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Lecture-32
Modified Hyperbolic Model and Determination of Material Parameters

Let us continue our discussion on the hyperbolic model. Let us try to modify so that we can
incorporate the effect of constant Poisson’s ratio or after the critical state, the poisons ratio
should approach 0.5 and then we will also see how to determine the material properties in this
lecture.
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Hyderbolic models, Kondner (1963)
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R, is called failure ratio

So, in the previous lecture, this is what we had seen. This is called as the hyperbolic equation
given by Kondner. And this equation was slightly modified for adapting it to finite element
implementation. By differentiating this with respect to strain, we can get our tangent modulus
and d sigma by d epsilon is defined as the tangent modulus.
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Original Hyperbolic model
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of confining pressure & mobilized shear strength

r At Iir‘rllit state, the tangent Young's modulus (E,) becomes very
sma

» Poisson’s ratio remains constant even after critical state

» Soll continues to undergo volumetric compression even after
critical state

And then we have seen this equation; this is another beautiful equation. And this is our
original hyperbolic model and here we are able to represent the effect of sigma 3, that is the
confining pressure on the initial modulus and then this quantity that we had seen, 1 - sine phi
times the shear stress divided by 2 ¢ cosine phi + 2 sigma 3 sine phi is actually the mobilized
shear strength. This 2 ¢ cosine phi + 2 sigma 3 sine phi by 1 - sine phi is our sigma 1 - sigma 3

failure.

So, this is our mobilized shear strength. And in one equation, Duncan and Chang they are able
to take care of the reduction in the young's modulus with increase in the shear stresses and
then increase in the shear modulus because of confining pressure. So, and the limit state of
stresses through the Mohr—Coulomb relation is also incorporated through this column relation.
And the only limitation here is the soil continues to undergo volumetric compression even
after the limit state is reached because we assume the Poisson’s ratio to remain constant.
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(1-sin §)(o,- ‘,’:) = mobilized shear strength ratio
(2.c.0089+2.i51n )

If ¢=10 kPa, $=30°, ;=100 kPa and R=0.85

Maximum (o,-0,), = 234.64 kPa

Mobilized shear strength ratio values & E, at different shear

stresses are as follows:
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(0,-0,) Stress Ratio=(a,-a,)l(0;-a5),  E,
0

0 i

100 0426 0407 E,

200 0.852 0076 E

210 0.695 0.057 E;
234 64 1.000 0.0225 E,

As Ry is always less than 1, E, will never become zero

So, that let us try to see how we can incorporate. And this is what we had seen in the previous
class as the shear stress is increasing, your shear modulus will go on reducing. So, initially we
have the Young’s modulus as E i and then as the shear stress is increasing, your modulus is
reducing. And ultimately, it has come down to 0.0 to 25 times E i and because our R f is
always less than 1, it is about 0.85 to 0.9 or sometimes even 0.6, because R f is less than 1, our
tangent modulus will never become 0.
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Comments on validity of Hyperbolic model

# Hyperbolic model is also a nonlinear elastic model i.e. it will

FEA & CM

not be able to predict the shear induced dilation
# The model is applicable to all soils that undergo compression G
under shear strains hitps:/fntelac.
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» Poisson's ratio is assumed as constant
# Soil will continue tosundergo volume changes even after
critical state is reached

And these are all what we had seen in the previous class that the hyperbolic model; let me just
get back to laser pointer. So, our hyperbolic model is also a non-linear elastic model, that
means that the stress and strain are non-linearly related and then the unloading will recover all
the strain that is elastic and it will not be able to simulate the shear induced dilation. And this

model is applicable to all the soils that undergo volumetric compression during the loading.



And then the Poisson’s ratio is assumed constant. So, the soil continues to undergo volumetric
compression even during the critical state.
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The original Hyperbolic model has been modified in 1979 by
Duncan et al. to write the constitutive matrix in terms of K

and E,.
E
Advantage of this modified model is that the Poisson's ratio FEA & CM
tends to 0.5 & hence volume strain remains constant after
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FEA & CM Lectuire-28 rodified hyperbilic model 5 g 4
So, we need to modify this. In 1979 Duncan and others they have modified the original
hyperbolic model by Poisson’s ratio in terms of bulk modulus K and then Young's modulus E
t. And the advantage of this is that the Poisson’s ratio tends towards 0.5 as our tangent
modulus reduces to near zero and our bulk modulus K remains constant during the analysis
that we will see. And the tangent Poisson’s ratio tends towards 0.5.
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Modified Hyperbolic model
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And because of that we will be able to represent the constant volume after the critical state is

reached. And this particular modified hyperbolic model is written in terms of tangents



