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So, hello student let us continue from the previous class and in today's class let us look at a 

very typical problem that we face in geotechnical engineering that is the modelling of 

interfaces. Because whenever there is a joint there is a possibility for relative slip and in 

geological medium it is very common for the occurrence of joints and interfaces because 

whenever we see any Rock medium. 

 

You will see some joints along with the sliding could take place or within the soil deposit 

there could be a thin layer of soft clay along with the sliding could take place. 

(Refer Slide Time: 01:07) 

 

And when we do any finite element modelling we should be able to capture the behaviour. 

Apart from those natural phenomenons we could have joints in several other cases like for 

example here we have a pile that is installed in the soil and let us say you are pulling it out. 

And the predominant resistances from the is from the resistance the skin friction that is acting 

along the surface apart from the weight of the pile. 

 



And the same thing happens even when you compress the pile some capacities because of the 

skin friction and some capacities because of the end bearing. And by using the special type of 

joint or interface elements we will be able to simulate what is happening along the joint 

between these 2 materials. Like a pile that could be made of reinforced concrete or steel and 

then the soil and by in the process we should be able to get the interaction that is taking place 

between the soil. 

 

And then the pile and we would like to know how much of the applied loads are transferred 

into the into the soil through the pile. And in another case we may have some geosynthetic 

type reinforcement in reinforced soil embankment and we would like to know how much pull 

out force that we can apply for a given length of the geosynthetic. And how the loads are 

transferred from the geosynthetic into the soil and that also requires us to model the interface 

between the geosynthetic. 

 

And then the soil then of course as I mentioned earlier the rock joints is a very common 

occurrence whenever we deal with rock mechanics problems. 

(Refer Slide Time: 03:12) 

 

And we could also have the joints between facing blocks within a reinforced soil and back 

within a reinforced soil wall or let us say rock joint or sometimes we collect a non-disturbed 

rock sample. Then we see one seam that is there inside embedded as a geological formation 

and we would like to know its strength and then how it is going to offer the resistance. All 

these things we can do by modelling with a with an interface element. 

(Refer Slide Time: 03:57) 



 

And even in the construction industry whenever we have a motor wall brick masonary wall 

we may need to to simulate the joints between these bricks so, that we can estimate the 

behaviour. Then in another example is between a retaining wall and then the soil. Let us say 

our retaining wall is deforming away from the soil either by rotation or by bulging out. Then 

what happens should the soil stick to the retain wall then we will transfer unnecessary 

magnitudes of the shear stress into the soil. 

 

Like these are not real but because of the numerical improper modelling we could be 

transferring some additional Shear stresses that might lead to failure. And to prevent that we 

can we can place an interface between the wall panel and then the soil so, that the sliding 

relative sliding can take place against the retaining wall.  

(Refer Slide Time: 05:14) 

 



So, there are different types of joint elements that have been developed in the past 50, 60 

years. Originally in 1967 is not exactly the joint element that we know as of now but it was to 

simulate the slip between reinforced concrete and then the steel reinforcement and they called 

these elements as nodal link elements way back in 1967. And later on people started using 

thin isoparametric elements the Continuum elements. 

 

And then later the zero thickness isoparametric elements have come in 1968 and then 1970s 

and 1981 there were several papers. 

(Refer Slide Time: 06:07) 

 

See these are all some of the papers that were published on the joint elements and the first 

one that was published in 1967 by Ngo, D and Scordelis that was for finite element analysis 

of reinforced concrete beams and in that paper they proposed one simple element that can 

simulate the slip between the steel reinforcement and then the concrete. And then later on 

Goodman Taylor and Becky and others they started working on zero thickness joint elements. 

 

Initially the normal joint elements but later isoparametric joint Elements which are 

compatible with our isoparametric continuum elements. 

