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Lecture: 5 

Development of Equilibrium Equations for Beam Elements  
 

Hello students and let us continue from the previous lecture where we looked at a 2-

dimensional bar element. We had developed its equilibrium equations then we have also seen 

how to apply the constraints on the system to prevent the rigid body deformations. And let us 

continue for higher order elements in today's class. 

(Refer Slide Time: 00:48) 

 

And before that let us do one more thing with the bar elements let us derive the stiffness 

coefficients directly by applying the unit displacements in the global directions directly. As 

previously we had looked at the local coordinate system where we defined 2 displacements 

one is axial and the other is shear.  

(Refer Slide Time: 01:19) 



 

And let us look at another method for deriving the the stiffness coefficients let us take the 

same 2 node bar element and there are 4 displacements ux1 u y 1 u x 2 u y y 2 this is Node 1 

and that is node 2 and let us say that there is an alpha here. And let us now apply the 

displacements directly in the global directions and then measure the forces developed in the 

respective directions. So, in that context let us apply unit displacement at node 1 in the x 

direction that is u 1 is 1 while all the other displacements are constrained.  

 

So, we are setting v 1 to 0 v 2 0 u 2 to 0 and if you apply a unit deformation the x direction 

the change in the length Delta L is cosine Alpha and then the axial force developed is the 

stiffness multiplied by the change in the length K times Delta l and that is K times cosine 

Alpha and this K is AE by L and that is the axial force developed. And now we can resolve 

this this axial force into x direction and y direction.  

 



 

So, the force in the x direction that is the force at Node 1 in the x direction is by definition K 

11 because we applied a unit deformation in the degree of freedom 1 and then we are 

measuring the force in the same direction and that K times cosine Alpha result to x direction 

is K times cosine Square Alpha right. And then if you resolve this force in the vertical 

direction these axial force multiplied by sine Alpha and that will be K 21 because the force 

developed in direction 2 because of a unit displacement in direction one right.  

 

So, P times sine Alpha that is K times cosine Alpha sine Alpha and then the force is 

developed at node 2 degrees of freedom 3 and 4 should be equal and opposite. So, we say that 

K 31 that is the force developed in degree of freedom 3 because of a unit displacement and 

degree of freedom 1 is - K 11 similarly K 41 is - K 21 right. 

(Refer Slide Time: 04:06) 

 

And similarly we can apply a unit displacement in the y direction at node 1 that is v 1 is 1 

while we constrain all other displacements u 1 to 0 u 2 and v 2 to 0. And this unit 

deformation will change at the length of the element by sine Alpha right. So, the force 

developed the axial force developed is K times sine Alpha and if we resolve the force in the x 

direction is K 12 because the force developed in direction one because of a unit displacement 

in 2 that is p sine Alpha times cosine Alpha.  



 

 

So, K times cosine Alpha sine Alpha is your now K 12 and the vertical component this 

vertical direction that is K 22 is a p times sine Alpha that is K times sine Square Alpha. Then 

the coefficients are the other node will be negative because we need to maintain the 

equilibrium they should be equal and opposite. So, K 32 is - K 12 and K 42 is - K 22 right 

and similarly we can apply unit deformations in the other degrees of freedom and measure 

the forces. 

 

And we see that all these coefficients K cosine Square Alpha K sine Square Alpha K cosine 

Alpha sine Alpha and all these things they are exactly the same as what we had derived 

earlier and this is another way of deriving this stiffness coefficients directly by using the 

definition.  
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So, these bar elements we call them as a C naught type elements that they are formulated in 

terms of only the displacements at the nodal degrees of freedom and so, they are called as a C 

naught. But next we are going to look at the beam elements which are flexion flexural 

elements that have an axial force then Shear force. And then rotational degree of freedom and 

the corresponding moment capacity also it has down.  

 

So, this beam element is called as a C 1 element because the nodal variables are both the 

displacements and then the rotation, rotation is the first order derivative of the displacements. 

