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Lecture: 24
Modelling of interfaces - Joint Elements

So, hello student let us continue from the previous class and in today's class let us look at a
very typical problem that we face in geotechnical engineering that is the modelling of
interfaces. Because whenever there is a joint there is a possibility for relative slip and in
geological medium it is very common for the occurrence of joints and interfaces because

whenever we see any Rock medium.

You will see some joints along with the sliding could take place or within the soil deposit
there could be a thin layer of soft clay along with the sliding could take place.
(Refer Slide Time: 01:07)

Joint Elements

Joint or interface elements are required to model the
separation/relative sliding between two dissimilar bodies, simulation of

joint planes within the geological media, etc. [

» Skin friction developed along the pile length |

Some examples: ‘ \]

» Pullout resistance developed along the geosynthetic reinforcement |
5

elements,

* Rock joints in a geological medium

Pullout of pile
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And when we do any finite element modelling we should be able to capture the behaviour.

Apart from those natural phenomenons we could have joints in several other cases like for
example here we have a pile that is installed in the soil and let us say you are pulling it out.
And the predominant resistances from the is from the resistance the skin friction that is acting

along the surface apart from the weight of the pile.



And the same thing happens even when you compress the pile some capacities because of the
skin friction and some capacities because of the end bearing. And by using the special type of
joint or interface elements we will be able to simulate what is happening along the joint
between these 2 materials. Like a pile that could be made of reinforced concrete or steel and
then the soil and by in the process we should be able to get the interaction that is taking place

between the soil.

And then the pile and we would like to know how much of the applied loads are transferred
into the into the soil through the pile. And in another case we may have some geosynthetic
type reinforcement in reinforced soil embankment and we would like to know how much pull
out force that we can apply for a given length of the geosynthetic. And how the loads are
transferred from the geosynthetic into the soil and that also requires us to model the interface

between the geosynthetic.

And then the soil then of course as I mentioned earlier the rock joints is a very common
occurrence whenever we deal with rock mechanics problems.

(Refer Slide Time: 03:12)

~Pullout of geogrids (soil reinforcement) from the

reinforced soil mass

»Sliding between facing blocks of reinforced soil

retaining walls Pullout of Geogrids

»Jointed rock specimens

W
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Jointed rock specimen
under compression load
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And we could also have the joints between facing blocks within a reinforced soil and back

within a reinforced soil wall or let us say rock joint or sometimes we collect a non-disturbed
rock sample. Then we see one seam that is there inside embedded as a geological formation
and we would like to know its strength and then how it is going to offer the resistance. All
these things we can do by modelling with a with an interface element.

(Refer Slide Time: 03:57)



#In brick masonry and rock joints bonding is simulated

by introducing these joint elements.

~Relative sliding between backfill soil and back surface

of retaining walls

Brick Masonry joints

Active case wall movement
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And even in the construction industry whenever we have a motor wall brick masonary wall

we may need to to simulate the joints between these bricks so, that we can estimate the
behaviour. Then in another example is between a retaining wall and then the soil. Let us say
our retaining wall is deforming away from the soil either by rotation or by bulging out. Then
what happens should the soil stick to the retain wall then we will transfer unnecessary

magnitudes of the shear stress into the soil.

Like these are not real but because of the numerical improper modelling we could be
transferring some additional Shear stresses that might lead to failure. And to prevent that we
can we can place an interface between the wall panel and then the soil so, that the sliding
relative sliding can take place against the retaining wall.

(Refer Slide Time: 05:14)

Different Types of Joint Elements
i. Nodal link elements (spring elements) - 1967
ii.  Thin interface isoparametric continuum elements - 1970,1973, etc.

iii. Zero thickness isoparametric interface elements- 968
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So, there are different types of joint elements that have been developed in the past 50, 60
years. Originally in 1967 is not exactly the joint element that we know as of now but it was to
simulate the slip between reinforced concrete and then the steel reinforcement and they called
these elements as nodal link elements way back in 1967. And later on people started using

thin isoparametric elements the Continuum elements.