Young’s modulus E t and then tangent bulk modulus K t. And K t is the bulk modulus that
relates the volume changes to the bulk stress and E t is the tangent Young's modulus.
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Constitutive equations in terms of K & E,
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And the K is the bulk modulus; it relates the volumetric stresses and volumetric strains. And
this particular parameter we can determine from the volume strain data from CD test. And our
Young's modulus E t relates the shear strains and shear stresses. And then the tangent
Poisson’s ratio nu t is written in terms of our K and E t as one half of 1 - E by 3 K. And our
constitute matrix the relation between the stress and strain can be written in terms of bulk
modulus K and the tangents Young's modulus E t like this. And our nu t is one half of 1 - E by

3 K as E tends towards 0, our Poisson’s ratio tends towards 0.5.

Constitutive equations in terms of K & E,

K = bulk modulus — relates the volumetric stresses and
volumetric strains; determined from volumetric strain data
measured in CD tests

E, = Young's modulus - relates the shear strains and shear
stresses

Tangent Poisson's ratio v, in terms of K & E,,
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Constitutive equations in terms of E, and K

The tangent Young's modulus is expressed using the hyperbolic
equation as,
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Bulk modulus K is written in terms of the confining pressure
without any shear failure term as shear stresses are not found to
influence the volume change behaviour within the elastic range.
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K, and n are bulk modulus parameters

FEA & CM Lecture-28 madified hyperbalic model 3

And the tangent Young’s modulus is represented by the same equation that was derived
earlier. And then the bulk modulus K is expressed in an equation similar to our initial modulus
as K b times P a sigma 3 by P a to the power n and there is no shear failure term here because
the shear stresses do not affect our bulk modulus. The shear stresses and shear modulus are
related and then the bulk modulus is only related to the bulk stresses or the volumetric strains.

The tangent Young's modulus is expressed using the hyperbolic
equation as,

. R, (1=sin ¢1(mfm) "KJ,J(J-.)’"
: 2c.cosd+20,5n ¢ Pa

So, the Mohr—Coulomb failure relation is not incorporated in this equation for K. So, if your
sigma 3 is remaining constant, your K will remain constant during the analysis and our
Young's modulus will go on decreasing with increasing shear stresses. And in this equation,
we have number of parameters, the ¢ and phi are the strength parameters and R f, K e and m

these are related to the Young's modulus parameters. And then the K b and n are our bulk

K=K, P, {a‘]
. ]’lf

modulus parameters.

K, and n are bulk modulus parameters
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Bulk modulus is written as the ratio between the average change
in volumelric stresses and volumetric strain
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During triaxial compression tests, both the radial stresses o, WLl
and o, are kept constant (constant cell pressure). Only the e
axial stress o,, is varied during the deviator stress application Dr. K. Rajagopal

stage
Ae, is measured at 70% of the peak deviator siress

If the constant volume state is reached before the 70% of the
deviatoricstress, then K is evaluated when volumetric strain
has become constant

FEA & €M Lecture-28 modified hyperbolic model 0

i .,: W
And where bulk modulus K can be represented as the change in the average change in the bulk
stress is divided by volumetric strain or if you relate to the triaxial compression test, we can
express the K as sigma 1 - sigma 3 at 70 percent stress level divided by 3 epsilon v. This is our
mean normal stress because, in the triaxial compression test, during the application of the
deviator stress, the delta sigma x and delta sigma y are 0 and we have only the axial stress that

is the deviated stress.

K.- s -’30'1. t+ Aoy T AC= N {G]_a‘.)"m,
3 Mg, - 3¢

And the bulk modulus is related to the deviator stress at 70 percent strength level divided by 3
epsilon v. This is our mean normal stress, because our sigma x and sigma y are 0 and the only
normal stress that we have is the axial stress. So, this is our mean normal stress divided by our
volumetric strain, epsilon v is our bulk modulus. And in case we reach the constant volume
state before the 70 percent of the deviator stress is reached, then the K is evaluated when the
volumetric strain has become constant like this.
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Constant volume state is reached after 70% of the peak
deviator stress
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Say in general our volumetric the bulk modulus is represented as the ratio of this divided by 3
2 volumetric strain at this 70 percent of the peak stress.
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Constant volume state is reached before the 70% peak

deviator stress is applied
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If the constant volume state is reached at a very large strain level, but sometimes at very low
axial strains itself, we might reach the constant volume state in that case, we use this epsilon v
constant and then sigma 1 - sigma 3 c that is when the constant volumetric strain is reached. In
this case, our K is sigma 1 - sigma 3 at the constant volume strain divided by 3 epsilon v.
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Variation of friction angle
It is well known that the friction angle of the soil is a

function of the confining pressures. At high confining RS
pressures the friction angle is lesser as compared to FEA&CM
that at lower confining pressures due to dilatancy L
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angle for 10 fold increase in the confining pressure
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And we can actually relate the variation of the friction angle with respect to the confining

pressure through this relation phi is phi naught - delta phi log sigma 3 by P a to the base 10.
And basically at higher confining pressures our shear strength will reduce and that is
expressed by this equation as your sigma 3 is increasing your phi will reduce. The phi naught
could be your shear strength at an average confining pressure equal to atmospheric pressure P
a.

