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I hope all of you are doing well in the course; you are able to understand and also do your 

tutorials and other problems. And if not you just send an email to this email address and then I 

will try to help you to the extent possible. So, in today's class let us look at some new aspect, it is 

a small trick to do the stress correction after we determine the stresses as per the applied loading. 

We have seen that the yield function exceeds the yield limit. 

 

It becomes greater than 0 that we have seen even both with bilinear elastic models and also with 

hyperbolic models. Then what do we do? Especially if you use a very coarse strain increment the 

F value shoots up a lot and that is what we are going to do in this today's class. 

(Refer Slide Time: 01:26) 

 

Let us see what is the need for doing the stress correction. The context of both bilinear elastic 

and hyperbolic models the yield function has enabled us to put a limit on the stresses. Say this 

sigma 1 within a triaxial compression test; we know that it should be equal to K p times sigma 3 



+ 2 c square root of K p. And we were able to put a limit on this through the use of our Mohr-

Coulomb relation. 

 

But then the numerically predicted limiting stress is frequently exceed our theoretical limit. Our 

sigma 1 f we calculated from the Mohr circle and then the yield surface is only a theoretical 

limit. But then when we try to simulate the test through the finite element analysis we may or 

may not exactly replicate and that depends on several constraints like our strain increment. And 

the magnitude of error that is the difference between the theoretical limit. 

 

And then the predicted stress limit, it depends very much on the strain increments used in the 

analysis. If we use a very small strain increment our result will be good very close to the 

theoretical limit but if you use a very coarse strain increment there could be lot of difference. So, 

we need to resort to some additional methods to correct or to bring the stresses back to the yield 

surface, so that we are always satisfying the yield limit or the yield condition. 

(Refer Slide Time: 03:18) 

 

And we have seen the Mohr-Coulomb yield surface with c and phi properties and then we also 

know how to draw the Mohr circle. Say if the more circle is entirely within the yield surface, the 

yield function value will be less than 0 and we say that is an elastic state and if it is exactly 

tangent to the yield surface the F value will be 0 and the soil is at the limit state. And when F is 

greater than 0 our Mohr circle is going to intersect the yield surface and this is not permissible. 



 

So, whenever this happens because of our numerical approaches we should somehow change the 

stresses such that we get back to this state where our Mohr circle is exactly tangent to this yield 

surface. So, we know what is the yield function F; we defined it in terms of sigma 1 and sigma 3 

and then the c and phi properties like this. And if F is less than 0 we are in the elastic state and 

when F is exactly 0 our Mohr circle is tangent to the yield surface. 

 

And F greater than 0 means it is exceeding the yield surface and this is not allowed, we need to 

do something. So, when F free is greater than 0 it is not allowed as the Mohr circle cuts the 

failure surface and then we do some stress correction. 

(Refer Slide Time: 05:10) 

 

And in both the bilinear elastic and the hyperbolic models we have seen that the yield function 

value exceeds 0 at some point and the magnitude of this positive value and the predicted 

maximum vertical stress depends on the strain increment used in the analysis. And the value of F 

we have seen in our hand calculation that suddenly jumps from negative to positive. So, it 

initially the F value it has a very large negative value and as you go on increasing the deviated 

stress. 

 

The F value will slowly increase from -300 to -250, -200 is something like that. Then suddenly it 

will become positive, at some state when the soil enters the plastic state or the yield limit state. 



(Refer Slide Time: 06:13) 

 

So, that is what we are going to do and before that let me just illustrate. See for the data of c of 

10 kPa friction angle of 35 degrees and the confining pressure of 100 kPa our theoretical limit on 

the vertical stress is 465. And when we did this triaxial compression test with an axial strain 

increment of 0.005 the F value initially it was a very large negative value then it goes on 

increasing, then at some point from -6.41 it jumps to +68.20. 

 

Because as long as your yield function value is less than 0 or negative we treat the soil as in the 

elastic state and our Young’s modulus will be very large. Like for example here is 35000 and so 

your stress increment also could be large and because of that your F value increase to 68.2 and 

that is also because our strain increment is very large. And the predicted vertical stress at the 

limit state is 625.2 against the theoretical limit of 465. 