And then later the zero thickness isoparametric elements have come in 1968 and then 1970s
and 1981 there were several papers.

(Refer Slide Time: 06:07)
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See these are all some of the papers that were published on the joint elements and the first
one that was published in 1967 by Ngo, D and Scordelis that was for finite element analysis
of reinforced concrete beams and in that paper they proposed one simple element that can
simulate the slip between the steel reinforcement and then the concrete. And then later on

Goodman Taylor and Becky and others they started working on zero thickness joint elements.

Initially the normal joint elements but later isoparametric joint Elements which are
compatible with our isoparametric continuum elements.

(Refer Slide Time: 07:03)



NODAL LINK ELEMENT:

+ Developed in 1967 to represent slip between steel reinforcement and concrete in

reinforced concrete beams (Ngo & Scordelis, Journal of ACI 1967).
+ Interface between steel and concrete is assumed to be of zero thickness.

+ Nodes on either side of the interface are connected through a tangential spring

and a normal spring.
H - tangential spring

V - normal spring
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And the element that was developed in 1967 by Ngo and Scordelis is something like this is

actually you connect 2 points one point on the concrete and the other point on the on the steel
through 2 springs one is a normal spring and then the other is a tangential spring. Like this
say this K n is a normal spring between the concrete and the steel and the K h is the tangential

spring between the concrete and the steel.

And the displacements on both sides of the interface are referred asu 1 v 1 u 2 v 2 where u sir
the tangential displacements and then the v is your normal displacement with respect to your
interface and our H is the tangential spring and v is the normal spring. So, we need to define
what is the tangential direction so, that we can assign the stiffness to these elements properly.

(Refer Slide Time: 08:29)

Upper surface

’% Zero separation between two

\ surfaces

™\ Lower surface

Nodes on upper and lower surfaces are linked (connected) through tangential and
normal springs — same coordinate values are give for both nodes on either side of the
interface
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And here it is say here we have a an upper surface like this. And then a lower surface one
could be really one could be related to concrete and the other could be related to steel and we
have 2 springs the black coloured ones are the normal springs 1 2 3 and then this red colour
ones are the shear springs and there is no separation between these 2 surfaces. In fact the

separation that [ am showing is only just for illustration purpose but it is not so in reality.

And there are 2 nodes defined with the same coordinates and these 2 nodes are connected
with the normal spring and then the tangential spring and we have somehow defined the
tangential direction for these spring elements that we do by defining 2 additional nodes.
Basically this element has 2 nodes between which these 2 Springs the normal and tangential
Springs are connected but then we need 2 other nodes to define the tangential direction.

(Refer Slide Time: 09:40)

Two deformations are defined at the interface

»Shear deformation along the interface = u, - u,

»Relative normal deformation = v, - v,
relative deformation between the two surfaces causes shear and normal forces.
Constitutive matrix/Stiffness matrix in local directions,

K¢ 0
|
£ _[U Ky

K — Shear stiffness (kN/m?);, Ky — Normal stiffness (kN/m?)
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And we will have a Shear deformation along the interface that is u 2 minus u 1 where u 2 and

u 1 are the shear displacements tangential to the interface and the relative normal deformation
is v 2 minus v 1 that is normal to the interface direction. And these are relative to the
interface these are not global displacements. See the global displacements could be u x and u
y and we need to apply the direction cosines to convert the global displacements to the

element directions.

»Shear deformation along the interface = u; — u;

»Relative normal deformation = v, — v,

And we can write the constitutive stiffness as K s and K n basically there are 2 stress

components and so, we will have 2 stiffnesses one is in the shear direction and the other is in



the normal direction and our there is there are no strains because this being an element of
zero thickness we cannot define strain per se because there is no length or there is no

thickness we define only the relative displacement between the 2 surfaces.

Constitutive matrix/Stiffness matrix in local directions,

Ks 0

[ _g— .

