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So hello students now let us start doing some constitutive to modeling and one of the simplest 

constitutive model that we can think of is a bilinear elastic model and let us see how we can 

do some computations by using this bi-linear elastic model. 
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And the basis for this is our decomposition of the stress tensor. In one of our previous classes 

we had seen that the total stress tensor can be decomposed into some spherical stress tensor p 



and then the deviatoric stress tensor as the p is our hydrostatic pressure state that does not 

cause any failure because it is compression from all the directions and the soil is extremely 

strong in compression in fact in pure compression it will not fail. 

 

And then the failure is only because of our shear stress and then we can actually control our 

parameters. So, there are different modulus terms like the bulk modulus that controls the 

volumetric strains and then the spherical stress tensor and then the shear stresses are 

controlled by the shear modulus. The shear stress is at the g times gamma where gamma is 

our shear strain and by playing with these numbers we can approximately simulate our 

strength of the material and so on and. 
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So this is how we decomposed our total stress tensor into a hydrostatic stress tensor or the 

spherical stress tensor and then and then the deviatoric stress tensor S xx, S yx, X z and so on. 
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And our constitutive equations we have seen in terms of the Young's modulus and Poisson’s 

ratio. We can think of the same constitutive equation in terms of other parameters the bulk 

modulus and shear modulus or the bulk modulus and Young's modulus and so on. So, that we 

can actually get more flexibility. 
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And when it comes to the soils the simplest strength equation can be obtained by using the 

Mohr Coulomb Strength theory where we can say that our tau max is c + sigma and tan phi 

that is an equation to apply on a particular failure plane, but in more general sense we cannot 

apply that c + sigma and tan phi we can only apply it in terms of our principle stresses sigma 

1 and sigma 3. 

 

And our Mohr Coulomb yield surface in the tau sigma and plane on the x axis we have the 

shear stress sorry the normal stress sigma and then on the y axis we have the shear stress tau 

and in this space this is our shear surface or the yield surface. The intercept on the y axis is 



your cohesion at the cohesive strength and the slope of this line is the friction angle phi and if 

you draw any more circle based on the stress state that we have if the Mohr circle is within 

the yield surface we say that the stress is in the elastic state. 

 

And if it is just tangent to the yield surface we say that it is at the limit state and anything 

anymore circle that is cutting across the yield surface is not admissible it is not possible then 

we have to do something whenever that happens and from this Mohr circle that is just tangent 

to the yield surface we can by looking at this triangle OPQ we can derive a relation between 

the sigma 1 and sigma 3 in terms of the c and phi.  

 

The sigma 1 is the maximum principle stress, sigma 3 is the is the minor principle stress and 

sin phi is PQ by OQ. PQ is the opposite and OQ is the diagonal. OQ is this c times cotangent 

phi the small length up to the y axis and then this length that is the mean normal stress sigma 

1 + sigma 3 by 2. 
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And sin phi is PQ by OQ and by simplifying this equation we can write the sigma 1 f that is 

the maximum principle stress sigma 1 is 1 plus sin phi by 1 - sin phi times sigma 3 + 2 c 

cosine phi by 1 - sin phi that is equal to K p. This 1 + sin phi by 1 - sin phi is our passive 

pressure coefficient K p and this term cosine phi by 1 - sin phi is the square root of K p and 

we can define a yield function or yield surface F in terms of this by slightly reformulating this 

like this sigma 1 - sigma 3 - of sigma 1 + sigma 3 sin phi – 2 c cosine phi.  



 

 

Actually this type of drawing the more circle we can do it on a graph sheet, but we cannot 

implement this in a computer program and we need some other method for seeing whether 

we are in the elastic state or the plastic state and for that this type of equation they help us. 