 

And if we reduce the strain increment to 0.0025, the predicted yield stress is 537 which is better 

but not close enough to 465. And if we further reduce the strain increment to 0.002 the sigma 1 F 

has become 520. And that very low strain increment of 0.0005 this sigma 1 predicted is 467.5 

which is comparable to 465. So, within some limit we are able to predict the desired yield stress 

and then if you do any analysis with this type of increment, we may expect to get reasonably 

good results either for limiting bearing capacity or lateral earth pressures and so on. 

 

That we will see later but for now I am demonstrating this only with respect to triaxial 

compression test because that is the simplest one that we can think of and we can also do the 

analysis by hand calculations. Because unless you understand hand calculations you will not 

appreciate what is actually happening inside the computer program. And that is the reason why I 

am giving you all examples with simple hand calculations. 

 

But that is exactly what the finite element program also does but it is inside a computer program, 

so we will not know exactly what the program is doing. So, for very large strain increments the 

predicted the maximum axial stress is much larger than the theoretical limit. So, we should not 

expect to get good results when we use very larger strain increments. 

(Refer Slide Time: 09:55) 

 



So, as the strain increment is reduced, the accuracy of solution increases but then the number of 

load steps of the number of times you repeat the analysis increases. And that adds to the 

computational time and then the computational effort. So, instead of taking 1 hour for 

performing a numerical analysis you may take 10 hours or even 24 hours depending on the strain 

increment. 

 

And the value of F more than 0 leads to overestimation of the soil strength and hence incorrect 

limit solutions. So, the stress state should be corrected back to 0, so that our theoretical limits are 

correctly estimated by the numerical procedures. So, we should employ some stress correction 

procedure to bring the stress state back to the yield surface. 

(Refer Slide Time: 11:03) 

 

And we have also seen the same problem with hyperbolic models although the Mohr-Coulomb 

yield surface was implemented in the equation for the tangent Young’s modulus. But because 

our R f value is not exactly 1, so our E tangent is never 0, it is always it has some positive value. 

And because of that with every strain increment your stress is going to increase and that is what 

we have seen.  



 

So, with different R f values, so for this sigma 3 of 100 c of 10, phi of 30 degrees the sigma 1f is 

334. And when R f is 0.7 the predicted sigma 1f is 411 with 0.8, 375, 0.9 it is 346, all at an axial 

strain of 0.1 but these values could increase at a larger strain increment because our stresses will 

go on increasing asymptotically in a hyperbolic model. So, we need the some external correction 

method that will correct the stresses back to the yield surface. 

(Refer Slide Time: 12:33) 

 

And one of the earliest methods that is other than a linear elastic method was proposed by 

Zienkiewicz and others in 1968. They published a paper on the stress analysis of rock as a no 

tension material, as a no tension material means it cannot carry any tensile stresses. So, you 

perform the analysis such that all the stresses within the body are compressive and this is the 

scan copy of the cover page of the paper. 

 



It is one of the earliest papers and they suggested a method for achieving our stresses within the 

compression space and also how to satisfy the equilibrium. Because the main problem is when 

you change any stresses your equilibrium is not satisfied, so we have to satisfy both the 

equilibrium and also the yield surface in all these problems. So, they proposed a very simple 

method that is what we are going to see in this class. 

 

See the procedure whatever they developed it was applied for an analysis of a concrete dam 

subjected to water pressure. And the object was to analyze the structure such that no tensile 

stresses develop either in the concrete dam or in the foundation soil. 

(Refer Slide Time: 14:13) 

 

See the analysis is very simple; let us consider only two dimensional stress state, so that it is 

more easy to demonstrate. But whatever we are discussing for 2D you can also extend to the 

three dimensional problems but it becomes slightly more complicated. Let us say that we have a 

stress state sigma xx, sigma yy and sigma xy and we know how to calculate the principal stresses 

by constructing the Mohr circle. 



 

So, sigma y is more than sigma x, so we can plot sigma y and sigma x and then the tau xy is 

positive on the horizontal surface on which sigma y is acting. And then sigma xy on the vertical 

axis, on the vertical plane is negative, so we can plot sigma yy, sigma xx, sigma xy and then we 

can join these 2 lines. And then the center point is your mean normal stress or sigma xx + sigma 

yy by 2. 

 

And then by taking this as the radius we can draw a circle and we get your 2 principal stresses 

sigma 1 and sigma 3. See this is the geometric way of interpreting, so the mean normal stress 

here is sigma xx + sigma yy by 2 and the radius of this Mohr circle is sigma yy - sigma xx by 2, 

that is this half length square plus this square sigma xy square and the square root of that will 

give you this radius. 