K°=lo &k,

Y K5 — Shear stifiness (kKN/m®); Ky — Normal stiffness (kN/m?)

So, if you have 2 surfaces whether they are sliding against each other or they are separating
out or they are compressing against each other and that is enough for us to calculate the
stresses by multiplying the relative displacement with these stiffness coefficients case and K
n and the units for these are the F by L Cube units kilo Newton per cubic meter. So, that this
multiplied by our displacement relative displacement will give you the stress either the shear
stress or the normal stress.

(Refer Slide Time: 11:36)

strains are defined as relative deformations between the two surfaces,

Shear strain, ¢, = Uy, — Uy,

Normal strain, &, = up, = i,

in terms of global displacements w, and u,, the shear and normal deformations can
be written as, u

Uy = Uy c0s 6 + 1y sind u
Uy =~y sinf + uy cosb

Two physically separated external nodes are defined to

. Eetermine the direction cosines of the element, cos0 & ) ”
X
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And the shear strain is u t 2 minus u t one actually the subscripted t refers to the tangential

direction to be more specific Epsilon t is the relative Shear displacement between the 2 nodes
node one and node 2 and the normal strain Epsilon n u n 2 minus u n one that is the relative

normal deformation.
Shear strain, & = u;, — u,,

Normal strain, &, = u,, — u,,



And in terms of the global displacements u x and u y we can get the local displacements by
applying our direction cosines cosine Theta and the sin Theta like this.

iy

Uy = Uy COSH + u,sinf

Up = —UySin@ ¢ uy cosf 4 . lly

And then apart from these 2 nodes node one and node 2 we define 2 other nodes node 3 and
node 4 for getting our tangential direction.

(Refer Slide Time: 12:36)

Two deformations are defined at the interface

»Shear deformation along the interface = u, - u,

»Relative normal deformation = v, - v,
relative deformation between the two surfaces causes shear and normal forces.
Constitutive matrix/Stiffness matrix in local directions,

. _[Ks 0

=10 k,

Ks — Shear stiffness (kN/m3), Ky — Normal stiffness (kN/m?)
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And our Epsilon t and Epsilon n are the shear strain and the normal strain can be obtained in

terms of the Cartesian displacements are the 2 nodes 2 and one like this. And then we can get
our global stiffness matrix as a transpose C A where C is our K s and K n the constitute
matrix. So, the C is this and our direction cosine matrix is this to convert from the global

sorry from the local directions to the global directions.



[E:}=[—cosﬂ —sinfl  cosf sinf]) Uy,
En sin@ —cos@ —sin@ cosfl|Ux,

(K] = [A]"[C][A]

-cosf sinf
~sinf® —cos@|[Ke U]I—cos& —sinf cosf sin#
cos@ —sinf ||0 K,]l sin@ —cosf -—sinf cosé
sin @ cos @

(Refer Slide Time: 13:22)

K¢ cos? 8 + K, sin 6 Ki sin6 cos 8 = K, sin@ cos 6 ~K;cos?0 - Kysin?8 Ky sinfcosf + K, sin 6 cos

_| KesinBcos — K, sin® cosf Kesif*0+K,cos*0 =K, sinf cosf + K, sinf cosf —K, sin’ 6 - K, cos*
| K cos20 - K, sint —Ky sinf cos 6 + K, sin cos 8 K, cos* 6 + K, sin? 0 Ky sinfi cos 8 — K,, sin 6 cos
~K,sinfcosf + K, sinfcosd =K, sin’ 6 — K, cos*§ Ky sinf cos 6 = K, sin f cos 8 K, sin® f + K, cos”§

» Nodal link elements have enabled early researchers to model the slip between
surfaces

» However, these elements are not continuum elements

» Not compatible with isoparametric continuum elements

» Consistent load distribution between element nodes is not possible

» Because of these reasons, the nodal link elements have not become popular

A
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So, actually this looks very similar to our bar element stiffness matrix because we have the

same terms like cosine Square sine square and so on and cosine Theta sin Theta for all the off
diagonal terms. And so, these nodal link elements that were developed in 1967 they enabled
early researchers to model the slip between the 2 surfaces the concrete and the steel however

these are not Continuum elements.