¢=¢,-A¢ Log {';]

a

¢, is the friction angle at 6,=P,; A¢ is the change in friction

angle for 10 fold increase in the confining pressure
And that lower confining pressures, so at a sigma 3 less than P a, this quantity becomes
positive because your log of sigma 3 by P a becomes negative, your friction angle will
increase; at higher confining pressures your friction angle will reduce.
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Determination of material properties
# Material properties in Hyperbolic model: K, m, R, cand ¢
¥ Shear strength properties ¢, ¢ are determined from friaxial
compression or direct shear test data T

# K., mand R, are determined from the initial modulus terms
and the ultimate shear stress FEA & CM
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» a=1/E and b=1/(0y-03),
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¥ For determining these two values, Duncan and Chang have
suggested using data at 70% and 95% of the peak deviator
stresses instead of the entire data

» Data from three different confining pressures is required for
regression analysis

» These confining pressures should correspond to the
expected pressures in the project

FEA & CM Locture-28 modified hyperbolic model

So, our material parameters for the hyperbolic model are K e, m, R f, ¢, phi and then our K b
and n and the ¢ and phi can be determined from triaxial compression tests or direct shear test
data. And K e, m and R f are determined from the initial modulus terms and the ultimate shear
stress that I will explain. And basically, we have seen a graph between epsilon and epsilon by
sigma 1 - sigma 3 and we said that for a truly hyperbolic behaviour that graph is a straight

line.
a=1/E; and b=1/(c,~03),

And what Duncan and Chang have done is that you do not need to plot that line based on all
the data points; but you select two data points corresponding to 70 percent of the peak stress
and 95 percent of the peak stress and plot this graph of epsilon versus epsilon by sigma 1 -
sigma 3. And then the intercept will give you this a or the reciprocal of the initial modulus and

then the slope is your reciprocal of the ultimate deviator stress.

So, basically, it is a very simple one because now instead of using all the data points we use
only two data points, one corresponding to 70 percent of the peak stress and the other
corresponding to 95 percent of the peak stress and for determining the model parameters we
need to perform the triaxial compression tests or different confining pressures and the range of

these confining pressures should correspond to what we expect in the field.

So, if you are dealing with a dam of some 20 meters height, we can calculate what are the
operating range of pressures like 20 meters height multiplied by an average gamma of 20

means that 400 kPa and if your K naught is about 0.5 then you are confining pressure could be



of the order of 200 kPa. So, based on some empirical calculations like this we can decide what
should be the range of your confining pressures in the laboratory test.
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Determination of Shear strength parameters

Confining T Max. Max. vertical
pressie o d:tv:st:r s o (o f ;,JJ‘Z (o4 —:;,].‘2 [ coust |
o1 FEA &CM
345 1100 1445 895 950
o | 2w | a0 [ moo | 100
1035 2935 3970 2502.5 1467.5
1725 4755 6480 4102.5 23775

From p-q plot,
Cohesion c=50 kPa
Friction angle, $=34.7°

And let me illustrate this procedure with an example and here we have data from four
different triaxial compression tests performed at four different confining pressures of 345,
690, 1035 and 1725 and then these are the corresponding maximum deviator stresses 1100,
2020, 2935, 4755 and then the maximum vertical stress is basically sigma 1 - sigma 3 + sigma

3, 1445, 2710, 3970 and 6480.
Determination of Shear strength parameters

Confining Max. Max. vertical
pressure, o, deviator stress, oy p= q=
stress (o4 + 03)/2 (o4 — o3)2
(oq — o3k
345 1100 1445 895 550
690 2020 2710 1700 1010
1035 2935 3970 2502.5 1467.5
1725 4755 6480 4102.5 2377.5
From p-q plot,

Cohesion ¢c=50 kPa
Friction angle, $=34.7°

And then we can determine our p and q values, p is a sigma 1 + sigma 3 by 2, q is sigma 1 -
sigma 3 by 2. Then we can plot a graph between the p and q, p on the x axis and the q and the
y axis and then get the cohesion as 50 kPa and friction angle phi of 34.7 degrees and this is a



very simple thing that we learned in the advanced soil mechanics courses on the shear strength

of the soils.

If you do not want to draw the p-q diagram, we can draw four more circles and then draw a
common tangent and then we can get these values. The advantage of the p-q diagram is that
we can do the regression analysis. We can give this data to any calculator or Excel spreadsheet
program and then fit a straight line and get our intercept on the y axis and then the slope and
from that the phi is sine inverse of that slope and then the c is the intercept divided by cosine
phi. And in this case, the c is 50 kPa and phi is 34.7.

(Refer Slide Time: 18:38)
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And then for determining our Young's modulus parameters, our K e, m and R f we need two
data points corresponding to 70 percent of the peak stress and 95 percent of the peak stress
and then here I have illustrated that this is your peak stress 70 percent of this, 95 percent of
this and then the corresponding constraint we indicated as epsilon 70 percent that is the strain
at a stress equal to 70 percent of the peak stress and then epsilon 95 is the strain corresponding
to the 95 percent of the peak stress.