So, it is; so, the beam element is called as C 1 and there are some higher order elements the 

shell elements where the nodal degrees of freedom are displacements first derivative of the 

displacements and then the second derivative of the displacement that is the curvature and 

these are called as C 2 elements. 

 

But for geotechnical engineering we will be mostly concerned with C naught all our soils are 

formulated in terms of only the displacements. And then we do have beam elements because 

we need to use them for Sheet piles and other type of support structural elements they will 

not come across C 2 type elements.  
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So, now let us move on to higher order elements that is the flexural element and the beam 

element with 6 degrees of freedom. Previously we had a bar element that has 4 degrees of 

freedom and this beam element has 6 degrees of freedom and letters initially consider only 

the element coordinate system that is our axial displacements under the shear displacements 

are defined with respect to the direction of the element.  

 

So, we have at node 1, 3 degrees of freedom axial displacement u 1 Shear displacement v 1 

and then a rotation theta 1 then the corresponding axial force P 1 Shear force F 1 and then a 

moment m 1. Similarly at node 2 we have u 2 v 2 and Theta 2 and the corresponding force is 

P 2 F 2 and m 2 right. And so, there are totally 6 degrees of freedom as shown here and the 

correspondingly 6 forces axial shear and moments and we assume that the axial. 

 

And then the other forces the shear and moment are decoupled that is if you apply any axial 

deformation you will generate only the axial forces and they will not be any Shear force and 

the moment. And similarly if you apply any Shear deformation or rotation you will not 

produce any axial forces that is an assumption and it is a true if you are order of 

displacements are very very small. 



 

Where you do not change the length by applying some Shear deformation and the shear 

deformations will cause only the shear forces but also the moments. Because now we are 

dealing with the flexural elements under any Shear deformation will be associated with some 

rotation then corresponding the moments of sort developed. And similarly if you apply any 

rotation it will not only develop some moment but also the shear force right. 

 

And once again we can derive the stiffness coefficients by systematic application of the unit 

displacements in different directions. And initially we are going to define the stiffness 

coefficients in the local direction and then we will think of converting this into some Global 

coordinate system. 

(Refer Slide Time: 10:38) 

 

And to help us in developing our stiffness coefficients we need to know some fundamental 

results and I hope all of you know that if you have a cantilever beam subjected to some tip 

load and a tip moment. The resulting deformations under the tip load are P L 3 by 3E I and 

ml Square by 2 E I and the rotations are P L Square by 2 E I and Theta is ml by E I and we 

can use these equations to derive our stiffness coefficients. 



 

(Refer Slide Time: 11:19) 

 

So, the application of axial deformations u 1 and u 2 and u 2 they will produce only the axial 

forces and all the other coefficients related to axial force the shear and rotational forces they 

are all zero K 11 and K 44 are AE by L K 14 and K 41 are - AE by L. The same thing as what 

we had seen with the bar elements. 



 

(Refer Slide Time: 11:52) 

 

And now let us apply unit deformations in the shear and then the rotational degrees of 

freedom and see what happens. And let us take a node one and apply a unit deformation v 1 

of 1 the shear definition of one and that will produce some force K 22 that is the shear force 

developed at node one and then the rotational force at the moment in a developed at node 1 

that is K 32 because v 1 is actually the second degree of freedom. 

 

And similarly there will be 2 more forces developed at the other end that is K 52 that is the 

force developed in degree of freedom 5 because of unit displacement and degree of freedom 



2 and k62 will be moment developed at node 2 while we set Theta 1 to 0 and then v 2 and 

Theta 2 0 at the other end. So, now our Shear displacement at node 1 could be because of 

Shear force K 22 at the moment K 32 and v 1 is 1 and that we can equate to the 

displacements from both the shear force K 22 and then the Moment K 32 like this K 22 L 

Cube by 3 I – K 32 L Square by 2 E I got the flexural stiffness tries to resist the the 

deformation so, we have a - here. 