So, if your F is less than 0 the soil is in the elastic state and F is 0 and the soil is in the plastic 

state or the limit state and F greater than 0 is not admissible. We cannot accept any stress 

state that is crossing the yield surface. 
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And based on these observations we can develop one model called as bilinear elastic model 

in terms of the bulk modulus K and the shear modulus G and the K is the bulk modulus that 

relates the bulk stresses or the volumetric stresses and then the volumetric strains and that is 

K is E by 3 times 1 - 2 mu and we can also write it as the mean normal stress divided by the 

corresponding epsilon v.  



 

 

G t is the tangent shear modulus it relates the shear strain and the shear stresses and the G t is 

related to Young's modulus and Poisson’s ratio is E by 2 times 1 + mu and if you formulate 

our constitutive matrix in terms of K and G we can calculate our tangent Poisson’s ratio mu 

in terms of the K and G as mu is a 3 K  2 G by 6 K + 2 G and the subscripted t for the shear 

modulus is to say that our shear modulus will change during the analysis. 

 

And our constitutive matrix in terms of the K and G is written like this. Here the stress is 

equal to constitutive matrix multiplied by strain vector and if you look at this say at the limit 

state as the shear modulus tends to 0 our Poisson’s ratio will tend to 0.5. 
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And our shear modulus G we can control based on whether our Mohr circle is in the elastic 

state or at the limit state and our bulk modulus we can keep it as constant because there is not 

going to be any failure because of the spherical stresses and the shear modulus G is set to 

some initial value when our yield function is less than 0 and when the yield function is 

greater than or equal to 0 we set the G to a small value G t very close to 0. 

 

But not 0 so that any further increase in the shear stresses will not happen. So, beyond that 

plastic limit even if you increase the shear strains the shear stresses will remain more or less 

constant and in this state our Poisson’s ratio tends towards 0.5 and this is what we have seen 

earlier and if you plot a graph between the J 1 and epsilon v it is a straight line that is the K 

and then the tau versus gamma is initially the shear modulus is G i up to some limit. 

 

When your yield function becomes 0 or greater than 0 and beyond that the G is set to some 

small value G t it could be 1 percent of the initial value or 0.1 percent and so on like that we 

can decide based on the problem that we have and there is another method of forming the 



constitutive matrix in terms of bulk modulus and then the Young's modulus instead of the 

shear modulus we can directly formulate in terms of the Young's modulus. 

 

And this is the equation of the constitutive matrix in terms of our bulk modulus and then the 

Young's modulus and then the tangent Poisson’s ratio is one half of 1 - E by 3 K and the yield 

limit our E could be very small and so at that stage our Poisson’s ratio will tend towards 0.5.  
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So, let us look at our K G type model the bilinear elastic model. Initially our G the shear 

modulus is set to some finite value and then once the yield function becomes positive that 

means that our Mohr circle is just crossing the yield surface. We set the tangent shear 

modulus to a small value as 0.001 G i or 0.0001 G I and then we continue the analysis and at 



any stage to check whether our stress state is within the elastic state or the plastic state we 

look at the yield function value.  
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Let us apply this model the K G model or the bilinear elastic model to performing a triaxial 

compression test and this demonstration is suitable for hand calculations like whatever I am 

demonstrating is only for hand calculation so that you can understand the procedure, but the 

same thing we can apply it in any finite element program and there are several calculations 

that we cannot imagine or we cannot imagine doing that by hand.  

 

Let us take the triaxial compression test performed at a confining pressure sigma 3 of 100 kPa 

and let our cohesive strength be 25 and the friction angle is 35 degrees and our Young's 



modulus is 35,000 and then the Poisson’s ratio is 0.35 and our triaxial compression test is a 

strain control test. We are applying some strain and then measuring the reaction force through 

our proving ring.  

  

 

Let us say that we are applying axial straining in increments of 0.002 it could be anything like 

just applying this in some reasonable value so that within short number of cycles we can 

complete the analysis. So, our epsilon Z that is in the vertical direction is 0.002 and at the 

start of the test all the stresses sigma 1 sigma 3 they are equal and it is equal at 100. So, if you 

substitute the sigma 1 and sigma 3 of 100. 