(Refer Slide Time: 19:29)
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And then we can plot a graph between epsilon and epsilon by sigma 1 - sigma 3 and then get
the intercept and the slope and the intercept is 1 by E i and b is the reciprocal of the ultimate
stress and R fis sigma 1 - sigma 3 f by sigma 1 - sigma 3 ultimate, that is this b.

(Refer Slide Time: 20:00)

» E,is determined at three different confining pressuires o,
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So, our E i we need to determine at least at 3 different confining pressures and then we can
plot a graph between log sigma 3 by P a and log E i by P a. So, our equation for Young's
modulus but anyway this is our equation for the Young's modulus and this we can rewrite as E
i by P a=K e times sigma 3 by P a to the power m and by taking the log on both the left hand
side and the right hand side, we get this.



E; is determined at three different confining pressures o,

A plot is made between 6,/P, and the corresponding E/P, in Log-
Log scale and then the K, and m are determined as intercept and
slope of line,

":r P-’

Log“{ ;; ] =Log K, +m [‘(’gm(;’)

a a
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@ m
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So, if you plot a graph between the log of E i by P a and log of sigma 3 by P a, this quantity

log K e is the intercept on the y axis and then the slope is your m.
Cj’:b -y
E;: = ¥, ﬁ _ [_g)
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Determination of Young's modulus parameters

0% stress level 95% stress level
Confiring | Max, |(3-mgk| & | gfloeoy) | (6 -05k | & [ gyflo-aq) =)
Preesure, | deviator
% | stess FEA &CM
oy = gk Al
345 1100 770 0018 |2337x10%| 1045 | 0.040 ] 3.828x10% nttns:f{nm&l.ﬁc.h}

690 | 2020 | 1414 | 0.0208 | 1471x10%| 1918 % | 0.047 2.445¢10°
1035 | 2935 | 2054.5 | 0.0275 | 1.338x10°| 2788.3 | 0.050 | 1.793x10°
1725 | 4756 | 33285 0026 | 7.811x10%| 4517.3 | 0.054 i 1.196x104

Instructor
Dr. K. Ruiagopﬂ

By plotting graphs between &, and e,/(o,-a), E; (=1/a) &
ultimate stresses (=1/b) can be determined

FEA & CM Lecture-28 medified hyperbolic modal 0

So, we have the basic data from four different confining pressures. And then we can take the
70 percent stress level and 95 percent stress level at each of the confining pressures. So, at a
confining pressure of 345, the maximum deviator stress is 1100. So, 70 percent of this is 770
and 95 percent of this is 1045 and then the corresponding axial strain is epsilon a and this is

epsilon a by sigma 1 - sigma 3 and epsilon a is of 0.04 at 95 percent, this is your this thing.



Determination of Young's modulus parameters

70% stress level 95% stress level
Confining Max. (o4 = a3 £y ef(o=03) | (0= o3) £y ef(c-04)
pressure, | deviator
T3 stress
(o4 — o3k
345 1100 & 770 0.018 | 2.337x10° 1045 0.040 | 3.828x10°
690 2020 1414 0.0208 | 1.471x10° 1919 0.047 | 2.445x10°
1035 2935 2054.5 | 0.0275 | 1.338x10°| 2788.3 | 0.050 | 1.793x10°5
1725 4755 3328.5 0.026 | 7.811x10° | 4517.3 | 0.054 | 1.195x10°

By plotting graphs between ¢, and &,/(c,-03), E, (=1/a) &
ultimate stresses (=1/b) can be determined
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Then we can plot graph between epsilon and epsilon by sigma 1 - sigma 3 at different
confining pressures. So, this is the graph for confining pressure of 345. I plotted a graph
between epsilon and epsilon by sigma 1 - sigma 3 and the intercept and the y axis a is this and

the initial Young's modulus is reciprocal of this that is 89518 and the b is this slope of this line
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that is the inverse of the ultimate stress.

FEA & CM
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4 50E-05

4.00E-05 y = 6.7773E-04x + 1.1171E-05
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5. 00E-06
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Confining pressure= 345

a=1.117’1)v(10"5;._EI = 89518

b=6.7773x10%; sigma-ult=1475
So, our sigma 1 ultimate is 1475 and this is the test, but 345 confining pressure and the sigma
1 - sigma 3 failure is 1100 and sigma 1 - sigma 3 ultimate is a 1475. So, our R f can be
determined as 1100 by 1475.
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Confining pressure= 630
a=6.9775¢10°%; £ = 143317
B=3.7176x10" sigma-uit=2689
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Confining pressure= 1035
a=7.8189x10%; Ei = 127895 (notice the data error here)
B=3.7176x10"; sigma-ult=4945
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And similarly at a confining pressure of 690, our a and B are this and confining pressure of
1035. And fact as we see at confining pressure of 345 our initial modulus is 89518 and at a
confining pressure of 690, our initial modulus has increased to 143317, but then at a confining
pressure of 1035, the initial modulus is reduced. That means that there is something wrong
with the data and that is not consistent with what we expect but, sometimes this is what

happens.
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Confining pressure= 345
a=1.1171x10%; E, =,89518
b=6.7773x10%; sigma-ult=1475
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axial strain