(Refer Slide Time: 07:03) 



 

And the element that was developed in 1967 by Ngo and Scordelis is something like this is 

actually you connect 2 points one point on the concrete and the other point on the on the steel 

through 2 springs one is a normal spring and then the other is a tangential spring. Like this 

say this K n is a normal spring between the concrete and the steel and the K h is the tangential 

spring between the concrete and the steel. 

 

And the displacements on both sides of the interface are referred as u 1 v 1 u 2 v 2 where u sir 

the tangential displacements and then the v is your normal displacement with respect to your 

interface and our H is the tangential spring and v is the normal spring. So, we need to define 

what is the tangential direction so, that we can assign the stiffness to these elements properly.  

(Refer Slide Time: 08:29) 

 



And here it is say here we have a an upper surface like this. And then a lower surface one 

could be really one could be related to concrete and the other could be related to steel and we 

have 2 springs the black coloured ones are the normal springs 1 2 3 and then this red colour 

ones are the shear springs and there is no separation between these 2 surfaces. In fact the 

separation that I am showing is only just for illustration purpose but it is not so in reality. 

 

And there are 2 nodes defined with the same coordinates and these 2 nodes are connected 

with the normal spring and then the tangential spring and we have somehow defined the 

tangential direction for these spring elements that we do by defining 2 additional nodes. 

Basically this element has 2 nodes between which these 2 Springs the normal and tangential 

Springs are connected but then we need 2 other nodes to define the tangential direction. 

(Refer Slide Time: 09:40) 

 

And we will have a Shear deformation along the interface that is u 2 minus u 1 where u 2 and 

u 1 are the shear displacements tangential to the interface and the relative normal deformation 

is v 2 minus v 1 that is normal to the interface direction. And these are relative to the 

interface these are not global displacements. See the global displacements could be u x and u 

y and we need to apply the direction cosines to convert the global displacements to the 

element directions. 

 

And we can write the constitutive stiffness as K s and K n basically there are 2 stress 

components and so, we will have 2 stiffnesses one is in the shear direction and the other is in 



the normal direction and our there is there are no strains because this being an element of 

zero thickness we cannot define strain per se because there is no length or there is no 

thickness we define only the relative displacement between the 2 surfaces.  

 

So, if you have 2 surfaces whether they are sliding against each other or they are separating 

out or they are compressing against each other and that is enough for us to calculate the 

stresses by multiplying the relative displacement with these stiffness coefficients case and K 

n and the units for these are the F by L Cube units kilo Newton per cubic meter. So, that this 

multiplied by our displacement relative displacement will give you the stress either the shear 

stress or the normal stress. 

(Refer Slide Time: 11:36) 

 

And the shear strain is u t 2 minus u t one actually the subscripted t refers to the tangential 

direction to be more specific Epsilon t is the relative Shear displacement between the 2 nodes 

node one and node 2 and the normal strain Epsilon n u n 2 minus u n one that is the relative 

normal deformation. 

 



 And in terms of the global displacements u x and u y we can get the local displacements by 

applying our direction cosines cosine Theta and the sin Theta like this. 

  

And then apart from these 2 nodes node one and node 2 we define 2 other nodes node 3 and 

node 4 for getting our tangential direction. 

(Refer Slide Time: 12:36) 

 

And our Epsilon t and Epsilon n are the shear strain and the normal strain can be obtained in 

terms of the Cartesian displacements are the 2 nodes 2 and one like this. And then we can get 

our global stiffness matrix as a transpose C A where C is our K s and K n the constitute 

matrix. So, the C is this and our direction cosine matrix is this to convert from the global 

sorry from the local directions to the global directions. 



 

(Refer Slide Time: 13:22) 

 

So, actually this looks very similar to our bar element stiffness matrix because we have the 

same terms like cosine Square sine square and so on and cosine Theta sin Theta for all the off 

diagonal terms. And so, these nodal link elements that were developed in 1967 they enabled 

early researchers to model the slip between the 2 surfaces the concrete and the steel however 

these are not Continuum elements.  