 

And then similarly our we have one more equation theta 1 is 0 that is K 22 L Square by 2 E I 

- K 3 2 L by E I and that is equal to 0. And so, we get a relation between K 32 and K 22 like 

this and we have 4 unknowns or 4 coefficients to be determined K 22 K 32 K 52 K 62 and v 1 

of 1 and Theta 1 of 0 we got 2 equations and we need the 2 more equations and that we can 

get from our equilibrium equation the net force is zero net vertical force is zero and net 

moment is 0 around any point.  

 

So, the sigma of vertical force is zero means that K 22 + K 52 is 0. So, K 52 is - of K 22 and 

similarly the moments about any point are 0 and let us consider the moment about this is 0.2 

that will be K 32 + K 62 - K 22 times L where L is the length of the element that is equal to 

0. And now we have 4 equations v 1 is 0 Theta 1 is 0. Sigma of vertical forces is 0 and then 

the net moment is zero.  



 

And by solving these 4 equations we get these 4 coefficients K 22 K 32 K Phi 2 K 62 right 

and actually you may know these terms 12 E I by L Cube 6 E I by L square and then we will 

also see Fourier by L later on these are all the same coefficients that you come across in our 

room moment distribution method and then the flexural sorry the the flexibility method and 

so on.  
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And now let us Supply a unit rotation at node one while we constrain all the other degrees of 

freedom so our Theta 1 is 1 and v 1 is 0 v 2 and Theta 2 are 0. and Theta 1 is the third degree 

of freedom. So, the moment developed at this node is K 33 and the shear first developed that 

this node is K 23 and the shear force developed at node 2 is K 53 and then the rotate in the 

moment is K 63. And so, we can do a similar exercise Theta 1 is 1 at node 1 and that is 

because of your moment and then the tip force K 33 L by E I - K 23 L Square by 2E I. 



 

These are the equations that we had seen earlier for the cantilever beam and v 1 is zero. So, 

that is a K 33 l Square by 2 E I 

between K 33 and the K 23 and then we can find the other coefficients by using 2 more 

equations the net vertical force is zero. So, that is K 23 + K Phi 3 is 0. Then the net moment 

about any point like either this point 

So, K 33 + K 63 - K 23 times L and by solving these 4 equations we get these 4 coefficients 

oh sorry yeah K 23 K 33 K 53 and K 63.

(Refer Slide Time: 18:09) 

These are the equations that we had seen earlier for the cantilever beam and v 1 is zero. So, 

that is a K 33 l Square by 2 E I – K 23 L cube by 3I and that will give us some relation 

between K 33 and the K 23 and then we can find the other coefficients by using 2 more 

equations the net vertical force is zero. So, that is K 23 + K Phi 3 is 0. Then the net moment 

about any point like either this point at that point is zero.  

 

K 23 times L and by solving these 4 equations we get these 4 coefficients 

oh sorry yeah K 23 K 33 K 53 and K 63. 

 

These are the equations that we had seen earlier for the cantilever beam and v 1 is zero. So, 

and that will give us some relation 

between K 33 and the K 23 and then we can find the other coefficients by using 2 more 

equations the net vertical force is zero. So, that is K 23 + K Phi 3 is 0. Then the net moment 

 

K 23 times L and by solving these 4 equations we get these 4 coefficients 



 

And similarly we can apply unit deformation and unit rotation at the other node at node 2 and 

then get these coefficients. 

(Refer Slide Time: 18:22) 

 

And now we can solve or we can assemble all the equations and write equilibrium equations 

at the at the element level in terms of the forces P 1 v 1 M 1 P 2 v 2 m 2 and then the reaction 

forces right.  
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So, that will be like this now the axial forces they are not affected by deformation or the 

rotation. And similarly if you apply any rotation you will not develop any axial force. So, this 

is the set of equilibrium equations for the beam element in its own local coordinates. 
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And let us do a small problem let us take a fixed and cantilever beam with the tip load and let 

us neglect axial deformation axial forces and axial deformations u 1 and u 2 we are not 

considering P 1 and P 2 also we are not considering. So, as the left side is completely fixed 

and axial deformations are neglected the degrees of freedom corresponding to these fixed 

degrees of freedom can be eliminated.  