Confining pressure= 1035
a=7.8189x10°%, Ei = 127895 (notice the data error here)
B=3.7176x10*; sigma-ult=4945

When we do a laboratory test, we may get some value that is not consistent that could be
either because of the sample disturbances or because of not following the standard procedures
for doing the laboratory test. So, our sigma 1 ultimate is 4945.
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B=1.4782x10*; sigma-ult=57'65

FE& & CM Lecture-28 medified hyperbalic madel _.,,

Similarly at a confining pressure of 1725 the E i is this and sigma 1 ultimate is 6765.
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Confining pressure= 1725
a=3.9676x10¢%; E, = 252041
B=1.4782x10%; 5igma-ult=6?.55
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Young's modulus parameters, P,=102 kPa

Confining | (- | o55/P, E; EP, |(o-oay| Reofo,
pressure, oy
345 | 1100 | 3382 | 89517 | 67763 | 1475 | 075
90 | 2020 | 6765 |143317| 14051 | 2089 | 075
1035 | 2935 | 10447 [127695| 12539 | 4%45 | 059
| 1725 | 4755 | 16911 | 252161| 24722 | 6763 | 0703

Notice the inconsistent 3 data point - lower modulus

By plotting graph between Log (c./P,) and Log (E/P,) &
regression analysis,

K, =423
m= 058

By taking average value of R, at different confining pressures,

R=0.70

FEA & CM Lecture-28 modified hyperbotic model

So, if you look at our data at 345, our initial modulus is 89517, 690, 143317 and our 1035 is
127895, 1725, 2502161 and our sigma 1 - sigma 3 ultimate values are like this: Our R f is
sigma 1 - sigma 3 f divided by this ultimate value. So, at a confining pressure of 345, the R
is 1100 by 1475, so approximately 0.75. Once again at 690 it is about 0.75 and at 1035 it is

about 0.6, 1725 0.703.

i

jagopal




Young's modulus parameters, P,=102 kPa
Confining | (&y—os) oy/P, E E/P, (04—03)y R&=oyo,

pressure, oy

345 1100 3.382 | 89517 877.63 1475 0.75
690 2020 6.765 | 143317 | 14051 2689 0.75
1035 2935 10.147 | 127895 | 1253.9 4945 0.59
1725 4755 16.911 | 252161 | 2472.2 6763 0.703

Notice the inconsistent 3" data point — lower modulus

By plotting graph between Log (c,/P,) and Log (E/P,) &

regression analysis,

K. =423

m= 0.58

By taking average value of R, at different confining pressures,

R~=0.70
And what we do is we just simply take an average value of R f because we do not have a
different R f values a different confining pressures in that equation. So, we take an average

value of R f and use that same R f at all the confining pressures.

(Refer Slide Time: 27:01)
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K.= 1026265 = 423
m=0.5778 ~ 0.58

FEA M Lecture: 28 milled byperbotc

And if you plot a graph between so here, this we have at a sigma 3 of 345; the initial modulus
is 89517 and this is sigma 3 by P a and E i by P a and then at 690, 1035, 1725, we get different
sigma 3 by P a and E i by P a. And then we take the log of sigma 3 by P a and the x axis and
the log of E i by P a and the y axis and you see that at this confining pressure your Young's

modulus is reduced instead of increasing.



So, we might have as well omitted this data point, but anywhere just to illustrate I have
included this in the regression analysis. And if you do a regression analysis, you will get an
equation like this. So, our intercept in the y axis is 2.6265; our K e is 10 to the power of
2.6265 that is approximately 423 and our exponent is the slope of this line, there is
approximately 0.58.

(Refer Slide Time: 28:30)

If 5,25 kPa
N

Initial Young's modulus, E;=423 x 102 x (ﬁ) o |

E; = 19088 kPa FE&%FCM

Young's modulus at limit state when the mobilized SRS

shear strength is unity, . K. Rajagopal

E=(1-0.7)E, = 1718 kPa = 0.09.F,

FEA & CNt Lecture-28 modified byperbolic model
If 5,=25 kPa
0.58

Initial Young’s modulus, E=423 X 102 X (%)
E, = 19088 kPa

Young’s modulus at limit state when the mobilized
shear strength is unity,

E,=(1-0.7)2xE, = 1718 kPa = 0.09.E,

So, if you do this calculation at different confining pressure at sigma 3 of 25 our initial
modulus is 19088. So, for this particular case our R fis 0.7 and so if the limit state is reached
in that bracket 1 - sin phi times sigma 1 - sigma 3 by 2¢ cosine 5 + 2 sigma 3 sine phi, that
becomes 1. So, that E tangent becomes 1 — R f times 1 square multiplied by E i, that comes to
about 1718 and that is 9 percent of the initial modulus.