 

And once you get the radius your sigma 1 and sigma 3 can be obtained as sigma 1 is the mean 

normal stress plus the radius that is sigma 1 and then sigma 3 is mean normal stress minus 

radius. And in all our hand calculations we are going to take compressive stresses are positive 

and the negative stresses are as a tensile. So, if your minor principle stress sigma 3 is tensile then 

we have to do some correction such that all the calculated the principal stresses are compressive 

and that we can illustrate like this. 

(Refer Slide Time: 17:05) 



 

Let us say that when you calculated your principal stresses for the given stress state of sigma xx, 

sigma yy and sigma xy that you got a Mohr circle something like this, sigma 1 is a compressive 

and sigma 3 is tensile stress. And one way is that just simply push the entire Mohr circle to the 

compression space. And this sigma 3 is the inadmissible tensile stress because our object is to 

not have any tensile stresses; all the stresses should be only in compression. 

 

And we can do this lateral translation by adding sigma 3 to sigma xx, so the modified normal 

stresses sigma xx bar is sigma xx + sigma 3 and sigma yy bar is sigma yy + sigma 3 and the 

shear stress remains the same because the radius of the Mohr circle has not changed, it is only 



the radial shift or the translational shift. And this is a simple method that will help us in making 

sure that all the stresses are within the compression space. 

(Refer Slide Time: 18:37) 

 

Let us look at a numerical example, our sigma x is 50, sigma y is 90 and tau xy is 75. And if you 

calculate sigma 1 and sigma 3, sigma 1 is 147.62 that is compressive, sigma 3 is -7.62 that is 

tensile. So, we should correct the stresses such that we do not end up with any tensile stresses, so 

our sigma xx bar is 50 + 7.62 that is 57.62. And then sigma yy is 90 + 7.62 that is 97.62, sigma 

xy remains the same and sigma corrected 1 and 3 are 0 and 155.24. 

 



See now with this corrected stresses if we calculate your principal stresses we see that there is no 

tensile stress all these stresses are in compression. Let me just make one small correction, 

actually the sigma 3 should be absolute sigma 3, so that is what we have seen here. 

(Refer Slide Time: 20:07) 

 

But then what happens to the equilibrium of the system? So, we can calculate the reaction forces 

by using our B transpose sigma dv equation. And with the original stresses these are the nodal 

forces corresponding to the original given stresses of sigma xx is a 50, sigma yy is 90 and tau xy 

is 75. So, you see here 675 + 225 is 900 divided by 10 is 90 and 525, 525 and then 225 is acting 

in the reverse direction. 

 

So, it is actually it is the net compression force is the 300 divided by 6 is 50 kPa that is 

compression. And along this line the total shear force is 525 + 225 that is 750 divided by 10 is 



your shear stress of 75 acting in the positive direction. And then on the vertical plane 675 - 225 

that is 450 divided by 6 that is once again 75 but that is acting in the negative direction. Because 

our convention is any shear force that causes positive moment about the center of the element is 

taken as positive. 

 

So, on this horizontal surface our shear force is acting to the right and it is taken as positive and 

then on the vertical surface it is acting up, so acting in the negative direction because the moment 

produced around the center of the element is anticlockwise. And this system of forces is exactly 

equal to the applied forces, so your equilibrium is satisfied. But then our stresses are not 

satisfying our limit of the tensile strength and we have done the correction. 

 

And the corrected stress state gives rise to these forces, 713 instead of 675 and 263 instead of 

225 and so on. But then these forces highlighted in blue colour they will not satisfy the 

equilibrium because these are something else; these are obtained by doing the correction. And 

now this stress state is satisfying our limit of no tensile stress but then it is exceeding or it is not 

satisfying the equilibrium, our equilibrium gets disturbed. 

 

And then we need to find another procedure to satisfy both the equilibrium and also the yield 

stress or our requirement of tensile stresses. 

(Refer Slide Time: 23:40) 



 

So, what Zienkiewicz and others have done is they suggested that you can calculate the reaction 

force dp as integral B transpose d sigma, that is d sigma is our 7.62 is our d sigma. And then 

corresponding to that you can calculate your reaction force and then apply it. And then later on 

Zienkiewicz and others in some other context that we are going to see later, they proposed more 

comprehensive equation that instead of writing the right hand side the force vector is delta p we 

can write it as the difference between the applied forces minus the reaction force. 

