the same spring K on the gradual apply some displacement of Delta and let us 

say there is a load of P. And the total potential energy is pi is equal to u plus Omega where u 

is the strain energy of the system.  

 



And that we can calculate is the average force because the Delta is starting from 0 to Delta 

during this application of this deformation. So, the average force is K Delta by 2 and that 

multiplied by Delta is your average strain energy.

 

That is one half K Delta Square and then Omega is the loss of potential energy of the external 

load and it is actually I should have had this I will come to this later. 
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Let us say while moving through a distance of Delta the lo

amount of P Delta. So, we can say the Omega is the loss in potential as minus P times Delta 

because by that much it has lost the potential.

 Like for example say if this object is at this height it has got so, much of potential energy but 

if I move it then it has lost that much potential energy to do the work. 

 

So, our total potential is one half K Delta Square minus P Delta right and the pri

that any small disturbance the total potential with respect to Delta should be zero for the 
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So, mathematically we can say that dou Pi by dou Delta is 0 for stationary. 

And so, if you differentiate this we ge

where K is our stiffness Delta is the deformation that is equal to load P. 
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marble here it will just go on rolling and rolling, rolling until it comes to the bottom. And it is 



it is not stable here because it can roll or we can say that as you move it its potential energy is 

changing. 

 

But imagine the same marble at the bottom of this bowl and just move it a little bit now to the 

left or to the right its energy is not changing its potential energy is not changing. So, we can 

say that that is the most stable position for the marble with respect to the to the bowl. 
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And that is what is meant by the statement when we say that among all the admissible 

deformation states those that satisfy the equations of equilibrium make the third the potential 

energy stationary. So, the potential energy if it is if it remains stationary then we can say that 

the system is in equilibrium our stationary.  
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So, we can apply this for all our problems whatever we have come across and let us apply 

that to a multi degree of freedom system let us say we have 2 Springs K 1 and K 2 and 3 

deformations Delta 1 Delta 2 and Delta 3 and the 3 external loads P 1, P 2 and P 3. 
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system that is a the energy in Spring K 1 and energy in Spring K 2. 
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will not be any strain developed in the spring or the force. 

So, we are more interested in the relative deformation and previously we said it is only Delta 

because one end is fixed. So, whatever deformation that you apply to the front end t

relative deformation that is caused in the spring. So, our total potential pi is the potential 

energy in Spring 1 plus spring 2 minus the loss of potential of P 1 P 2 and P 3.

 So, the total potential is one half K 1 Delta 2 minus Delta 1 whol
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Delta 3 minus Delta 2 whole Square minus P 1 Delta 1 minus P 2 Delta 2 minus P 3 Delta 3.  
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So, we take a differential of this pi and if it is 0 then we can say that our system is is a 

stationary or in equilibrium. And so, by differentiating with different degrees of freedom we 



get sufficient number of equations simultaneous equations for solving

unknowns displacements.  

So, dou Pi by dou Delta 1 will give you this and we get the first equation K 1 Delta 1 minus 

K 1 Delta 2 is P 1 right.  

It is actually this is a similar to what we had seen earlier we applied unit deformations an

then tried to find the corresponding forces. So, if I apply unit deformation at Delta 1 force 

will be developed at this node or at this degree of freedom and at this degree of freedom the 

force is not developed at this degree of freedom because it is not

we see here Delta 3 is not in this equation.

(Refer Slide Time: 14:38) 

And then when we differentiate this with respect to Delta 2 we get an equation in terms of all 

the 3 degrees of freedom Delta 1 Delta 2 and Delta 3 that is because the Delta 2 is connected 

to both Delta 3 and the delta 1.  

So, if you apply some deformati
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then tried to find the corresponding forces. So, if I apply unit deformation at Delta 1 force 

will be developed at this node or at this degree of freedom and at this degree of freedom the 

force is not developed at this degree of freedom because it is not connected. So, that is what 

we see here Delta 3 is not in this equation. 