 

 

So, actually these are a discrete provided at discrete points and these are not really compatible 

with the isoparametric elements. Because with the in the case of isoparametric elements we 

have seen that the corner nodes they will have some weight factors and then the mid side 



nodes they will have some weight factors and in the case of a 9 node quadrilateral the center 

node will attract more loads and so on we have seen. 

 

But when we use these this nodal spring elements we need to externally compute these 

stiffness coefficients and that may not be possible especially if you have a curved surface 

how do we deal with the stiffness because that depends on the curvature and so on and we 

cannot get a consistent load distribution between the element nodes by using the nodal spring 

elements along with isoparametric elements. 

 

So, these nodal link elements they have not really become popular because of these reasons. 

Originally in 1960s the Continuum element that was used was only 3 node triangle in which 

all the nodes have equal weightage but later we started using the 6 node triangles 8 node 

quadrilaterals 9 node quadrilaterals and so on where the stiffness contribution at different 

nodes is different that comes from the shape of the element. 

(Refer Slide Time: 15:45) 

 

And later people started using the thin Continuum elements. The idea is that if we place a thin 

Continuum element and with some reduced properties for the interface you can promote the 

failure along this preferential directions that is along the along our weak plane and we assign 

very low modulus and very low strength to these interface elements to promote early failure 

and enable Shear deformation. 

 

But then small thickness means how small should it be whether it should be a 0.1, 0.01, 

0.0001 and so on. And the main problem is we do not have any experiment to quantify the the 



interface thickness because that are that depends on the type of soil and then the type of 

interface whether it is a smooth interface or a rough interface and whether your soil is going 

to dilate in that case the effect of the interface might propagate deep into the soil and so on.  

 

So, the optimal thickness for the interface might change with the type of problem that we 

have. So, it is and then when use thin elements the aspect ratio could be very long very large 

say the length to thickness ratio it would could be very high. But ideally the for most accurate 

results the length to thickness ratio cannot be more than about 2 to 3 or at the limit about 

maybe 5 to 6 more than that we may start having a numerical issues especially depending on 

the type of elementary that we have. 

 

And the other problem is with the different thicknesses that use for the interface your 

properties might change the modulus that use the shear strength properties that use you may 

have to calibrate a little bit so, that you can get some reasonable results. So, because of these 

reasons these elements have not become very popular and another reason is that the 

numerical issues.  

 

So, we could have like singularity problems or some unnecessary modes of deformation 

might develop because of these numerical issues.  

(Refer Slide Time: 18:31) 

 

So, let me show you 1 example of using the thin interface element. Say here we have 2 blocks 

the upper block and the lower block and then these 2 are connected with a thin isoparametric 

element in fact all of them are 8 node quadrilaterals. Even this thin element is an 8 node 



quadrilateral and the thickness here is 0.01one and here its 0.1. And then is actually it is the 

shear deformation applied for the lower part against the upper part. And we are going to 

monitor the shear stresses that are developed here. 

(Refer Slide Time: 19:20) 

 

And if you plot a graph between the shear displacement and then the shear stress these are the 

different graphs and you see with the different thicknesses of 0.01, 0.05, 0.1 we get different 

result and of course the ultimate stress is the same because that is controlled by the by the 

plastic limit whereas the actual stress strain behaviour is different with the 0.01. The peak 

stress is reached at a very low displacement may be about 0.01. 

 

But with point one it is reached almost at about 0.08 or 0.09 and the normal pressure that is 

applied on the interface is 100 kPa and the C is 10 Phi is 30 degrees and then the Tau Max as 

per our Mohr Coulomb relation is C plus Sigma and tan Phi that is a 67.74 let me just erase 

this. So, here our the theoretical limit is 67.74 but the finite element predicted one is less than 

60 about 57 or something.  

 

So, there is a huge difference it is actually as a percentage it is about 15 percent difference is 

there between the theoretical limit and then the finite element limit that is predicted. So, that 

means that this model is not able to to exactly replicate the strength of the interface. So, we 

need to go in for some other type of elements. 