 

And then the c and phi in our yield function equation it is - 155.67 and obviously the stress 

state corresponding to the all round pressure state is at dot on the normal stress axis and its 

within the yield limit. So, our F the yield function value is negative. So, that means that we 

are in the elastic state and here in the triaxial compression test we have only two stresses. One 

is the confining pressure. 

 

And that is constant it is actually it is like an axis symmetric case where we have the radial 

stress sigma 3 and then the vertical stress sigma 1 and we can work in terms of these two 

stresses that will completely describe the stress state within the triaxial compression test. 
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Now we are applying axial strain increment delta epsilon zz as 0.002 and then the strain 

increments in the radial direction in the x and y directions are - mu times delta epsilon z and 

our incremental volumetric strain delta epsilon v is delta epsilon xx + delta epsilon yy + delta 

epsilon zz. Actually I could have also written it as a delta epsilon r in that case delta epsilon v 

is a two times delta epsilon r + delta epsilon z. 

 

Just to make it a bit more clear I am using x and y coordinates but it should be just an odd 

coordinate, but multiplied with 2. So, delta epsilon v is 1 - 2 mu times delta epsilon z and that 

is 6 times 10 to the power of - 4 and if delta epsilon z is compression delta epsilon v is also 

compression because it has the same sign and during the deviator stress application that is in 

the second phase we are applying axial strain. 

 

And our confining pressure remains constant sigma 3 remains constant at 100. So, that means 

that our delta sigma xx and delta sigma yy are 0 and our initial bulk modulus is E by 3 times 



1 - 2 mu that is a 38888.89 and our initial modulus a shear modulus is E by 2 times 1 + mu 

that is 12,962.96 and let us say that the tangent shear modulus after exceeding the yield limit 

is 0.001 times G i that is for 12.96. 
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And the constitutive matrix for the triaxial compression test can be written like this delta 

sigma xx delta sigma yy delta sigma zz delta sigma xz. Actually this is you can also take it as 

delta sigma r delta sigma theta and then delta tau, but I am just writing it in terms of x and y 

for better clarity and our K + 4 by 3 G is this the previous step we have calculated both K and 

G. 

 

So, if you calculate K + 4 by 3 G is 56,172 K – 2 by 3 G is this and our strain increment is - 

0.35 times 0.002 in both x and y directions and then delta epsilon z is 0.002 because if you 

are compressing in the axial direction there has to be an expansion in the radial direction. So, 



we have - and if you do this our radial stress increments are coming out as 0 then the axial 

stress increment is 70. 

 

And actually that delta sigma z is just simply E times that is Young’s modulus is given as 

35,000 multiplied by delta epsilon z 0.002 that is 70 that shows that all these calculation 

whatever we have done is correct and so we see that as we are applying the axial compression 

during the second phase of the test our confining pressure remains constant.  
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So, now let us do some calculations so initially our sigma 1 and sigma 3 are the same 100 and 

the F is - 155 and the volume strain is 0 that is the start and let us  increase the axial strain to 

0.002 and delta sigma z is 70. So, our sigma 1 is 170 sigma 1 is the vertical stress that is 

sigma z and our F value is - 125 and the volumetric strain increment is 6 times 10 to power of 

- 4 and then let us increase the axial strain to 0.004.  



 

Once again since we are in the elastic state we use our delta sigma z as E i multiplied by delta 

epsilon z. So, that is 70 so our sigma 1 is 240 and our yield function is - 95 and our 

volumetric strain is 12 times 10 to the power - 4 and then we continue and you see at 0.01 our 

sigma 1 has reached 450 and our yield function value is - 6.42 and the volumetric strain is a 

30 times 10 to the power – 4. 