 

And then when we differentiate this with respect to Delta 2 we get an equation in terms of all 

the 3 degrees of freedom Delta 1 Delta 2 and Delta 3 that is because the Delta 2 is connected 

So, if you apply some deformation Delta 2 there will be a force developed in this at this 

degree of freedom and this degree of freedom and also at this same at its own degree of 

for our nodal 

So, dou Pi by dou Delta 1 will give you this and we get the first equation K 1 Delta 1 minus 

It is actually this is a similar to what we had seen earlier we applied unit deformations and 
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connected. So, that is what 

And then when we differentiate this with respect to Delta 2 we get an equation in terms of all 

the 3 degrees of freedom Delta 1 Delta 2 and Delta 3 that is because the Delta 2 is connected 

 

on Delta 2 there will be a force developed in this at this 

degree of freedom and this degree of freedom and also at this same at its own degree of 



 

And so, that is minus K 1 Delta 1 plus K 1 plus K 2 Delta 2 minus K 2 Delta 3. 

And similarly if you differentiate with respect to Delta 3 we get only in terms of Delta 2 and 

Delta 3 because Delta 3 is not connected to Delta 1 right. 

So, if you express these 3 equations in the form of Matrix you will get like this K 1 minus K 

1 0 minus K 1 K 1 plus K 2 minus K 2 0 minus K 2 K 2 Delta 1 Delta 2 Delta 3 that is equal 

to P 1 P 2 and P 3 right. 

 

And we see this assembled stiffness Matrix is symmetric because the upper diagonal terms 

are equal to the lower diagonal terms and then it is banded it is actually there is a zero here 

there is a zero here. So, we have a small band around which we have non

same equation we have seen earlier even when we derived these equilibrium equations by 

using the fundamental definition for the stiffness. 
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So, let us slightly modify this and let us apply some deformation di

condition.  

So, actually this equation it is not obvious but the the

is zero. So, I will not be able to solve for the deformations as Delta is equal to K inverse P 

because your determinant is zero. And so, we need to apply some boundary condition.

 

And for that we have seen 2 method

spring method.  
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And let us say that let us not bother about applying the boundary conditions but right now 

itself let us say you want to apply some constraint that this par

Delta 1 is 0. Then the potential energy in K 1 will be one half K 1 Delta 2 square because 

Delta 2 itself is the is the relative deformation. So, if not let us say if it is not 0 but let us say 

some point one or something.  
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Delta 1 because it is not a variable anymore it is a fixed value at 0 or 0.1 or something. 
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Then the energy in Spring 2 is one half K 2 Delta 3 minus Delta to whole

once again we can differentiate this with respect to different degrees of freedom. 

And so, our Del dou Pi by dou

actually P 1 Delta 1 you can set it to zero because it is it is known quantity and so our dou Pi 

by dou Delta 2. 

And then dou Pi by dou Delta 3 will give us some other equation and now we get only a 2 by 

2 equation in terms of Delta 2 and Delta 3 and P 2 and P 3. 

And this Matrix has got an inverse because its determinant is not 0. And so, directly we were 

able to get our equilibrium equations without needing to modify the equations for a fixed 

degree of freedom. 
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Then the energy in Spring 2 is one half K 2 Delta 3 minus Delta to whole Square. And so 

once again we can differentiate this with respect to different degrees of freedom. 
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And now let us apply this principle to 2 dimensional bar element. 

Let us consider a bar element with the 2 notes node 1 and node 2 and the deformations are u 1 

v 1 u 2 v 2 and then the forces are P x 1 P y 1 P x 2 P y 2 and the axial deformation is u 2 

minus u 1 times cosine Alpha plus v 2 minus v 1 sine Alpha and Delta 

thing and our potential equation for the system Pi can be one half K Delta Square minus P x 1 

u 1 P y 1 V 1 minus P x 2 u 2 minus P by 2 V 2 right. 

 

And so, with the with respect to different degrees of freedom u 1 v 1 u 2 v 2 we ca

differentiate and set it to zero and we will get our equilibrium equations. 
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So, our dou Pi by dou u 1 will give you this equation is actually this and then if you sum if 

we simplify it we will get like this.

 

 And then similarly dou Pi by dou v 1 will give you this equation. 
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And by taking derivatives with respect to u 2 and v 2 we get 2 more equations. 