(Refer Slide Time: 21:15) 



 

And later more recently thin interface sorry the zero thickness interface elements have 

become a very common. And initially they were developed in the generalized coordinate 

method that are compatible with say the the 3 node triangles or 4 node quadrilaterals and they 

are only suitable for planar surfaces. But now we have the isoparametric elements that we can 

use these even for a curved surface. 

 

Like let us say you have 2 cylinders one rotating against the other internally even that 

interface we can simulate by using these isoparametric conjoint elements. And once again we 

define these elements in terms of 2 strains Shear strain and then a normal strain and we have 

2 surfaces upper surface and bottom surface and this interface could be made up of either 4 

nodes or 6 nodes.  

 

Four nodes means you can only have a flat a planar surface and with larger number of nodes 

like 6 or we can define with 8 nodes and so on we can have a curve. And denotes 1 2 5 are in 

the upper surface and nodes 3, 4 and 6 are in the bottom surface and let us define x i along the 

length and eta normal to the surface and although I am showing with its separation but in 

reality the coordinates of one and 4 are the same 5 and 6 are the same and 2 and 3 are the 

same.  



So, basically it is a line element but then 

a u xi upper surface minus u xi bottom surface and the normal displacement or the relative 

normal displacement is the upper surface the normal displacement minus the normal 

displacement of the bottom surface. And by expressing this in terms of the local coordinates 

Xi and eta we can work in terms of our natural coordinates that vary from 

(Refer Slide Time: 23:52) 

And here is a close-up. So, this Xi of plus 1 refers to nodes one and 4 and Xi of 

nodes 2 and 3 Xi of zero at nodes 5 and 6.

(Refer Slide Time: 24:08) 

            

So, basically it is a line element but then we have some normal direction. So, Epsilon Shear is 

a u xi upper surface minus u xi bottom surface and the normal displacement or the relative 

normal displacement is the upper surface the normal displacement minus the normal 

ace. And by expressing this in terms of the local coordinates 

Xi and eta we can work in terms of our natural coordinates that vary from -1 to +1.

 

up. So, this Xi of plus 1 refers to nodes one and 4 and Xi of 

nodes 2 and 3 Xi of zero at nodes 5 and 6. 

 

we have some normal direction. So, Epsilon Shear is 

a u xi upper surface minus u xi bottom surface and the normal displacement or the relative 

normal displacement is the upper surface the normal displacement minus the normal 

ace. And by expressing this in terms of the local coordinates 

1 to +1. 

up. So, this Xi of plus 1 refers to nodes one and 4 and Xi of minus one 



 

And when we have a lower order of element like a 4 node quadrilateral or a 3 node triangle 

we will only have a planar surface planar interface in that case we can have a 4 node interface 

one 2 3 4 nodes. And the shape functions are the mapping functions for nodes one and 4 or 1 

+ Xi by 2 because now it is actually it is a line element and n 2 and n 3 are one minus x i by 2 

and when you have higher order element like an 8 node quadrilateral or a 6 node triangle we 

need the 6 node interface element to be compatible. 

 

And the shape functions at nodes 1 and 4 are Xi times Xi + 1 by 2 and n 2 n 3 are Xi times Xi 

- 1 by 2 and at nodes 5 and 6 these are the mid side nodes and the shape functions are 1 minus 

xi Square. And you see these shape functions are similar to the ones that we had seen for for a 

one dimensional isoparametric element. 

(Refer Slide Time: 25:27) 

 



And the tangential displacement at the top node is n 1 u 1 plus n 2 u 2 or n one u 4 plus n 2 u 

3 this is when we have 4 nodes and our Epsilon is BU that is the finite element convention 

that we had seen earlier with Continuum elements the strain is B times u where your B is the 

strain displacement matrix. In the case of Continuum the B matrix was a matrix of the shape 

function derivatives with respect to Cartesian coordinates but for the joint elements this is 

basically the B matrix is consisting of only the shape functions. Because now our strains are 

only relative displacements these are not really strains. 