 

So, this one 2 3 4 equations can be can be deleted then we are only left with only 2 active 

degrees of freedom that is v 2 and Theta 2 that is a degrees of freedom 5 and 6 right. So, this 

is our equilibrium equation that we have and we can solve this by inversion. And so, v 2 is – 

P L cube by 3E I and Theta 2 is - PL Square by 2 E I these are our familiar equation that we 

already know and we just got back the same thing whatever we already know by applying the 

equilibrium equations that we have derived. 
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So, now this problem a little bit and let us assume that now we have supported the node 2 on 

a spring maybe that could correspond to the support that we get from the soil from some 

other member and now we want to solve this problem. So, it is actually it is a statical 

indeterminate problem right because we do not know what is the compression and if you 

know the compression you can find the force right. 

 

It is actually it is a interaction problem it is not straightforward that you can solve but say if 

your spring is rigid that it will not deform then we can then we can use that as an additional 

equation and then find the solution that we have. It is basically it is a statical indeterminate 

problem it is a typical soil structure interaction problem. Structure is consisting of 3 nodes 

node 1 node 2 and node 3 and it consists of one beam element between Node 1 and node 2. 

 

Then one spring element node 3 under node 2 and our spring element is like our uniaxial bar 

element right and the beam element is connected between Node 1 and node 2 and the string 

element between nodes 2 and 3. And we have the corresponding the degrees of freedom at 



node 1 u 1 v 1 Theta 1 at node 2 u 2 v 2 Theta 2 node 3 u 3 and v 3 out of this node 1 is fixed. 

So, u 1 v 1 Theta 1 of 0 then we are neglecting the axial deformation.  

 

So, u 2 is 0 then node 3 is fixed u 3 and v 3 are 0 right. So, let us say that our spring stiffness 

is KS and since we are working with the local coordinate system we can directly write the 

equations for the beam element then the spring is in the direction of the shear force at node 2. 

So, we can directly add the contribution of the spring to the to the shear force component at 

node 2 right.  
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So, we can directly add this K s to v 2 or F 2 and then we have F 3 is K s and then the 

interaction terms are – K s and – K s. So, actually basically this is our equilibrium equation 

the stiffness coefficient that we derived earlier for the beam element then we have added the 

contribution from the spring right and this is the combined equilibrium equation for the entire 

structure consisting of a beam and then a spring. 



 

And in this the degrees of freedom 1 2 3 4 and then and then 5 6 sorry the 7 and 8 are fixed. 

So, these rows and columns can be deleted. 
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And we are left with only 2 degrees of freedom v 2 and Theta 2. here this is our stiffness 

Matrix and by inverting it we can get our v 2 and Theta 2 like this it is basically it is the same 

equation that we had earlier except our K s is there and then the denominator we have some 

other this function. Where K s is your spring stiffness and because of the spring stiffness we 

can expect a smaller deflection at the tip. 



 

And then a smaller rotation and then the even the shear force in the beam section will be 

smaller and then the end moment also will be smaller. And the force developed in the spring 

is v 2 times K s and then the shear force in the beam previously it was just simply - P because 

there is only some tip load but now because we have some reaction force in the spring that is 

F s.  

 

So, the shear force is - P + F s which is obviously lesser than the shear force in the cantilever 

beam right let us give some numerical values to appreciate the effect of spring stiffness. Then 

bending moment correspondingly bending moment in the in the beam section also will 

reduce.  
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So, let us look at the numerical example let us take a beam of length 10 meters and let the 

loading at the tip be 100 and the Young's modulus and then I the section moment of inertia of 

this section and then the cross sectional area I have just arbitrarily given some values and the 



deflection of the cantilever beam is just simply PL cube by 3E I. So, if you substitute all the 

numbers you will get 0.00158 and in some units and the same units as your material 

properties.  