 

The applied force and the reaction force and if both of them are exactly the same your 

equilibrium is satisfied, if not the equilibrium has to be satisfied by distributing your stresses to 

some other part of the body. And what they have done is in the original paper by Zienkiewicz 

and others that was published in 1968, the equation is not written like this, it is written as delta 

sigma B transpose delta sigma is dp. 

 

So, we can calculate corresponding to that outer balance stresses we calculate the reaction force 

as B transpose delta sigma and then apply this on the system to get some new displacement 

increment delta u. Then we get the new strain increment delta epsilon and then delta sigma can 

be obtained as d times delta epsilon and then the total stress sigma i, the sigma i - 1 + delta sigma 

i, actually i is the current step and i - 1 is the previous step. 



 

And as you are iterating or as you are applying the loads the current step is i and the previous 

step is i - 1, so we update our stress vector sigma i as sigma i - 1 + delta sigma i and u i that is the 

total displacement is u i - 1 + delta u i and then epsilon i is epsilon i - 1 + delta epsilon i. And 

then what we do is once again we check for the tensile stresses in this newly calculated sigma. 

And if that stress state is developing some tensile stress we do the correction for removing the 

tensile stress. 

 

And then calculate your delta sigma and then delta p and then repeat this process and until we are 

happy with the convergence. And the convergence is monitored in 2 ways in terms of the norm 

of the outer balance forces that is the sum total of the squares of all the outer balance forces 

divided by the sum total of the square of the applied forces multiplied by 100 percent. Or we can 

also monitor in terms of the incremental displacements, the norm of the displacement psi 2 as 

sigma of delta u square by sigma of ui square. 

 

And if you repeat or if you reanalyze the problem several times at some point we are bound to 

satisfy both equilibrium and also the yield state. And here in this case it is no tension and 

typically this psi 1 and psi 2 can be set to some 0.1 or 0.5 percent. Sometimes we may not be 

able to achieve good equilibrium even with a very large number of iterations. In that case we 



could increase this to maybe 1 percent or 2 percent or even 5 percent sometimes just to complete 

the analysis and get some results. Because we would like to see the mechanism of failure and 

then what is the approximate failure load. 
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And the above procedure we can also modify it to include some tensile strength, if your body has 

some tensile strength of sigma t we can laterally shift the Mohr circle by magnitude of sigma 3 - 

sigma t like this. And the right sigma xx bar and sigma yy bar like this and this is another thing 

like you can set your sigma t to 0 or some value. 

 

(Refer Slide Time: 29:25) 



 

And here is the problem that Zienkiewicz and others have considered. We have a dam and the 

entire thing was modeled using the 3 node triangles. In those days that was 1968 the 

isoparametric elements have not come in and the 3 node triangular element was very popular 

because it is easy to program and very quick to do the computations because your the bandwidth 

for the stiffness matrix is not very large. 

 

So, this is the dam and then there is some hydrostatic pressure indicated by this red line and the 

first analysis that we are seeing is with the linear elastic properties. The maximum displacement 

that is shown by the largest vector I do not know exactly where but we can find out by looking at 

the results. The maximum displacement is 2.28 times 10 to power of -2 and in all the finite 

element analysis the program does not know the units. 

 

So, we should use some consistent units, so if we define the length in meters your displacements 

also will be in meters and then your modulus should be in kilo Newtons per meter square or 

Newtons per meter square. And then your unit weights are should be in the same units as your 

modulus and everything should be consistent. And the program as such it does not know the 

units, it will only give you the value. 

 

And here because we are using linear elastic properties the outer balance forces are very, very 

small 10 to power of -25. Because at every stage where exactly satisfying the equilibrium 



whatever stresses are applied on the body the material is able to take, so it will produce equal and 

opposite reaction force. It is the norm of the outer balance force is a 10 to power of -25 and even 

the norm of incremental displacements is very, very small because the equilibrium is satisfied. 

(Refer Slide Time: 31:53) 

 

But then if we look at the stresses, what you are looking at the principal stress vectors the 

direction and then the magnitude. Magnitude is drawn to some scale, the blue lines are 

compression and the red lines are tensile stresses. And the blue line of this length represents a 

stress of 5.197 times 10 to the power of 4 and the red line of this length represents a tensile stress 

of 1.097 times 10 to the power of 4. 