(Refer Slide Time: 29:25)



And we can do similar calculations for the bulk modulus and different confining pressures and
at 70 percent of the maximum deviator stress; the volumetric strains from different tests are
like this. And our bulk modulus is the mean normal stress that is sigma 1 - sigma 3 at 70

percent divided by 3 divided by epsilon v is your bulk modulus and then our sigma 3 by P a is

Bulk modulus parameters

Conlning | Max. {3y @y : 3 ok, | KR, |
pressure, | deviator e &;} K- {'—"—1:—!'" : #
o slress ]
{7y = a3k |
345 1100 770 0.12 35648 | 3382 | 349.49 |
690 2020 1414 0.95 49614 | 6.765 | 486.41 |
1035 2935 2054.5 1.23 55677 | 10.147 | 545,85 | e
1725 4755 33285 1.50 73967 16.911 | 72517 Dr. K,

By plotting graph between Log(o,/P,) and Log(K/P,) and

regression analysis,
K, = 204

n=044

FEA & CM Lecture- 28 madified hyperbalic model
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this Kby P a.
Bulk modulus parameters
Confining Max. (o) = Ga)rom £, i) oy/P, K/P,
pressure, | deviator (%) K== oA
Ty stress o
(o4 — o)y
345 1100 770 0.72 35648 3.382 | 349.49
690 2020 1414 0.95 49614 6.765 | 486.41
1035 2935 2054.5 123 55677 10.147 | 545.85
1725 4755 3328.5 1.50 73967 16.911 | 725.17

By plotting graph between Log(c,/P,) and Log(K/P,) and
regression analysis,
K, = 204
n=0.44

(Refer Slide Time: 30:04)
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FEA & CM Lacture-28 modified hyperbalic madel

And we can plot a graph between log of sigma 3 by P a and log of K by P a and then we get a
regression equation like this. And our K b is a 10 to the power of this intercept that is 204 and
n is the slope of this line that is 0.44.

(Refer Slide Time: 30:26)
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FEA B CM Lecture-28 modified hyperbolic model 10

So, our tangent Poisson’s ratio is now written as one half of 1 - E t by 3 K. In fact, we are not
going to use any tangent Poisson’s ratio and finite element calculations, because we are going
to use only the bulk modulus K and then the tangent Young’s modulus E t that we get from
that long equation. So, sometimes depending on the initial values, if your K is very small your

Poisson’s ratio might become negative.



Tangent Poisson’s ratio during the analysis is
computed as,

2 3K

In that case we reset the Poisson's ratio to 0 and then our E t is set as 3 times the K. In case, E
is more than 3 times the K, it is reset to 3K, because we do not want any negative Poisson’s
relation our analysis, our reasonable values for the Poisson’s ratio about maybe 0.25 to 0.45,
0.5.

(Refer Slide Time: 31:42)

Modulus & Poisson’s ratio at different stress states
Confining pressure 6,=100,c=50, =34.7°, K.=423, m=0.58,
K,=204, n=0.44 & R=0.70, K =3.64, (0,~0,)=455.13
l-by FEA &CM
hitpe/mptebaciny

nstructor
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N,

ratio ratio, v,
42653 3 206275 0.16

100 0219 305782 206275 0.25

200 0439 204665 206275 033

45513 1 3837.2 206275 (47

And just to illustrate at different shear stresses we see that our tangent modulus at the start is
42653 and our bulk modulus K remains constant, because it is not a function of the shear
stress is only a function of sigma 3. And our bulk modulus remains constant. And then our
tangent modulus will go on decreasing at higher shear stresses. So, to start with your Poisson’s

ratio is one half of 1 - E by 3K, E divided by 3 times this.



Modulus & Poisson’s ratio at different stress states

Confining pressure 6,=100,c=50, $=34.7°, K.=423, m=0.58,
K,=204, n=0.44 & R=0.70, K =3.64, (5,-0,)=455.13

1 E,
=203
(o0,—0;) |Stress E, K Poisson’s
ratio | ratio, v,
0 0 42653.3 20627.5 0.16
100 0.219 30578.2 20627.5 0.25
200 0.439 20466.5 20627.5 0.33
455.13 1 3837.2 20627.5 0.47

Now, you will get about 0.16. And as E is reducing, your Poisson’s ratio will increase. This is
what happens? At stress of 100 our Poisson’s ratio is increased to 0.25, at the stress of 200
0.33 and deviator stress of 455 our stress ratio is 1, that is the sigma 1 - sigma 3 by sigma 1 -
sigma 3 failure that is 1, the mobilized shear strength ratio is 1 and our Poisson’s ratio is 0.47
which is close to 0.5.