 

And since our yield function value is negative when we apply the next strain increment we 

get stress increment of the same thing 70. So, sigma 1 is 520 and now we see that when we 

calculate the yield function value it has become positive this is + 23.425 which is greater than 

0. So, that means that the soil has reached the plastic limit and now we have to be alert and 

see what we should do so that any further increase in the axial strain will not increase the 

shear stresses.  
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So, at this stage what we do is we can reset the shear modulus to a small value 0.001 times G 

i that is 12.96 and then our tangent Poisson’s ratio is 3 K – 2 G by 6 K + 2 G that comes to 

0.499 and our incremental volumetric strain is 4 times 10 to the power - 6 then increase in the 

axial stress is 0. 07 which is a very small compared to the previous value of 70. So, the 

vertical stress. 

 

And the volumetric strain changes after the plasticity is; see previously we were here at a 

strain of 0.012 and our sigma 1 was 520 and the yield function value is a 23.425 and our 

volumetric strain was 36 times 10 to the power of - 4 and now let us increase the strain to 

0.014 that is we applied further strain increment of 0.002 and now our delta sigma z increases 

by only 0.07 because our shear modulus is reduced to a small value of 12.96. 

 



Previously it was 12,960 now it is 12.96. So, our delta sigma z is only 0.07 so our sigma 1 is 

520.07 and then our volumetric strain increment now is only 4 times 10 to the power of – 6. 

So, this is our volumetric strain and if you increase the strain by another 0.002 your strain 

increases to 0.016. So, our sigma 1 is more or less remaining constant at 520 and our 

volumetric strain is also remaining constant more or less constant.  
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So, if you plot the stress-strain graphs with increasing axial strain initially your deviator 

stress will go on increasing, but after the yield limit it remains more or less constant that is 

what we have seen here. Once it has reached at 520 it has remained more or less constant, it 

is only increasing by a small value and similarly after you reach the plastic limit your volume 

has more or less remained constant because our Poisson’s ratio now is a very close to 0.5 that 

shows that the soil is incompressible. 
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And just a note so as our normal stresses in the triaxial compression test they are both 

principal stresses sigma 1 and sigma 3. So, that we can directly apply our Mohr Coulomb 

relation and just for the purpose of hand calculation that was simple to illustrate that beyond 

our yield limit when our yield function value is greater than 0 we set the shear modulus to a 

small value and then we see that any further increase in the shear stresses does not happen. 

 

But in a real finite element analysis is actually it is a very cumbersome process because we 

solve first for the displacement strains, stresses and then the stresses are the Cartesian stresses 

sigma xx, sigma yy and tau xy and then from these we need to estimate the principles as 

sigma 1 and sigma 3 and then check for the yield limit in terms of our sigma 1 and sigma 3 c 

and phi.  
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So, actually after reaching the plastic state the axial stress and the volumetric strain have 

remained more or less constant. So that way we should be happy that we are able to simulate 

some limit on the shear stress. It is not increasing without any bound and then our volume is 

remaining constant after the failure, but then in this case our sigma 1 obtained is 520 while 

the exact value is 465.  

 

There is a huge difference. In fact in terms of percentage it might work out about 20 percent 

and if this happens at a small element level if you apply it to any bearing capacity problem or 

something your bearing capacity estimate could be totally different or if you apply it to any 

slip circle analysis we will see that our factor of safety is very, very high. Instead of getting 

1.3 you might end up getting 1.7, 1.8 that is because of our wrong estimation of our failure 

stresses.  

 

So, how do we increase the accuracy? See the strain increment is something that we can 

control. So, instead of applying the strain increment in terms of 0.002 let us say we apply this 

in 0.001 your solution accuracy might increase a little bit that we will see through the excel 

program, but then if you reduce this strain increment the number of computations is going to 

increase and the solution time will be much longer.  

 

So, that also we have to keep in mind and so we need a better procedure to obtain more 

accurate result like can we directly estimate our 465 by doing something else that we will see 

later. 
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And the advantage of this bilinear elastic model it is a very simple model and we are able to 

utilize the shear strength parameter c and phi and then put a limit on the stresses that we 

generate and it is able to represent the limit state of the soil and after reaching the plastic limit 

our shear stresses have more or less remained constant and then we are able to represent the 

constant volume state after reaching the plastic state. 