K, cos?8 + K, sin? @ K, sinfcosf — K, sin# cosf —K, cos? 8 — K, sin® & ~K, sin 8 cos @ + K, sin @ cos
K;sinfcos® — K, sinf cos 8 K; sif2 8 + K, cos® @ —K; sin#cos 8 + K, sin8 cos 8 -K; sin? @ - K, cos? @
= —K, cos® @ — K, sin?@ —K;sin®cos 8 + K, sinf cos 8 K, cos? B + K, sin? @ K, sin @ cos 8 — K, sin & cos §
=K, sin@ cos@ + K, sin# cos @ —K, sin® 8 — K, cos* @ K;sinfcos® — K, sinfcos@ K, sin®* 8 + K, cos* 8

So, actually these are a discrete provided at discrete points and these are not really compatible
with the isoparametric elements. Because with the in the case of isoparametric elements we

have seen that the corner nodes they will have some weight factors and then the mid side



nodes they will have some weight factors and in the case of a 9 node quadrilateral the center

node will attract more loads and so on we have seen.

But when we use these this nodal spring elements we need to externally compute these
stiffness coefficients and that may not be possible especially if you have a curved surface
how do we deal with the stiffness because that depends on the curvature and so on and we
cannot get a consistent load distribution between the element nodes by using the nodal spring

elements along with isoparametric elements.

So, these nodal link elements they have not really become popular because of these reasons.
Originally in 1960s the Continuum element that was used was only 3 node triangle in which
all the nodes have equal weightage but later we started using the 6 node triangles 8 node
quadrilaterals 9 node quadrilaterals and so on where the stiffness contribution at different
nodes is different that comes from the shape of the element.

(Refer Slide Time: 15:45)

Thin interface continuum elements
* Thin continuum elements with small thickness are placed between two rigid surfaces

* Very low modulus & low strength is assigned to the interface element to promote early
failure & enable shear deformation along the interface between the two rigid masses

* How small should this thickness be?

+ Difficult to quantify as no experimental data is available on interface thickness
* Optimal thickness may also depend on the type of problem analysed

* Due to large aspect ratios of thin elements, numerical problems may arise

* Properties (modulus, shear strength, etc.) change with thickness of elements - hence
difficult to interpret results

+ After initial development, these elements have not become popular due to numerical

FEASCM Lecture-20 Joint Elements
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And later people started using the thin Continuum elements. The idea is that if we place a thin
Continuum element and with some reduced properties for the interface you can promote the
failure along this preferential directions that is along the along our weak plane and we assign
very low modulus and very low strength to these interface elements to promote early failure

and enable Shear deformation.

But then small thickness means how small should it be whether it should be a 0.1, 0.01,

0.0001 and so on. And the main problem is we do not have any experiment to quantify the the



interface thickness because that are that depends on the type of soil and then the type of
interface whether it is a smooth interface or a rough interface and whether your soil is going

to dilate in that case the effect of the interface might propagate deep into the soil and so on.

So, the optimal thickness for the interface might change with the type of problem that we
have. So, it is and then when use thin elements the aspect ratio could be very long very large
say the length to thickness ratio it would could be very high. But ideally the for most accurate
results the length to thickness ratio cannot be more than about 2 to 3 or at the limit about
maybe 5 to 6 more than that we may start having a numerical issues especially depending on

the type of elementary that we have.

And the other problem is with the different thicknesses that use for the interface your
properties might change the modulus that use the shear strength properties that use you may
have to calibrate a little bit so, that you can get some reasonable results. So, because of these
reasons these elements have not become very popular and another reason is that the

numerical issues.

So, we could have like singularity problems or some unnecessary modes of deformation
might develop because of these numerical issues.