 

And now let us add a boundary spring having a stiffness of 10000 kilo Newton per meter 

right some number that that I have just given and now let us see what is the effect of this 

boundary spring. And our Delta we have derived this equation earlier. So, if you substitute all 

the members you will get .00136. Previously our deflection was 0.10058 and because of the 

spring stiffness it is slightly reduced 0.00136. 

 

And then the spring force is a 10000 times 0.00136 that is 13.6 and then the net Shear force is 

86.4 actually I'm not looking at the sign conversion of just I have calculated only the 

numerical value see previously our Shear force and the beam section was 100 that is 

corresponding to the tip load but now because of this reaction force from the spring it is only 

86.4 and then the end moment is going to be 86.4 times 10 that is 864.  

 

And the cantilever beam with the tip load the end moment was 1000. So, there is a significant 

reduction in the in the moment. And now you might ask what is the effect of this boundary 

spring whether the spring stiffness and then the spring force they are directly proportional to 

each other. They may not be because it is actually it is an interaction between the soil and 

then the structure right.  

 

So, we cannot separately look at the contribution of either the spring or the beam. Now we 

are combining both of these and let us say let us write this by taking some other boundary 



spring stiffness. Let us take now a stiffness of 1000 previously it was 10000 now it is only 

one thousand and our trip displacement is 0.00156 very close to 158 and then the spring force 

is 1.56. So, it is not proportional.  

 

So, you see when our spring stiffness was ten thousand the spring force was 13.6 and I 

reduced the the boundary spring stiffness by 10 times and if there is a proportionality and the 

spring force should have been 1.36 but now we get a spring force of 1.56. Actually that 

depends on also this the structure like let us say you are Young's modulus of the beam is very 

low then the spring has to has to take a higher and larger part. 

 

Then obviously the compression in the spring will be more and then your corresponding force 

will be more will be higher and that is why we call this type of problems as soil structure 

interaction problems because the response depends not only on the soil but also on the 

structure. So, this is just a small illustration of our beam and then the spring element that we 

derived earlier. 

 

And we also see that by considering the support from the soil our forces that are developed in 

the in the beam section are reduced not only the shear but also the the bending moment.  
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And so, now let us look at the beam element equilibrium equations in global coordinates. So, 

we can use the same transformation matrix Lambda transpose K Lambda that we had derived 

earlier for the bar element because there we had the 2 displacements u and v 1 at each node. 



Now we have one rotational degree of freedom Theta one and this Theta 1 is actually in the x 

y coordinate in the in the plane of the x y x y plane.  

 

So, even if you rotate to x Prime y Prime is Theta will remain the same because it is about a 

point about an axis that is a perpendicular to this plane; plane of analysis. So, our 

transformation matrix will have only one for the Theta. So, the Lambda for this beam element 

will be a 6 by 6 Matrix the transmission Matrix or the of the direction cosine Matrix because 

the cosine Alpha sine Alpha terms then for the rotation we have unit value 1. 

 

So, by going through this orthogonal transformation we can get the stiffness Matrix of the 

beam element and the global coordinates.  
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So, what are the or where what are the applications for the spring element and then the bar 

elements that we have developed. So, if the spring elements typically we can use them in the 

soil structure interaction analysis as Winkler Springs. And then node to node element for the 

free length portion of the of the tie rod in soil nail walls or the pre-stressed grouted anchors 

and then thyroids and anchored sheet piles then strut supports in deep excavation are the 

fixed and anchors of the sheet pile walls. 

 

Or we can use these bar elements as geosynthetic reinforcement layers or members in the in a 

trust structure that we had seen the example earlier in the lecture 4. So, these are some of the 

applications for bar and spring element. Spring element is actually it is a it is a one-

dimensional element whereas bar is a is a 2 dimensional element both are essentially the 

same both have both can support only the axial forces. 
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And what are the applications for the beam elements? See when we are dealing with any 

combined footing in Foundation Engineering we can represent the combined footing using a 

beam element right then we can represent the sheet pile walls with the beam element. The 

facing elements in retaining walls is actually any element that has some flexural stiffness can 

be represented by the beam elements. 