 

And you see lot of tensile stresses are developed here along this line and then somewhere inside 

the soil and then within the dam body some tensile stresses are developed. And we like to 

perform the no tension analysis; so that we can get rid of the tensile stresses. 

(Refer Slide Time: 32:57) 



 

And here the same dam was analyzed by using the no tension model. And now our displacement 

is slightly increased, now it is 3.23 times 10 to the -2 and with the linear elastic model, these 

were the displacements. And if you look at the norm of outer balance forces it is a 0.002 that is 

0.2 percent this is actually it is good, it is able to achieve the convergence after about 10 

iterations at every step. 

(Refer Slide Time: 33:41) 

 

And then if you look at the stresses there are no compression stresses, the maximum compression 

stress is 10 to the power of -4 which is negligible. And our maximum compression stress is 5.843 

times 10 to the power of 4 and when we had the linear elastic model where we allowed some 

tensile stresses the maximum compression stress was only 5.197 times 10 to the power of 4. But 



now here you see because of redistribution of stresses there is a higher stress and the higher 

stress is happening somewhere here. 

 

And you see here all the stresses have become very small if you look at the stress vectors. So, 

previously when we had the linear elastic material all these were red coloured lines indicating 

tensile stress. But now there are no red colour lines because the most of the tensile stresses are 

dissipated and we end up with only compression stresses. 
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And this same problem of no tension case might arise when we use the Mohr-Coulomb model 

with phi = 0. See with phi = 0 our yield surface is horizontal, so that means that wherever you 

draw the Mohr circle whether in the compression space or the tension space where F value is 

going to be exactly 0. So, if you look at only the F value then you might think okay the soil is 

satisfying the yield condition, so there is no problem. 



 

But then when you look at the stress this entire Mohr circle is in the tensile space and our soil 

may not be able to carry the tensile stresses. So, actually this Mohr-Coulomb model with phi = 0 

requires some additional check for the tensile stresses. And then in most of the computer 

programs they give you an option to check for tensile stresses because especially when we are 

doing any analysis of the soil structures we should get rid of all the tensile stresses. 

 

Because by default the soil does not have any tensile capacity and if you are dealing with any 

rock medium then you can define some tensile strength and make sure that your tensile stresses 

do not exceed the tensile stress. So, in this case also we can laterally shift the Mohr circle into 

the compression space and then get rid of our tensile stresses. 

(Refer Slide Time: 36:59) 



 

So, similar to what was done with the no tension model we can think of some procedures for 

correcting the stresses and there are different methods. The simplest one is the constant mean 

normal stress or the constant minor principle stress or constant major principal stress or along the 

normal to the yield surface is actually we are going to see only one method that is the constant 

mean normal stress in this class. 

 

Then the fourth one along the normal to the yield surface is anywhere that we are going to do 

when we deal with plasticity analysis of the soils. We are going to correct the stresses normal to 

the yield surface and that will give us the dilation also. 

(Refer Slide Time: 37:56) 

 



So, the constant mean normal stress method is very simple, so this dotted line is the original 

Mohr circle or the uncorrected stress state and this solid line is the corrected Mohr circular or the 

corrected stress state and the mean normal stress is kept constant during. So, the stress path that 

is followed by the stresses is this P-Q diagram is like this, so here we are only changing q but not 

the p. Such that our Mohr circle is exactly tangent to the yield surface and the mean normal 

stress is sigma 1 + sigma 3 by 2 or sigma xx + sigma yy by 2 and that remains constant in this 

method. 

 

(Refer Slide Time: 39:02) 

 



So, let us look at the complete stress state sigma yy, sigma xx and tau xy they were the original 

stresses as per the equilibrium and then if you plot the Mohr circle you get this dotted line and 

that is exceeding the yield surface. And that sigma yy corrected sigma yy c, sigma xx c and tau 

of xy c are the corrected stresses where the Mohr circle is exactly tangent to the yield surface. 

 

And that R u is the radius of the uncorrected Mohr circle and the R c is the radius of the 

corrected Mohr circle. So, because our mean normal stress sigma xx + sigma yy by 2 is not 

changing, we can calculate the radius of the corrected Mohr circle R c from this triangle let me 

just show you with. So, if you look at this triangle, I think later I use it as some other symbols I 

will not use the symbols. 