 

So, our dou Pi by dou u 1 will give you this equation is actually this and then if you sum if 

we simplify it we will get like this. 

And then similarly dou Pi by dou v 1 will give you this equation.  

 

And by taking derivatives with respect to u 2 and v 2 we get 2 more equations.  

So, our dou Pi by dou u 1 will give you this equation is actually this and then if you sum if 

 

 



And then once you assemble all the equilibrium equations you will get an equation a matrix 

that is very similar to what we had seen earlier.  

 

 

By doing the Lambda transpose K Lambda we got this or by directly applying the degree of 

the unit deformations in the global coordinates we got similar Matrix. So, this K multiplied 

by u is equal to 3.  

 

And we can actually it is a it is a general procedure that we can apply for any problem but 

only thing is if we do like this we have to do hand calculations we cannot use any of our 

Matrix methods. 
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But anyway let us apply this for some problems so, that we can we can do the we can go 

through the hand calculations and understand it better. And let us apply this stationary 

potential energy method to the truss problem that we had solved in lecture number four and 

we will see 2 cases the first one is for the same data that was given and the second one is 

along with some settlement on the right side right hand side support. 
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This was the structure that was given it has a 3 nodes node one node 2 node 3 and the 3 

elements one 2 and 3 and element one is connect

connected between nodes 2 and 3 and element 3 is connected between nodes 1 and 3. And the 

direction of the element is from node 1 to node 2. 

So, we get this Alpha and these are the coordinates node 1 is at origin zero zero node 2 is at 

2.5 and 4.333 x is equal to 5 and y is 0. 

 

And for these are 3 elements we have 3 different Alphas depending on their orientation and 

then we have this cosine Alpha and sine Alpha. And unlike in the previous case let us not 

number the fixed degrees of freedom let us assign 0 to the to the fixed degrees of freedom at 
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So, we get this Alpha and these are the coordinates node 1 is at origin zero zero node 2 is at 

And for these are 3 elements we have 3 different Alphas depending on their orientation and 

lpha and sine Alpha. And unlike in the previous case let us not 

number the fixed degrees of freedom let us assign 0 to the to the fixed degrees of freedom at 



node 1 both x and y direction displacements are constrained so 0 0. At node 2 we have the 

degrees of freedom 1 and 2 let us call them as d 1 and d 2 node 3 the degree of freedom along 

the x axis is free; that is active degree of freedom d 3. 

 

And then let us say that along y axis it is fixed zero because it is on roller and so, the 

connected degrees of freedom or like this 1 2 1 2 3 0 0 3 0 and so on.  
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And we have deleted all the fixed degrees of freedom and the numbered only the active 

degrees of freedom those are free to deform either in the x-axis or along the y-axis. So, we 

have totally 3 active degrees of freedom and the alpha for each element is obtained based on 

the node numbering scheme that we have adopted.  

 

And energy for the entire structure can be evaluated in terms of our Delta axial deformation u 

2 minus u 1 cosine Alpha plus v 2 minus v 1 sine Alpha this is the generic equation. 

 

And the particular for each of these elements we can get your relative deformation Delta. And 

so, for element 1 it is connected between node 2 and the node 1 and node 2 it is it has 3 

degrees of freedom d 1 and d 2 whereas node 1 is fixed server Delta 1 is d 1 minus 0 times 

cosine Alpha that is x direction displacement is d 1 times cosine alpha y direction 

displacement v 2 is a is d 2 times sine Alpha and cosine Alpha is a 0.5 and the sine Alpha is 

0.866 for element 1. 



 

 

So, Delta 1 is this and our Delta 2 is actually connected between node 2 and the node 3. and 

the node one is a node 2 and node 2 is a 3 and at node 3 we have d 3 along x axis and along y 

axis it is fixed zero server Delta 2 the relative deformation in element 2 is d 3 minus d 1 the 

times cosine Alpha that is the relative x direction displacement plus 0 minus d 2 sine Alpha 

that is the 0 is the displacement at node 3 in the y direction data is the y direction 

displacement at node 2 sine Alpha. 