 

Beams and columns in a frame it building and the dark from walls in our deep x equations 

and so, these we will see lot of applications for spring elements bar elements and the beam 

elements when we go for analysis of any soil structure like say any retaining wall that is 

supported by some anchors or some crops. And that type of structures requires apart from the 

modelling of the soil we require some extra elements for sheet pile walls or for thyroids and 

so on.  
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We will see some examples later on. Now let us do one thing slightly different see previously 

I had referred to the soil structure interaction and the one property that we require for this soil 

structure interaction analysis is the Winkler spring Winkler spring modulus. And that string 

modulus can be obtained from our plate load test plate load test is a very common test that we 

perform in geotechnical engineering.  

 

So, here we have a photograph here is a plate and some pressure is applied then we measure 

the deformation and we plot a graph between the pressure and then the settlement of the plate 

and we get a graph like this and then the initial slope is taken as this the coefficient of 

subgrade reaction of the soil and this K s is the slope that is the Delta q by Delta the pressure 

divided by the by the deformation. 

 

And the units for the K s that is the coefficient of subgrade reaction or the force per L Cube 

units that is kilo Newton per cubic meter units and this is a simple test that we perform for 

getting our coefficient of subgrade reaction. And so, if we do not perform this test there are 

other methods for getting it from our allowable bearing pressure and then the allowable 

settlement also we can estimate this coefficient of subgrade reaction. 
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And let us do a small problem. Let us take a combined footing of 8 meters length and then 

there are 3 column loads column one column 2 column 3; 300 600 and 300 kilonewtons and 

then it is the combined footing is of thickness 300 millimeters. And then the width in the 

outer plane direction is one meter and let us say that the footing is made of M40 grade 

concrete. And we are asked to estimate the maximum bending moment in the beam section 

both by the rigid analysis and soil structure interaction. 

 

 

By rigid analysis what I mean is the analysis not considering the soil or in other words we 

consider the footing as an extremely rigid object that whatever may be the soil that you have 

the soil becomes flexible. So, the unit pressure at the foundation level is the total load divided 

by divided by the by the plan area and I have not considered the self weight of the footing 

because it gets compensated when we calculate our Shear force and bending moment.  

 



So, for soil structure interaction analysis we do not consider any sulfate only when it comes 

to the settlements we require the self rate. So, let us calculate the bendi

section without considering the soil structure interaction. So, the bearing pressure on the soil 

is 150 kPa and then the maximum bending moment at the mid length is 150 times 4 times 4 

by 2 times 11 is the unit width in the perpendicular 

to 300 kilo Newton meter per meter.

Per meter means in the perpendicular direction we are considering the unit length and then 

the bending moment below the 2 extreme column 2 outer columns is 75 kilo Newton meter

and the Young's modulus is approximately 5000 times square root of fck and our that is the 

compressive strength of the concrete that is a that is a 40. So, that is 31622.78 mPa right and 

the moment of inertia for this section is 112 BD Cube that is a 2.25

meters to the power 4 right. And the cross

(Refer Slide Time: 40:31) 

And we can perform a typical soil structure interaction analysis by considering the combined 

footing as a beam elements and in this particular case I have divided this beam element into 

16 Elements by considering each beam element of length 0.5. So, we have totally 70 nodes 1 

So, for soil structure interaction analysis we do not consider any sulfate only when it comes 

to the settlements we require the self rate. So, let us calculate the bending moment in this 

section without considering the soil structure interaction. So, the bearing pressure on the soil 

is 150 kPa and then the maximum bending moment at the mid length is 150 times 4 times 4 

by 2 times 11 is the unit width in the perpendicular direction that is - 300 times 3 that comes 

to 300 kilo Newton meter per meter. 