(Refer Slide Time: 33:19)

Modulus & Poisson's ratio at different stress states

Confining pressure 6,=200,c=50, ¢=34.7°, K,=423, m=0.58,
K.=204, n=0.44 & R=0.70, K =3.64, (0,~0,)=818.78

RPN FEA & CM

3K
(0,-0,) |[Stress E Paisson’s
| ratio ratio, v,
0 0 63760 27983 0.2

200 0244 43840 27983 0.4
400 0488 27639 27983  0.335
81878 1 5738 27983 0.466




Modulus & Poisson’s ratio at different stress states

Confining pressure 65=200,c=50, $=34.7°, K,=423, m=0.58,
K,=204, n=0.44 & R=0.70, K,=3.64, (6,-0,)=818.78

(0,—03) E, K Poisson’s
ratio, v,
0 0

63760 27983  0.12

200 0.244 43840 27983 0.24
400 0.488 27639 27983 0.335
818.78 1 5738 27983 0.466

So, actually let us just let me show you the Excel spreadsheet program for the modified
hyperbolic model. (Video Start: 33:33) In this modified hyperbolic model, we have more
number of parameters. The ¢ and phi are the shear strength parameters, sigma 3 let me just do
it at 100 and K e and P a are 423 and 102 and the exponent for the Young's modulus term is
0.48.

And then our E initial is 42653, our incremental strain is 0.002, for doing our triaxial
compression test R f'is 0.85, K b and n or 204 and 0.44. And then the bulk modulus is 20727
that will remain constant all through. And we can perform the triaxial compression test in the
same manner as what we had done in the case of bilinear elastic model and t states we

calculate the tangent Young's modulus.

And then, the incremental stresses is incremental strain 0.002 multiplied by the tangent
modulus. So, basically if you see this equation ¢ 16 times b 8, b8 is a 0.002 and c 16 is 42653
and incremental stress. And then the total axial stress is previous stress is 100 + 85 185 and
then as you go along your tangent Young's modulus goes on reducing and your Poisson’s ratio

initially it is about 0.166 then it has increased to 0.298364 and so on.

So, our Poisson’s ratio will go on increasing and our maximum are the limiting axial stresses
407 and let us see so here, around this 407 we have reached the limit state and our Poisson’s

ratio is reached about 0.491. And beyond that also it is changing, because our Young's



modulus will go on reducing. And you see at the limit state the initial the tangent Poisson’s

ratio has increased from an initial value of 0.155 to about 0.49.

So, that is what when we look at the volumetric strain graph it will initially compress at a very
fast phase, but then towards the limit state as the Poisson’s ratio approaches 0.5 your further
volumetric strains will not increase much. So, your volume strain graph will look something
like this, which is almost like our constant volume state. And then the stress strain curve is

similar to this, initial sigma 1 is 100, because our sigma 3 is 100.

Then with increasing axial strain, we get increasing stresses. And in this particular case, I have
plotted only up to 5 percent to axial strain. So, at 5 percent axial strain the sigma 1 is 412. And
as we go on increasing the axial strain, the axial stress will go on increasing without any stop.
And let me just illustrate, at a confining pressure of 100, our limiting Poisson’s ratio is about

0.49 actually it is it is gone going almost to 0.5.

And the initial Poisson’s ratio is about 0.155 and let us see what happens at a confining
pressure of 500 kPa. And we see our initial Poisson’s ratios very small 0.06. And it becomes
more and more brittle, because the ideal brittle material has a Poisson’s ratio of close to 0. So,
at a higher confining pressure our soil is becoming more and more brittle. So, this is what we

see 0.068 for the initial value.

And then as the shear stress has gone increasing, your Poisson’s ratio tends towards 0.5. So, if
your stress strain graph is something like. This initially it will increase very fast and then after
reaching the limit state it will increase very slowly. And the volumetric strain graph also is
very beautiful, because after limit state your further increase in the axial strains is not much.

Let me just change the limit on the x axis how do I change the limits.

The none I think I not able to get the change in the x value, but if you plot it the volumetric
strain, you see it is continuing to increase. Then after the limit state is reached, it is more or
less remaining constant. As you can see from the values here 1208, 1209, 121 and so on it is
basically it has reached constant volume state. So, because we are representing the constitutive
matrix in terms of a tangent Young’s modulus that is a function of the shear stresses and then

a bulk modulus that is not a function of the shear stresses.



There is no failure term in the bulk modulus. So, because of that, as the E reduces your
Poisson’s ratio will go on increasing towards 0.5. So, that is what we see here. So, the initial
Poisson’s ratio was 0.068 and then quickly it has increased to 0.175, 0.246, 0.295 and so on.
So, the other thing that we need to see is our sigma 1 failure should be 1883 as per hour

Mohr—Coulomb relation.

But then if we see this predicted sigma 1 it is much more than 1883, it is increase into to more
than 2000, that is what we see here. So, if you look at this it is you actually have to plot
beyond. I will not change this value, but you can do it yourself like you can increase the range
of the x values and the plot up to larger axial strain. Then we will see that your volume will

remain more or less constant.