(Refer Slide Time: 26:20) 

 

And in the case of 6 node element we have 3 nodes at the top and 3 notes at the bottom and 

our tangential displacement and then the normal displacement we can write in terms of the 

global displacements like this.  

 

 

 



And the case of axis symmetric problems will have one more strain component that is the 

epsilon theta that is the circumferential or hoop strain. And u top minus u bottom divided by 

radius corresponding radial distance can be 

(Refer Slide Time: 26:59) 

Then our stresses are shear stress and normal stress and the Tau we can obtain as K s times 

the relative shear displacement and the sigma n is K n times the relative normal displacement 

and our constituted matrix is this and our units are F by L Cube units. And the K s we can 

determine from the modified directional test that we perform between the 2 surfaces and the 

K n actually there is a no test that we can perform for determining the normal stiffness.

 

Because we do not really measure anything at the interface level we only measure at the top 

surface. And the K n is assumed to be very large when Sigma n is compressive and when 

Sigma n is tensile we set the K n to a small value not exactly zero but some sma

that separation can take place between the 2 surfaces. 

(Refer Slide Time: 28:13) 
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So, the modified direct shear box test is like this. So, all of you know how we perform the 

direct Shear test. So, in the lower box and upper box we fill with the soil and then do some 

compaction so, that the density of the soil is representative of the in situ density and then we 

move we move the lower box to cause some Shear deformation at the interface and then the 

corresponding stress we call it the shear stress. 

 

 



 

And then we can we can calculate the interface strength and here when we do the modified 

directional test we place the harder material in the lower box and then the softer material in 

the upper box. We do not do it the reverse way because if you place soft soil or a soft 

material here then hard material here and then if you apply the pressure loading your hard 

material might punch into the soft material. 

 

And then your hard material might be interfering with the shear movements because our 

Shear plane is a predefined as you know in the direction box it is predefined and we like our 

unless your Shear plane is on is on that surface will not be able to get the proper result. 

Suppose you place the concrete block here and it penetrates into the soil in the bottom box 

when we perform the test instead of measuring the shear strength of the interface we will be 

measuring the shear strength of the concrete.  

 

So, we should be careful. So, we always place hard material in the bottom box and then the 

soft material in the upper box. So, from the direct Shear test we will get a graph between the 

shear displacement and then the Tau and then the slope of this will be your K s the shear 

stiffness is d Tau by d Delta and the Tau Max of the interface we can express as a c bar plus 

Sigma n Tan Delta where c bar and the Delta are the interface Shear strength properties.  

 

And we can determine them from our modified direction test by performing tests are different 

normal pressures like this here. Let us say that we have performed 4 different tests or 

different normal pressures and then we can we can do some regression analysis and plot the 

best fitting line at the intercept on the y axis is your interface cohesion c bar and then the 

slope is your Delta. 



 So, it is actually it is very similar to how we perform how we perform the normal Direct 

shear test then how we determine the C and Phi of the soil.

(Refer Slide Time: 31:30) 

And the stiffness matrix the local coordinates we can get in terms of our B and D matrices as 
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B transpose D B although it is written as volume integrated over the volume but ours is a line 
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So, we have one weight factor and then the Jacobian matrix determinant of the Jacobian 
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that we have seen earlier. And our Lambda is a similar to our transformation matrix that we 

use it in the case of bar elements. 

 

 

And for these surfaces we can get our direction cosines Theta and the sine Theta from our 

dou Xi by dou Xi and dou y by dou xi and our determinant of the Jacobian matrix we can get 

as square root of dou x by dou xi whole square plus dou y by dou dou Xi whole Square and 

we have already seen in the context of the pressure loading that our dou X by dou XI is mod J 

by 2 times cosine Alpha and dou Y by dou Xi is mod J by 2 times sine Alpha and this cosine 

Alpha and sine Alpha are over direction cosines. 