 

So, that is one of our observations from our laboratory test. At critical state our shear stress 

remains constant and then volume also remains constant. So, that we are able to simulate by 

using a simple bilinear elastic model and all the limit solutions like our bearing capacity or 

the lateral earth pressures or the factor of safety of the slope on against the slip circle failure 

we can simulate by using the simple bilinear elastic model. 

 

But the limitation is the modulus is not a function of confining pressure and then not only that 

as the stress is increasing your modulus should go on decreasing, but here we have only a 

bilinear elastics. So, our initial modulus remains constant up to shear failure and then after 

that once again it remains constant at a very small value, but in our stress strain test we see 

that the stress and strain are curvilinear graphs not straight lines. 

 

And another limitation of this bilinear elastic model is we are not able to simulate volume 

expansion under the shear strains and the strain hardening and strain softening are also not 

simulated. We need to go in for better models and if our strain increment is very large then 

we could have very high errors. So, instead of using a strain increment of 0.002 let us say we 

used 0.1 or 0.005 what would have happened that we will see through the excel program. 

 

And our address could be, very, very large depending on the strain increment that we use. So, 

let me just illustrate some applications for the bilinear elastic model. 
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And here is an application for predicting the lateral pressure coefficient under active 

deformations. So, we have a retaining wall, we have subjected to lateral translation and we 

know that our lateral pressures will go on reducing and the y axis we have the K that is the 

net lateral force divided by 1 half gamma h square. The net lateral force is so we are applying 

equal horizontal displacement to all the nodes on the retaining wall. 

 

And when you apply any displacement the programs they calculate a reaction force from our 

integral B transpose sigma we calculate reaction force and we can sum up all those reaction 

forces at these nodes and then that divided by 1 half gamma h square will give you the K and 

so for Young's modulus of 25,000 you need more deformation whereas with Young's 

modulus of 50,000 you need a lesser deformation and our phi is 40 degrees.  

 

So, our K active is about 0.217 which is approximately represented by both these graphs and 

with the modulus of 50 000 we reach the active state faster and the percentage deformation 

that you need is about 0.2 percent, but when your Young's modulus is only 25000 you need 

almost 0.4 percent. 
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And this is with three different friction angles 30 degrees, 40 degrees, 50 degrees and with 30 

degrees your K is the one third and when it is 40 degrees it is 0.217 and with 50 degrees it is 

very small and you see that with the 30 degrees you need a lesser deformation compared to 

50 degrees to reach the active state and the Young's modulus is the is the same for all the 

three cases just to illustrate what is the effect of friction angle on the lateral earth pressures 

this example was worked out. 
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And let us look at the passive state. So, this is on the x axis we have the passive deformation 

that is the wall deformations into the soil and the K 0 is 1 and as the wall is pushed into the 

soil your lateral pressure will go on increasing and for 30 degrees your K P is 3 and the 

lateral pressure coefficient will go on increasing, increasing and at lateral strain of 2.6 percent 

the soil has reached the plastic limit of K P of 3. 



 

And when friction angle is 35 degrees it required 3.7 percent. So, you compare this 2.6 and 

3.7 to the deformation that you require in the active state. See for 30 degrees your required 

amount of deformation is only about 0.35 percent this is for a E of 25,000 and for 40 degrees 

we need about maybe 0.4, 0.5 or something, but in the case of passive you require much 

larger deformations 2.6 and the 3.75. 
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And this is the result with two different K 0 values K 0 of 1, K 0 of 2. See when the K 0 is 

higher you require smaller deformation because the K P is 3 and K 0 is 2 and so that means 

that as you are pushing the soil it can reach faster to reach a K of 3 as compared to reaching a 

K of 3 from a K 0 of 1. So, here this both red and green lines are corresponding to a friction 

angle of 30 degrees. 