Per meter means in the perpendicular direction we are considering the unit length and then 

the bending moment below the 2 extreme column 2 outer columns is 75 kilo Newton meter

and the Young's modulus is approximately 5000 times square root of fck and our that is the 

compressive strength of the concrete that is a that is a 40. So, that is 31622.78 mPa right and 

the moment of inertia for this section is 112 BD Cube that is a 2.25 times 10 to power of 

meters to the power 4 right. And the cross-sectional area is a 0.3 meter Square. 

 

And we can perform a typical soil structure interaction analysis by considering the combined 

d in this particular case I have divided this beam element into 

16 Elements by considering each beam element of length 0.5. So, we have totally 70 nodes 1 

So, for soil structure interaction analysis we do not consider any sulfate only when it comes 

ng moment in this 

section without considering the soil structure interaction. So, the bearing pressure on the soil 

is 150 kPa and then the maximum bending moment at the mid length is 150 times 4 times 4 

300 times 3 that comes 

 

Per meter means in the perpendicular direction we are considering the unit length and then 

the bending moment below the 2 extreme column 2 outer columns is 75 kilo Newton meter 

and the Young's modulus is approximately 5000 times square root of fck and our that is the 

compressive strength of the concrete that is a that is a 40. So, that is 31622.78 mPa right and 

times 10 to power of -3 

And we can perform a typical soil structure interaction analysis by considering the combined 

d in this particular case I have divided this beam element into 

16 Elements by considering each beam element of length 0.5. So, we have totally 70 nodes 1 



2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 notes then there are 17 notes corresponding to the to 

the soil or the below the Stream. 

 

And these are all the Winkler strings having some stiffness that we will see and then the 

column loads 300, 600 and 300. And let us assume that our coefficient of subgrade reaction 

case is 35 000 kilo Newton per cubic meter and this is obtained as I mentioned from the plate 

flow test right but then our spring stiffness is in the units of kilo Newton per meter units not 

in this kilo Newton per cubic meter units.  

 

And so, we need to convert this modulus into some stiffness that is in units of kilo Newton 

per meter and there are 17 nodes 16 beam elements each of 0.5 meters length and then the 

beam is supported and Winkler Springs provided at every 0.5 meters. Actually my task y only 

0.5 meters because in the theoretical solution the Winkler Springs are provided continuously. 

So, when we consider the integral equation we have a continuous support. 

 

But because we are dealing with finite element analysis we put these only at some discrete 

points and the solution that we get may be only approximate it may not be exact. And by 

considering more number of Winkler Springs we may be able to approach the theoretical 

solution. And how we convert this coefficient of subgrade reaction to the spring stiffness is 

very simple you take this value 35000 multiplied by area the area of the footing that is 

controlled by each of these Springs.  

 

So, if you look at the 2 end Springs we can assume that they support the footing up to Mid 

length up to half the length of this first beam element that is the length of the beam element 



0.5 and half the length is 0.25 and in the outer plane direction we have a width of 1. So, that 

is spring stiffness for the 2 end springs is 35000 times 0.5 by 2 times 1 that is 8750 and the 

spring stiffness for the intermediate Springs are for all the interior ones are 35000 multiplied 

by one without a plane direction multiplied by 0.25 to the left and 0.25 to the right that is 

17500. 

 

And then in the soil structure interaction analysis we have one parameter that is the 4th root 

of K s B by 4 E I that is the Lambda that is a soil structure interaction parameter. And if your 

Lambda L where L is the length of the footing if Lambda L is greater than Pi we consider the 

footing as flexible. And if you perform any soil structure interaction analysis say we will see 

some reduction in the bending moment and if your Lambda L is less than Pi by 4 we can 

consider that as rigid and there will be only marginal reduction. 

 

I should have said marginal reduction but it is no reduction because if Lambda is very very 

small. And for this particular problem that we have my Lambda is 0.59; 0.59 times 8 Lambda 

L is 4.74 which is greater than Pi. So, we can expect significant reduction in the bending 

moment and that is what actually. 
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This is the result that that you can get by using a fine intelligent program and this particular 

one is from my own program I will be giving this program for you, you can and along with 

instructions on how to use the program and it is a very simple program and the axial forces 

are neglected. So, all the axial forces are zero there are total is 16 beam elements then the 

shear force and then the bending moment. 