(Refer Slide Time: 33:33) 

 

And how we operate with these interface elements is that before the failure we will assign 

some initial values K si and K ni a where K si is the one that we determined from the 

modified direction test and the K n is our normal stiffness usually we set it to a very high 

value and after we reach the limit state we can relax our K s we can set it to some small value 

and as long as our interface is in compression our 2 surfaces are going to be in contact.  



 

So, we can give a very large value for this K n and only when we see some tensile stress like 

for example you are playing a tensile loading on the interface we would like the 2 surfaces to 

be separated out without offering any resistance in that case the K n can be set to a small 

value. So, we reformulate our constitute matrix D in terms of K sr and K nr. And so our 

actual this is more we will see more of it when we discuss the constitute of modelling. 

 

But for now in the interface we strictly enforce some limit on the shears on the shear stresses 

that we generate in terms of the normal stress and then the shear strength properties of the 

interface. And so, in the elastic limit the Tau and sigma n could be independent of each other 

but after the failure are at the limit state the Tau max is related to Sigma n through the Mohr 

Coulomb parameters the as a C plus Sigma and tan Phi. 

(Refer Slide Time: 35:42) 

 

Now let us perform the same Shear test that we had done with the thin layer isoparametric 

element. So, here we have the interface here the upper box is fixed against lateral 

deformation similar to our direct shear box test and the bottom box is moved horizontally and 

the shear zone between these 2 boxes is connected by a 6 node joint element as we had seen 

earlier. 



And this is how the deformed mesh looks like and then these are the the displacement 

vectors. Upper node is moving down whereas the bottom node is undergoing lateral 

deformations combined vertical and lateral deformation

(Refer Slide Time: 13:22) 
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(Refer Slide Time: 38:06) 

 

Now let us apply this joint element to some practical problem. Let us say that we are doing a 

triaxial compression test on a cylindrical rock sample with a joint like this. And this joint is at 

an angle of alpha and we would like to know what is the maximum pressure that we can 

apply on the surface Sigma v. The C and Phi are the shear strength properties of the interface 

and Alpha is the angle of the joint and that is greater than Phi. 

 

And we would like to know what is the maximum pressure that we can apply without failing 

this interface and see how we can perform is we do not know what is the what is the 

maximum pressure. So, if we do not know we cannot really apply any pressure. And see if 

you look back on how we perform this Laboratory test all these strength tests are mostly 

displacement control test in our direct shear test or in the triaxial compression test. 

 

We deform the sample and then and then find the response or how much force is developed 

and the same thing we can do we can apply equal vertical displacements or the upper node 

upper surface and then see what is the reaction force developed. And as we are moving the 

upper surface the stresses will be transferred to the interface element and then it will develop 

some normal stress and then the shear stress they will continue to increase with the 

displacement. 

 

Then at some stage the shear stress on the interface might reach a limit state right. And then 

after that at the upper block will simply slide relative to the lower box. In fact this is what you 

see here after some deformation the shear strength of the of the joint is reached and then the 



upper block will just simply slide. And so, after the failure or the limit state the normal and 

Shear stresses on the interface will remain constant.  

(Refer Slide Time: 40:56) 

 

So, we can define some theoretical values by giving some numerical values. So, on the shear 

plane the normal stress is Sigma v times cosine square alpha in fact these are easily derived 

by drawing the Mohr Circle and then you know that any line drawn from the pole will 

intersect the Mohr Circle and that gives the normal and shear stress and a plane parallel to 

that to that line. 

 

And if you apply that you can easily derive that the normal stress on the interface is Sigma v 

times cosine Square Alpha and the shear stress is Sigma v times cosine Alpha sine Alpha 

right. And our the maximum stress on the interface Tau Max is C plus Sigma and tan Phi the 

C and tan Phi are the shear strength properties of the interface and the sigma n is the normal 

stress on the on the on the interface. 