(Refer Slide Time: 18:31)

Thin isoparametric continuum element as interface

s
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So, let me show you 1 example of using the thin interface element. Say here we have 2 blocks
the upper block and the lower block and then these 2 are connected with a thin isoparametric

element in fact all of them are 8 node quadrilaterals. Even this thin element is an 8 node



quadrilateral and the thickness here is 0.01one and here its 0.1. And then is actually it is the
shear deformation applied for the lower part against the upper part. And we are going to
monitor the shear stresses that are developed here.

(Refer Slide Time: 19:20)

stress-strain behaviour with thin isoparametric element of three
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And if you plot a graph between the shear displacement and then the shear stress these are the
different graphs and you see with the different thicknesses of 0.01, 0.05, 0.1 we get different
result and of course the ultimate stress is the same because that is controlled by the by the
plastic limit whereas the actual stress strain behaviour is different with the 0.01. The peak

stress is reached at a very low displacement may be about 0.01.

But with point one it is reached almost at about 0.08 or 0.09 and the normal pressure that is
applied on the interface is 100 kPa and the C is 10 Phi is 30 degrees and then the Tau Max as
per our Mohr Coulomb relation is C plus Sigma and tan Phi that is a 67.74 let me just erase
this. So, here our the theoretical limit is 67.74 but the finite element predicted one is less than

60 about 57 or something.

So, there is a huge difference it is actually as a percentage it is about 15 percent difference is
there between the theoretical limit and then the finite element limit that is predicted. So, that
means that this model is not able to to exactly replicate the strength of the interface. So, we
need to go in for some other type of elements.

(Refer Slide Time: 21:15)



Strains:
i. Shear strain
ii. Normal strain
Strains for zero thickness elements are defined as the relative deformations

between the upper and lower surfaces.

ES(S) = uE.Iap - uétottum

En(f) = u”tnp ~ Unyottom

Two-dimensional interface element is a line element as
thickness is zero

Nodes on top surface are: 1,2 & 5
Modes on bottom surface are: 4,3& 6

»

6 Bottom surface

]
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And later more recently thin interface sorry the zero thickness interface elements have

become a very common. And initially they were developed in the generalized coordinate
method that are compatible with say the the 3 node triangles or 4 node quadrilaterals and they
are only suitable for planar surfaces. But now we have the isoparametric elements that we can

use these even for a curved surface.

Like let us say you have 2 cylinders one rotating against the other internally even that
interface we can simulate by using these isoparametric conjoint elements. And once again we
define these elements in terms of 2 strains Shear strain and then a normal strain and we have
2 surfaces upper surface and bottom surface and this interface could be made up of either 4

nodes or 6 nodes.

Four nodes means you can only have a flat a planar surface and with larger number of nodes
like 6 or we can define with 8 nodes and so on we can have a curve. And denotes 1 2 5 are in
the upper surface and nodes 3, 4 and 6 are in the bottom surface and let us define x i along the
length and eta normal to the surface and although I am showing with its separation but in
reality the coordinates of one and 4 are the same 5 and 6 are the same and 2 and 3 are the

same.



&) =u = 6 Bottom surface

3 Uz
Stop Sbottom

f“({) = u“lop - u“bnl[om

So, basically it is a line element but then we have some normal direction. So, Epsilon Shear is
a u xi upper surface minus u xi bottom surface and the normal displacement or the relative
normal displacement is the upper surface the normal displacement minus the normal
displacement of the bottom surface. And by expressing this in terms of the local coordinates
Xi and eta we can work in terms of our natural coordinates that vary from -1 to +1.

(Refer Slide Time: 23:52)

Strains:
i.  Shear strain

ii. Normal strain

Strains for zero thickness elements are defined as the relative deformations
between the upper and lower surfaces.