 

And it just so, happens that sine Alpha is minus 0.866 for this element 2. So, this is the the 

relative displacement in element 2 and Delta 3 is a d 3 minus 0 because the left hand side is 

fixed. So, d 3 times cosine Alpha that is simply d 3 because Alpha is 0 for this horizontal 

element.  

(Refer Slide Time: 26:58) 

 

And so, our total potential is one half K Delta 1 square plus one half K Delta 2 squared plus 

one half K Delta 3 Square minus a load of 100 applied at in x direction at node 2 the 

deformation is d 1. So, this is your total potential.  

 



The total potential is this and now we can take derivatives with respect to d 1 d 2 and d 3. So, 

if you take a difference if you differentiate y with respect to d 1 you get this 0.5 K d 1 minus 

0.25 KD 3 is 0 and it is a hundred. 

 

And similarly differentiation with respect to d 2 we have this equation and then 

differentiation with respect to d 3 we will get one more equation.  

 

So, these are the 3 equilibrium equations that we have and we can assemble them or we can 

just put them in a matrix form like this.  
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So, K is a 10000.50 minus 0.25 d 1 d 2 d 3 is 100 and then that is actually see this is 0.5 times 

10000 is 5000 minus 2500 now because 0.25 and the K is a 10000 and so on. So, it is and 



once you get this the solution is a is very simple. And in fact if you see this is the same 

equation that we got earlier in lecture number four by deleting rows and Columns of 1 2 and 

6. Because these 3 degrees of freedom are fixed and by deleting those corresponding rows 

and columns we were left with this. And we can invert this Matrix and get our d 1 d 2 d 3 that 

was what was done in lecture 4. 
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And now let us consider the influence of settlement at right hand support see the supported 3 

it is calculated that it will settle down by 50 millimeters this deformation in vertical direction 

is minus .05 is the same data.  
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And so, this was the assembled stiffness Matrix and then the load Vector for that structure. 

We had done this by hand calculations and this is what we have a six by six Matrix. 
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Then out of this our the first and second degrees of freedom are fixed. So, we can delete the 

first row second row first column second column and keep the keep the last one because the 

sixth row because we need that to apply a displacement of minus 0.05. So, in u 4 that is in the 

degree of freedom a y direction degree of freedom at node 3 we want to apply a displacement 

of minus 0.05.  

So, here we know this stiffness coefficient and that stiffness coefficient multiplied by this u 4 

is a known quantity. So, we can send it to the right hand side this 10000 times 0.433 times 

minus 0.05 and you send it to the right hand side you will get and

load of 100 you add it. Then in the second row also we have this quantity and minus and 

minus is positive on this left hand side when it goes to the right side we get a minus minus 

375. 

And then the third row also the same thing

is a trivial row trivial equation because u 4 is a minus point zero for nothing else. And by 

 

Then out of this our the first and second degrees of freedom are fixed. So, we can delete the 

first row second row first column second column and keep the keep the last one because the 

ed that to apply a displacement of minus 0.05. So, in u 4 that is in the 

degree of freedom a y direction degree of freedom at node 3 we want to apply a displacement 

So, here we know this stiffness coefficient and that stiffness coefficient multiplied by this u 4 

is a known quantity. So, we can send it to the right hand side this 10000 times 0.433 times 

minus 0.05 and you send it to the right hand side you will get and since you already have a 

load of 100 you add it. Then in the second row also we have this quantity and minus and 

minus is positive on this left hand side when it goes to the right side we get a minus minus 

And then the third row also the same thing minus 216.5 and then the fourth row is actually it 

is a trivial row trivial equation because u 4 is a minus point zero for nothing else. And by 

Then out of this our the first and second degrees of freedom are fixed. So, we can delete the 

first row second row first column second column and keep the keep the last one because the 

ed that to apply a displacement of minus 0.05. So, in u 4 that is in the 

degree of freedom a y direction degree of freedom at node 3 we want to apply a displacement 

 

So, here we know this stiffness coefficient and that stiffness coefficient multiplied by this u 4 

is a known quantity. So, we can send it to the right hand side this 10000 times 0.433 times 

since you already have a 

load of 100 you add it. Then in the second row also we have this quantity and minus and 

minus is positive on this left hand side when it goes to the right side we get a minus minus 

 

minus 216.5 and then the fourth row is actually it 

is a trivial row trivial equation because u 4 is a minus point zero for nothing else. And by 



solving this we get the u 1 of 0.0657 and u 2 is minus 0.0264 and u 3 is 0.005 and u 4 is 

minus 0.05 that is what was applied. 
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 And we can do the same problem by defining our relative displacements and we are saying 

that on the right hand side the support settles by an amount of 0.05 meters or 50 millimeters. 