 

You see that the bending moment at the 2 ends is 0 10 to the power of - 1 that is practical 

zero but then the shear force is not zero. So, actually technically the shear force should be 

zero at the 2 ends but because of the of the spring elements that we have the shear force need 

not be equal to zero and the maximum bending moment that that we get in the beam section 

is 190. See if you neglect the soil structure interaction analysis it is 300 and if you consider 

the soil structure interaction there is a significant reduction almost a 30 percent reduction. 

Then of the 2 outer columns the bending moment is 59 whereas with rigid analysis you get 

75. 

(Refer Slide Time: 46:55) 

 

And now let us consider a slightly deeper beam of instead of 300 millimeters I am 

considering half a meter thick beam and Lambda L is a 3.23. So, we should still get some 

deduction because it is it is greater than greater than Pi but not as much as what we had in the 

previous case. So, now we get 237 slightly more than what we had earlier and then 64.5 

previously we had 59 and 190. 

 

Now we have 64.5 and 237 and let us consider very very soft soil K s is a 2 kilo Newton per 

cubic meter and let us say the beam depth is 300 millimeters. So, your Lambda L is 0.41 



which is very less than 5 by 4. So, in this case the results should be very close to the rigid 

case. So, we see our maximum bending moment is 299.9 then at below the 2 columns outer 

columns it is 74.98 that is very close to 75 right.  

(Refer Slide Time: 48:22) 

 

And so, here I have some results from different parametric studies and for this problem the 

theoretical solution with the K s of 35000 and the depth of 0.3 meters maximum bending 

moment is 194 kilo Newton meter then the maximum settlement is 5.5 millimeters. And 

through finite element analysis with this mesh discretization we get 190.7 and so, if I take a 

stronger soil with a subgrade reaction of 50000. 

 

Your bending moment is a lower and then the maximum settlement is also smaller and if I 

take a deeper beam with the same subgrade stiffness we get some increase in the bending 

moment and then some reduction in the settlement. Then I am taking one meter thick beam 

just to see what happens and your subgrade reaction is 35000 Lambda L is pi by 2 is 1.92. 

And so, the effect of soil structure interaction may not be significant it is.  



 

So, you see this is 286.8 and the settlement is 4.4 then if we take very very low subgrade 

reaction just to make the beam as re as rigid as possible the Lambda is 0.41 and you are 

maximum bending moment is 300 very close to 300 299.9. And it is actually if you take a 

finer mesh see in this case I have taken 16 beam elements and if we perform with 32 number 

of beam elements bending moment is slightly increased like 191.8.  

 

So, next you increase it to 64 elements you may be moving the closer to this theoretical result 

and the settlement is also moving the closet to this. So, this is how we can use our beam 

element and then the spring element and then the bar element for practical applications and 

we will see the applications more applications in later classes. So, I think that is the end of 

this lecture.  

 

So, in this just to summarize we have seen how to derive the stiffness coefficients of 2-

dimensional bar element by applying displacements in the global directions. And then we 

have seen the the stiffness Matrix the development for a beam element initially we had the 

considered only the element coordinates and then we had seen how to develop now the 

stiffness Matrix of the beam element and global coordinates by Lambda transpose K e times 

Lambda. 

 

Then we had seen some examples of the soil structure interaction by using our beam element 

and then the then the spring stiffness for Winkler springs. So, I will give you a computer 



program that you can utilize for doing this analysis and you can explore yourself what will 

happen. If you take a as a very coarse mesh with not considering say 16 beam elements but 

only consider only say 6 or 8 beam elements. 

 

What happens or with a very large number of beam elements what happens. So, all these 

things you can you can explore later. So, if you have any questions please do contact me at 

this email address profkrg@gmail.com. So, thank you very much we will meet next time.  

 