 

And this we can write as C + Sigma v cosine square alpha times tan Phi because our the 

maximum shear strength is C plus Sigma and tan Phi over Sigma n is Sigma v times cosine 

Square Alpha and so, we can get the maximum shear stress like this and at the limit state the 

sigma t should be equal to Tau Max and by equating these 2 we can get an value get an 

equation for Sigma v. 

 



Like this Sigma v is a C by cosine Square Alpha times tan Alpha minus tan Phi. So, the C is 

given as 10 and then the alpha is a 26.56 and Phi is at 20 degrees and so, this is 91.90 actually 

if the alpha is less than Phi they will not be any failure you can apply any amount of Sigma 

V. So, that is the reason why I said that our Alpha is greater than Phi that is because of this 

theoretical limit. So, actually we are applying vertical deformations are the upper surface and 

then the upper block is moving. 

 

So, after the interface reaches the limit state what would happen to the strains within the 

upper box will the strains continue to increase or will it move like a rigid body. 

(Refer Slide Time: 44:04) 

 

That we can we can see it by performing the finite element analysis and looking at the results. 

So, here this is our graph between the vertical displacement and then the vertical pressure and 

this is about 91.9 it is increasing the vertical pressure goes on increasing and at some stage it 

will reach the limit when your interface fails. And these dots are the locations where our 

stresses are computed in the Continuum element. 

 

And the continuum stiffness matrix of the Continuum is formulated in terms of 2 point 

integration 2 points in each direction and then for the interface element it is done with the 3 

points because it is a 6 node element and if you look at the stresses and strains in the in the 

upper block. So, I am looking at this point any point like you can see at any point see our 

stress vertical stress is going on increasing with the strain 6.7, 13.4, 20.1, 26 and so on. 



 

And its increasing up to about is increase slightly to 92 because at that point the shear limit 

comes into picture initially slight increase has happened because before only after the stresses 

are calculated we check for the yields limit and then correct. So, the maximum stress is 

91.906. And you see here until that until this limit your stress vertical stress is increasing and 

then even your vertical strain is increasing. 

 

But beyond this your vertical stress is remaining constant and then even your strain is 

remaining constant that means that beyond that point the entire body is sliding like a rigid 

body. So, it is from this point onwards our upper block is moving like a rigid body and our 

strains and the vertical stresses are remaining constant. So, in fact this is one of the 

requirements when we develop our shape functions. 

 

If there is any constant strain state that happens we should be able to represent and that is 

exactly what we are able to represent through this example. 

(Refer Slide Time: 46:59) 

 

And let us look at the stresses that are developed in within the interface element. the This 

interface element is formulated in terms of 3 point integration 1 2 3 these are these look these 

refer to the in integration points and this is the shear stress and then the normal stress under 

different displacements. You see they are increasing up to up to this point the normal stress of 

73.661 and then the shear stress of 36.79. 

 



And beyond this point the normal and the shear stress they remain constant. So, after the limit 

state they do not change. So, here through this simple example we are able to demonstrate the 

use of interface element for for doing the they come modelling of the rock joints are some 

other weak planes like for example. So, you have 2 layers of soil and we can place an 

interface so, that we can capture the stresses that are that are active at the interface between 

the 2 layer between the 2 soil layers or between a retaining wall. And then soil we can place a 

the interface layer and see what is happening.  

(Refer Slide Time: 48:40) 

 

So, I think these just to conclude see we have seen zero thickness isoparametric elements 

which are compatible but then the main problem is we can have numerical issues. We could 

have especially if you have elements with very very large aspect ratio say a length of one and 

the thickness of point zero one means. So, the aspect ratio is 100. So, we are not sure whether 

the results that we get with that type of element are reliable or not.  

 

So, we can go in for our zero thickness joint elements and these are versatile and we will see 

later on how we can apply them for modelling the joints between the retaining walls and then 

the soil are between geosynthetic reinforcement on the soil and so on. So, that we will see 

after we deal with constitute to modelling. So, this is the end of today's lecture and if you 

have any questions please write to me. 

 