 

But if you look at this triangle highlighted by this red circles R c is sine phi multiplied by this 

length that is c cotangent phi + sigma xx + sigma yy by 2, whereas R u is calculated based on the 

stresses that we have. 

(Refer Slide Time: 41:11) 



 

 

 

So, let us look at the 2 Mohr circles closely and this bigger circle is the original stress state and 

the smaller circle is the corrected stress state. See if we look at this 2 triangles oab and ode we 

see that they are similar triangles because they have the same angle theta. So, the sine theta or tan 

theta we can calculate and then get some equations for tau xy and then corrected and the sigma 

yy corrected, sigma xx corrected like this. 
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So, our radius of the uncorrected Mohr circle is R u is sigma 1 - sigma 3 by 2 because we can 

calculate sigma 1 and sigma 3 based on the given stress state. And then R u is that and the radius 

of the corrected Mohr circle R c is by looking at this triangle with this highlighted circles sine 

phi is R c divided by this hypotenuse, that is c cotangent phi + sigma xx + sigma yy by 2. So, our 

R c we can calculate like this and the R c once you know the shear strength properties and then 

the mean normal stress we can calculate R c. 

 

(Refer Slide Time: 43:02) 



 

Then if you look at these 2 similar triangles, oab and ode sine theta is ab by R c or de by R u, 

right. And the oa is R c and od is R u and so our corrected shear stress tau xy c is R c by R u 

times tau xy, R c is the radius of the corrected Mohr circle and R u is the radius of the 

uncorrected Mohr circle and tau xy is your shear stress. And then if you look at this cosine theta 

it is ob by oa and oe by od and oa is R c and od is R u. 

 

And ob we can ok just let me and ob is the sigma yy corrected minus the mean normal stress. See 

this ob is sigma yy corrected minus this length and that is ob and oe is a sigma yy minus this 

mean normal stress. And then the corresponding radius values R c and R u. 
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And sigma yy corrected is this like once you simplify the previous equation you get this. And the 

delta sigma is sigma yy - sigma xx corrected is this and sigma xx corrected is sigma xx + delta 

sigma and sigma yy corrected is sigma yy - delta sigma. It is actually this calculation assume that 

sigma yy is greater than sigma xx but it is a generic process and this method works even with the 

K naught greater than 1. 

 

If K naught is greater than 1 your sigma x maybe more than sigma y and the signs will reverse 

and one of the stress components will decrease and the other will increase, so that your yield 

stress is exactly satisfied. 
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So, let us look at an example, let us take a material with a c of 10 and a phi of 30 degrees and 

sigma xx is 100 sigma yy is 300, tau xy 60 and sigma 1 and sigma 3 are this. And your yield 

function value F is 15.92 and that is positive and we like to correct the stresses, so that the yield 

function value is exactly 0. So, R radius of the uncorrected Mohr circle is sigma 1 - sigma 3 by 2 

that is 116.82 and the radius of the corrected Mohr circular R c is c times cosine phi + sine phi 

times mean normal stress and that is 108.66. 
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And the tau xy corrected is a tau xy multiplied by R c by R u and delta sigma is sigma 1 - sigma 

3 by 2 times 1 - R c by R u that comes to 6.99, so our sigma xx corrected is 100 + 6.99 that is 

106.99, sigma yy corrected is 293.01 and then tau xy is 55.81. And if you calculate sigma 1 for 

this corrected stress state sigma 1c is 308.47, sigma 3 for the corrected stress state is 91.53. 

 

So, if you substitute them back in the yield function equation it comes to almost 0, see within the 

round of errors like because I am showing only 2 decimal places, so this value will not be exactly 

0 but it is close enough to 0 but definitely not like the previous value of 15.92. 
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So, this is one method for correcting the stresses and the only problem is with this corrected 

stresses will not be able to satisfy the equilibrium, we have to do something to satisfy the 

equilibrium by repeatedly doing the analysis. So, we imply some iterative procedures, similar to 

those that we discussed some classes back when we discuss the non-linear analysis methods 

either in terms of the initial stress method tangent stiffness or secant stiffness method. 

 

And in all these problems if we are able to update the stiffness matrix you get a faster 

convergence and if you do not update you may need the more number of iterations. So, in the 

initial stress method we are not going to update the stiffness matrix and then we repeatedly apply 

the outer balance forces and then calculate the new stress state and so on. Whereas in the tangent 

stiffness and secant stiffness we are going to update our stiffness matrix, so it is a slightly it 

requires lesser number of iterations. 