So, let us just do for one more confining pressure. Let us say 200 confining pressure. And here
at a confining pressure of 200 our Poisson’s ratio is 0.12, at a confining pressure of 100 the
initial Poisson’s ratio was about 0.15. Now, it is 0.12 and if I change this confining pressure to
50. So, our initial Poisson’s ratio will be higher 0.18. So, we see that this modified hyperbolic
model is able to also incorporate the influence of tangent Poisson’s ratio on our predicted

volume changes and towards the limit state our volume more or less remains constant.

And the only thing that we notice here is that both the original hyperbolic model and also in
the modified hyperbolic model the predicted deviator stress is much higher than the theoretical
limit. Say for example, for this case of 50 confining pressure, the maximum sigma 1 is 222,
but your stress is predicted are much higher than 222. So, that is one thing that we need to fix
and that we can fix by decreasing the incremental strain ratio we can work with smaller strain

increments to increase our accuracy.

That is what we had seen with the bi-linear elastic model. The same principle works even with
the hyperbolic models. And here also we see our incremental stresses are much lower, because
our incremental strain is only 0.001 and because of that our stress predictions are slightly
better and they are more accurate. So, let us go back to our Power point file. (Video End:
46:50)

(Refer Slide Time: 46:53)



Modulus & Poisson’s ratio at different stress states

Confining pressure 6,=200,¢=50, ¢=34.7°, =423, m=0.58,
Ky=204, n=0.44 & R=0.70, K =3.64, (6,~6,)=818.78

RPN F:A i CM
LB ¢ o

=P
| ratio ratio, v,

0 0 63760 27983 0.2

200 0244 43840 27983 0.4

400 0488 27639 27983  0.335

81878 1 5738 27983 0.466

clure: 2B modilied hyperboic
model

So, the modified hyperbolic model is able to represent the stress strain behaviour and also the

constant volume state after the limit state.

Modulus & Poisson’s ratio at different stress states

Confining pressure 6,=200,c=50, $=34.7°, K,=423, m=0.58,
K,=204, n=0.44 & R=0.70, K =3.64, (c,—0,)~=818.78

vi=3073%)
Poisson’s
. ratio, v,
0 0 63760 27983 0.12
200 0.244 43840 27983 0.24
400 0.488 27639 27983 0.335
818.78 1 5738 27983 0.466

(Refer Slide Time: 47:13)



» Modified hyperbolic model is better than the original
model as it can represent the constant volume state
after reaching the critical state.
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# This model has been applied succassfully for analysis
of several large earth dams.

# Both the variation of modulus and strength of soil is
represented by the hyperbolic models reasonably
accurately.

FEA & CM Lecture-28 modified hyperbolic model h
B~

And it is slightly better than the original hyperbolic model, but then it is also elastic. So, you

will only predict volumetric compressions, you will not be able to predict the dilation.

(Refer Slide Time: 47:32)
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So, this is the comparison between the experimental data and then the finite element predicted
the value in stress strain graphs, at confining pressure of 345 and then 1725. These are the two
extreme pressures. And our hyperbolic parameters they were estimated based on only two
values, one at 70 percent stress level and the other at 95 percent stress level, but still we are

able to get a good prediction at all the stress levels.

So, that is the feature of this model. The Duncan and others they have analyzed a lot of data
and then based on that they selected the only two data points, one at 70 percent and 95



percent. And then they said that you will be able to represent the entire stress strain curve. So,

you get a good match at both the confining pressures using the same K and m parameters.

(Refer Slide Time: 48:54)
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¥ Predicted volume strains remain constant after critical state

# Finite element model is unable to predict dilation

L
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And then the volumetric strain graphs also are like this. And this is the experimental data.

There is lot of dilation, after reaching the limit state whereas, in the finite element model there
is only volumetric compression. So, initially there is volumetric compression and then after
some time after reaching the limit state, the volumes remain constant in the finite element

analysis, because we have not modeled the dilation.

So, at a higher confining pressure, because you reach a limit state at a larger axial strain we
see that up to a larger axial strain, we have not reached the plastic limit state. So, we were
compression even in the experimental data. Then after this the volume strains have slightly
started increasing, but then if you look at the slope of this line and this line, there are two

different values.

The slope at a lower confining pressure is higher, that means you get more dilation; whereas,
at a higher confining pressure you do not get too much of dilation, because the confining
pressure is so much that the soil cannot expand much. And this particular one is the finite
element predicted volume change data. After the critical state the finite element predicted the
volume strains they have remained constant, but then the finite element model is not able to

predict the dilation.



So, that is a slight improvement in the original hyperbolic model that we are able to predict
the constant volume state, after the limit state, but we are not able to represent the failure. And
at higher strain rates like if you apply the strain increments at very coarse increments our
predicted axial stresses are much higher than the theoretical limit. So, that we need to

somehow correct, that we will see in the next class.

How to do that and before that if you have any questions please send an email to this address

profkrg@gmail.com and then I will respond back to you. So, thank you very much.