SSG) = uéi‘ap = uéﬁnﬂam Top surface N, £
1

&) = Unop = Unportom N,

S

Two-dimensional interface element is a line element as A
thickness is zero 2
Nodes on top surface are: 1,2 & 5
Jlodes on bottom surface are: 4,3 & 6

L]
6 Bottom surface
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And here is a close-up. So, this Xi of plus 1 refers to nodes one and 4 and Xi of minus one

nodes 2 and 3 Xi of zero at nodes 5 and 6.

(Refer Slide Time: 24:08)



Bottom surface
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And when we have a lower order of element like a 4 node quadrilateral or a 3 node triangle

we will only have a planar surface planar interface in that case we can have a 4 node interface
one 2 3 4 nodes. And the shape functions are the mapping functions for nodes one and 4 or 1
+ Xi by 2 because now it is actually it is a line element and n 2 and n 3 are one minus x i by 2
and when you have higher order element like an 8 node quadrilateral or a 6 node triangle we

need the 6 node interface element to be compatible.

And the shape functions at nodes 1 and 4 are Xi times Xi+ 1 by 2 and n 2 n 3 are Xi times Xi
- 1 by 2 and at nodes 5 and 6 these are the mid side nodes and the shape functions are 1 minus
xi Square. And you see these shape functions are similar to the ones that we had seen for for a
one dimensional isoparametric element.

(Refer Slide Time: 25:27)

Six node isoparametric joint elements — planar or curved

[
5
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Shape functions: node quadrilateral elements
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And the tangential displacement at the topnodeisn lulplusn2u2ornoneu4plusn2u
3 this is when we have 4 nodes and our Epsilon is BU that is the finite element convention
that we had seen earlier with Continuum elements the strain is B times u where your B is the
strain displacement matrix. In the case of Continuum the B matrix was a matrix of the shape
function derivatives with respect to Cartesian coordinates but for the joint elements this is
basically the B matrix is consisting of only the shape functions. Because now our strains are
only relative displacements these are not really strains.

(Refer Slide Time: 26:20)

Utap = Ny )y + No (), u & v are the tangential and

normal displacements of nodes
Wpoeeom = N1 (§)ug + No (O 3
& = Uggop = Ug-por = Ny Uy + Noutly = Ny 13 = Ny.uy

€0 = Vn—top = Vn-pot = Ny.vy + Na. vy = Ny.v3 = Ny.vy

{e} = [B){u}

[B] matrix consists of shape functions of nodes W

[et}_ Ny O Ny 0 =N, 0 N, 07
S0 N 00N, 0 -N, 0 N

WAl Instructor

= Dr. K. Raiagopa! httpLs?;:r;ﬁlpic.ln,‘ FEA & CM

And in the case of 6 node element we have 3 nodes at the top and 3 notes at the bottom and
our tangential displacement and then the normal displacement we can write in terms of the
global displacements like this.

Uop = Ny (uy + N2 (Hu; u & v are the tangential and ;

normal displacements of nodes
Upottom = Nl('s)ui + NZ({)u:i u
E' = “8-10:' e ue_hor = Nl' lh + Nz. uz = Nz. ug e N].u4

i — u
Eq = Un—top = Vn-bot = N1. vy + Na2.v3 — N3.v3 — Ny,

(e} = [Bl{y)



[B] matrix consists of shape functions of nodes (U1

— 4 F

{Er] [Nl 0 N: 0 _N;) 0 _Nl 0 Vs
En = U N] 0 Nz U _Nz 0' _Nl u,’l

i \ Vg J
And the case of axis symmetric problems will have one more strain component that is the
epsilon theta that is the circumferential or hoop strain. And u top minus u bottom divided by
radius corresponding radial distance can be your hoop strain.

(Refer Slide Time: 26:59)
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[B] matrix consists of shape functions of nodes
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@b axi-symmetric problems, there will be another strain
g haguoonent (hoop strain) defined as (u,,— Uy )/r
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Then our stresses are shear stress and normal stress and the Tau we can obtain as K s times

the relative shear displacement and the sigma n is K n times the relative normal displacement
and our constituted matrix is this and our units are F by L Cube units. And the K s we can
determine from the modified directional test that we perform between the 2 surfaces and the

K n actually there is a no test that we can perform for determining the normal stiffness.