 

But then they might take a much longer time because you need to reformulate your stiffness 

matrix assemble it and then makes it as a upper triangular matrix and so on. Whereas in the case 

of initial stress method very fast because it is only back substitution. 
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So, here I am showing you 2 results using the bilinear elastic model for C of 50 and phi of 34.7 

and then at 2 different confining pressures of 345 and 690, these are the sigma 1 maximum 

1101.7 and 2012. See the sigma 1f. So, our sigma 1 maximum is K p sigma 3 + 2C square root K 

p and what is plotted on the y axis is deviated stress sigma 1 - sigma 3.And this 1101.7 is 3.69 

times 345 + 2 times 50 times square root 3.69 - 345. And if you do this calculation you should 

get this value, this is what is predicted by our numerical method. And similarly for a confining 

pressures of 690 this is the pressure that you compute. 
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And these are the volumetric strains that are predicted beyond your yield limit, your Poisson’s 

ratio approach is 0.5 and you get the constant volume state. And this being a bilinear elastic 

model, you see that the slope of this stress strain curve is the same whatever may be the 

confining pressure. See even whether it is a confining pressure of 345 or 690, the slope is the 

same because our Young's modulus is not a function of the confining pressure. 
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But if you look at our hyperbolic model, it is a different confining pressures the strength is 

different and then the initial slope. You see here the slope is higher for higher confining pressure 

and then even the strength is higher. And if you look at the stress strain response are 2 confining 



pressures of 345 and 690 within an axial strain of 6 percent both of them have reached the 

ultimate stress states. 

 

But at a higher confining pressure of 1035 and 1735 you see that there is still increase like maybe 

they will read some asymptote at a much larger strain level. So, that is the difference between 

hyperbolic model and then other models like our bilinear elastic model. The hyperbolic model is 

representing, the influence of the confining pressure on the modulus and also the influence of the 

shear strength properties C and phi and the ultimate stress. 

(Refer Slide Time: 54:21) 

 

And these are the predicted volumetric strains set a higher confining pressure soil will undergo 

more volumetric compression before it reaches the constant volume state because it is strength is 

higher. 

(Refer Slide Time: 54:41) 



 

So, so this hyperbolic model being a non-linear elastic model, it can only predict volumetric 

compression under shear. But then if you look at the actual volumetric response our soil will 

initially compress and then it will undergo some volume expansion that is called as the dilation. 

And this dilation we can simulate by some other procedures that we will do next because till now 

we were looking at only elastic and non-linear elastic models. 

 

And we can look at more advanced models like our elastic-plastic models that can simulate the 

shear induced dilation that we will do later. 

(Refer Slide Time: 55:44) 

 



So, actually this is a numerical example of our case with phi = 0, see the tension space or 

compression space our F value is -4 and both these Mohr circles they are within this yield 

surface these cohesion is 52 kPa and both of them have an F of less than 0.  

 

So, that means that they both represent elastic state but then this Mohr circle is in the tension 

space, so the soil we know that it cannot support any tensile stresses, so we need to move the 

Mohr circle to the right. 

(Refer Slide Time: 56:47) 

 

So, even this might happen even in c, phi soils where you have significant c and reasonably 

smaller phi, you might end up with a lot of tension and we can do something, so that we shift the 



Mohr circle into the compression space. That is actually for this properties of C of 50 and phi of 

30 degrees, the allowable tensile stress that is C times cotangent phi is 43.3, so that means that 

you can get a Mohr circle with the tensile stress of 43.3. 

 

And it will not be detected, it will not be flagged by the yield condition because our F value is 

less than 0 but then we have to check separately for whether you have very large tensile stress 

within the material, if that is so we need to do some correction. 

(Refer Slide Time: 57:57) 

 



And there are other methods, see we are going to look at the methods that change the stresses 

along the normal to the yield surface. This is what we are going to see, that will give us the 

ability to model the dilation. 

(Refer Slide Time: 58:28) 
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So, I think that we will see later. And I think this simulation of triaxial compression test that we 

will do in the next class, I will explain how we can work with hyperbolic and then the bilinear 

elastic models for simulating the triaxial compression test. 

(Refer Slide Time: 58:48) 



 

So, I think that is the end of today's lecture and if you have any questions please send an email to 

this address profkrz@gmail.com, so thank you very much. 