 

The K P is 3 when your initial K 0 is 1 you require a deformation of almost 2.6 percent, but 

when your K 0 is 2 you require only 1.4 percent. You see the drastic reduction that is because 

your initial stress state itself is closer to the passive pressure state and when friction angle is 

35 degrees and the K of 1 you require about 3.7 percent of the wall deformation to reach the 

passive state.  

 

So, this the bilinear elastic model is a very simple one and this is one of the first constitutive 

models that we have worked at and it is easy to implement because all we are doing is 

controlling the shear modulus values and the shear modulus initially is very high, but then 



after reaching the limit state the G is set to a small value so that your further increase of the 

shear stresses is more or less 0.  

 

So, with this simplistic model we can predict our bearing capacity solutions or any limit 

solution like your lateral earth pressures behind the retaining walls or the slip circle analysis 

of slopes and prediction of the factor of safety. So, now let me show you one excel 

spreadsheet program. (Video Starts: 38:45). And we can do some interesting calculations. 

This is a bi-linear elastic model in terms of shear modulus and bulk modulus. 

 

And our initial sorry the Young's modulus is 35,000 and the Poisson’s ratio is a 0.35 and this 

particular one is for simulating the triaxial compression test and let us take the same values as 

we have done in the class. Let us take a c of 25 the friction angle of 35 degrees and the sigma 

3 is 100 and the maximum axial stress is 465 and then let us apply axial strain in increments 

of 0.002 and the reduction factor for the shear modulus is a 0.001.  

 

So, the tangent shear modulus is 12.963 and then the tangent shear modulus is 0.49 and our 

calculations are like this. So, the axial strain of 0.002 the incremental radial strain is a – 

0.0007 and then the volumetric strain is 2 times the radial strain + epsilon z that is 6 times 10 

to the power of - 4 and the increment in the axial stress is 70 and this is our yield function 

value - 125 and our axial stress will go on increasing from 100 to 170, 240, 310, 380, 450, 

520.  

 

At this stage we see that our yield function value is positive. So, the further calculations 

should use our tangent shear modulus instead of the initial shear modulus. So, that is done our 

dsz that is the axial stress increment is only 0.07 and our incremental volumetric strain is also 

very small and so you see here our volumetric strain is more or less remaining constant and 

our axial stress is remaining very close to 520.  

 

So, with increase in the axial strain it will continue at the same value. Now let us see what 

happens see if I apply this in faster increments 0.005 and see our predicted yield stress is 625. 

So, it is about 625 whereas our maximum stress is 465. So, we see that the accuracy of the 

solution depends very much on the axial strain increment. Let us now apply this in very small 

increment 0.001. 

 



And now we see that our predicted stress is 485 which is better than 520, but then our number 

of load steps has increased. So, that means that we have to spend more time and more 

computational effort to improvise our solution. So, we can further increase this let us say 

0.0005. So, our incremental stress is only 17.5. So, our yield stress is 467.5 which is very 

close to 465. 

 

But then the penalty that we are paying is in terms of the number of steps of analysis. So, our 

stress strain graph is like this. So, our yield stresses are very close to 467 and then the 

volumetric strain is also very good like after initial volumetric compression the volume will 

remain more or less constant during the critical state or in the plastic state. So, at least these 

two aspects we are able to satisfy that after failure the shear stress should remain constant. 

 

And then after failure your volumetric strains should remain constant. So, the bilinear elastic 

model is able to represent some aspects of our stress-strain relations that we have developed 

that beyond the plastic limit the stress will remain constant and then the volume will remain 

constant and since we are applying Mohr Coulomb relation we should be able to predict very 

accurately all the limit bearing capacities or the lateral earth pressures or our factor of safety 

against the slope failure in terms of the slip circle and so on.  

 

(Video Ends: 44:45) So, that is a brief introduction to our bilinear elastic model and if you 

have any questions please send an email to this address profkrg@gmail.com and then i will 

respond back to you. So, thank you very much. We will meet next time.  