Because we do not really measure anything at the interface level we only measure at the top
surface. And the K n is assumed to be very large when Sigma n is compressive and when
Sigma n is tensile we set the K n to a small value not exactly zero but some small value so,
that separation can take place between the 2 surfaces.

(Refer Slide Time: 28:13)



Two stress components: Modified direct shear test set up
i. Shear stress
ii. Normal stress
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s - determined from modified direct shear tests as slope of stress vs. relative deformation response

v - assumed to be very large when g, is compressive - assigned a small value when g, is tensile to
allow separation of two surfaces
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So, the modified direct shear box test is like this. So, all of you know how we perform the

direct Shear test. So, in the lower box and upper box we fill with the soil and then do some
compaction so, that the density of the soil is representative of the in situ density and then we
move we move the lower box to cause some Shear deformation at the interface and then the

corresponding stress we call it the shear stress.

Two stress components:
i. Shear stress
ii. Normal stress

=[% <]

e _[Ks ©
Constitutive matrix, [D] = 0 KNI
K¢ and Ky have units of F/N

Modified direct shear test set up




And then we can we can calculate the interface strength and here when we do the modified
directional test we place the harder material in the lower box and then the softer material in
the upper box. We do not do it the reverse way because if you place soft soil or a soft
material here then hard material here and then if you apply the pressure loading your hard

material might punch into the soft material.

And then your hard material might be interfering with the shear movements because our
Shear plane is a predefined as you know in the direction box it is predefined and we like our
unless your Shear plane is on is on that surface will not be able to get the proper result.
Suppose you place the concrete block here and it penetrates into the soil in the bottom box
when we perform the test instead of measuring the shear strength of the interface we will be

measuring the shear strength of the concrete.

So, we should be careful. So, we always place hard material in the bottom box and then the
soft material in the upper box. So, from the direct Shear test we will get a graph between the
shear displacement and then the Tau and then the slope of this will be your K s the shear
stiffness is d Tau by d Delta and the Tau Max of the interface we can express as a c bar plus
Sigma n Tan Delta where ¢ bar and the Delta are the interface Shear strength properties.

T

=C+o,tand

max

¢ and & are the interface strength properties

And we can determine them from our modified direction test by performing tests are different
normal pressures like this here. Let us say that we have performed 4 different tests or
different normal pressures and then we can we can do some regression analysis and plot the
best fitting line at the intercept on the y axis is your interface cohesion ¢ bar and then the

slope is your Delta.
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So, it is actually it is very similar to how we perform how we perform the normal Direct

shear test then how we determine the C and Phi of the soil.

(Refer Slide Time: 31:30)

Tyay = € + 0 tand
¢ and ¢ are the interface strength properties

When 7> 1., K is set to small value to allow for relative deformations between the

two surfaces
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And the stiffness matrix the local coordinates we can get in terms of our B and D matrices as

B transpose D B although it is written as volume integrated over the volume but ours is a line
element. So, we are going to do this integration from minus 1 to plus 1 in the iso parametric
space multiplied by some Factor that relates the outer plane direction either the thickness or
unit value or the radius in the case of axis symmetric analysis and because it is a line element

will have only one dimensional integration that is in the Xi direction.