So, Delta 1 is for the element one connected between node 1 and node 2.  

 

And there is no change in this. So, it is the same and Delta 2 d 3 minus d 1 is the relative 

deformation in the x axis along the x axis multiplied by cosine Alpha. 

 

And then at node 3 the displacement is minus 0.05 and at node 2 it is d 2. So, this is our 

relative deformation multiplied by sine Alpha and sine Alpha is minus 0.866. So, if you 

substitute that you get this. And in fact the relative deformation is d 2 plus 0.05 because we 

are taking the unknown displacements initial in the positive direction d 2 is in the along the 

positive y direction whereas the 0.05 is in the negative y direction. So, the relative 

deformation is d 2 plus 0.05. 

 

And Delta 3 the relative deformation in the in the elementary that is on the horizontal element 

is just simply d 3 cosine Alpha because it is coinciding with the x axis and there is no effect 

of settlement on element 3 and element 1 because they are not directly connected. And 



element 3 it is connected but then it is a horizontal element whereas the settlement is in the in 

the vertical direction.  

 

So, now once you have this Delta 1 Delta 2 Delta 3 we can form our total potential energy 

equation and then take differentiation with respect to Delta 1 Delta 2 and Delta 3 and get our 

equilibrium equations.  
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So, let us see that Phi is a u plus Omega and Delta 1 Delta 2 Delta 3 we have we have already 

seen that and actually I think there is a small mistake I think I made a mistake here yeah now 

it is got I forgot to do the square for the entire thing plus d 3 Square this is correct. And now 

we can differentiate this with respect to d 1 d 2 and d 3 and you get a messy equation but then 

you have to do it by pen and paper method so, that you can get it correctly. 

 

And I have done that I have got 3 equations equation 1, 2 and 3 by differentiation and then by 

by simplification we get these 3 equations and then in a matrix form. 
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These are the equations d 1 d 2 d 3 and this is exactly same as what we had earlier. So, it is 

uh. So, we see that even by this stationary potential energy method we could apply a known 

displacement and then get our governing equations and if you solve it if you solve this system 

you will get the same displacements that we got earlier.  
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So, here is the tablet and the nodal displacements. This is x direction displacement and y 

direction displacement this is without right hand side support settlement whereas this is the 

settlement of 50 mm. 
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And if you graphically look at it; this red lines now the original mesh they represent the 

original motion then this green lines are they are the deformed mesh. And you see this 

actually it has undergone the structure as undergone a rigid body rotation that is because our 

node one is a fixed and hinged. So, you can actually rotate the whole thing and the right hand 

side is settled by 50 millimeter. So, the entire structure is rotated. 

 

It is actually it has undergone a rigid body deformation. So, that means that the effect of 

settlements is not there. Then these elements will not develop any additional force because of 

the settlement of the right hand side support. So, whatever forces that we calculated earlier 

that is a tension 100 compression 100 tension 50 they will still be the same. That I am not 

doing here but if you use these displacements and calculate the element forces.  

 

So, you will get the same forces that you got earlier. So, I think that is the last slide. So, I 

think that is the end of this lecture and if you have any questions please send an email to 

profkrg@gmail.com. And what I suggest is please take a pen and paper and go through this 

entire this differentiation because it is a bit messy and when you see it on the screen it might 

seem bewildering it might seem complicated. 

 

But then it is so, simple it is a simple differentiation with respect to different quantities d 1 d 

2 d 3. We do it by hand on pen and paper then you will easily understand. So, that is the thing 

and then we will continue further with other mathematical methods that are applicable for our 

equilibrium equations. So, thank you very much. 