So, we have one weight factor and then the Jacobian matrix determinant of the Jacobian
matrix J. Then once we get the stiffness matrix in the local directions we can get it in the

global directions as Lambda transpose K Prime Lambda that is our target and transformation



that we have seen earlier. And our Lambda is a similar to our transformation matrix that we

use it in the case of bar elements.
[K') = [ B"DB dv = [ B"DB |J| d¢ . factor
=Y [B)".[D].[B]. w;. || x Factor
stiffness matrix in global coordinates, [K] = [A]"[K"][4]

|A] = transformation matrix similar to that used for bar elements

Direction cosines obtained from &x/cZ and /% ;

]l = (3—:)2+(6—y)2: 0x _WN cosa; 2= sing

~ a & 2 a2

And for these surfaces we can get our direction cosines Theta and the sine Theta from our
dou Xi by dou Xi and dou y by dou xi and our determinant of the Jacobian matrix we can get
as square root of dou x by dou xi whole square plus dou y by dou dou Xi whole Square and
we have already seen in the context of the pressure loading that our dou X by dou XI is mod J
by 2 times cosine Alpha and dou Y by dou Xi is mod J by 2 times sine Alpha and this cosine
Alpha and sine Alpha are over direction cosines.

(Refer Slide Time: 33:33)

[K') = [, B™DB dv = [*" BDB |j| ¢ . factor
=X [B]".D]. [B].w;. /] x Factor
stiffness matrix in global coordinates, [K] = [4]"[K'][A]

[4] = transformation matrix similar to that used for bar elements
Direction cosines obtained from A/ and /e ;
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And how we operate with these interface elements is that before the failure we will assign

some initial values K si and K ni a where K si is the one that we determined from the
modified direction test and the K n is our normal stiffness usually we set it to a very high
value and after we reach the limit state we can relax our K s we can set it to some small value

and as long as our interface is in compression our 2 surfaces are going to be in contact.



So, we can give a very large value for this K n and only when we see some tensile stress like
for example you are playing a tensile loading on the interface we would like the 2 surfaces to
be separated out without offering any resistance in that case the K n can be set to a small
value. So, we reformulate our constitute matrix D in terms of K sr and K nr. And so our

actual this is more we will see more of it when we discuss the constitute of modelling.

But for now in the interface we strictly enforce some limit on the shears on the shear stresses
that we generate in terms of the normal stress and then the shear strength properties of the
interface. And so, in the elastic limit the Tau and sigma n could be independent of each other
but after the failure are at the limit state the Tau max is related to Sigma n through the Mohr
Coulomb parameters the as a C plus Sigma and tan Phi.

(Refer Slide Time: 35:42)

K, 0
Initially before failure of interface, []= [ 05[ K }
n;

After failure, both shear and normal stiffness terms are set to some small residual
values to allow for debonding
Ks, 0 l

1= Ky

7and g, are independent of each other during elastic state. At limit state, 7, is
related to o, through the Mohr Coulomb equation
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Now let us perform the same Shear test that we had done with the thin layer isoparametric

element. So, here we have the interface here the upper box is fixed against lateral
deformation similar to our direct shear box test and the bottom box is moved horizontally and
the shear zone between these 2 boxes is connected by a 6 node joint element as we had seen

earlier.



K: 0
Initially before failure of interface, (D] = | S l

0 K,

After failure, both shear and normal stiffness terms are set to some small residual
values to allow for debonding
K, 0 ‘

R

Dl=lo g,

And this is how the deformed mesh looks like and then these are the the displacement
vectors. Upper node is moving down whereas the bottom node is undergoing lateral
deformations combined vertical and lateral deformations. So, we see some vectors like this.

(Refer Slide Time: 13:22)

Simulation of direct shear test with zero-thickness joint element

* Upper box is fixed against
lateral deformations

* Bottom box is moved
horizontally

* Shear zone between the
two boxes connected by a
joint element

* 8-node quad & 6-node

joint elements used ’
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And this is our stress strain curve that we get on the x axis we have the shear displacement

and the y axis we have the shear stress and is actually the theoretical limit is a C plus Sigma
and tan Phi that is 67.74 and what is predicted by the joint element is also the same thing
67.74 its exactly equal to the theoretical limit. And the peak stress is developed at a
displacement of 0.007 at a relative displacement of 0.007.

Whereas in the previous case when we model the interface through thin layer elements that
deformation was varying a lot depending on the thickness feels a very thick element the peak
stress was happening at a very large deformation and with a very small thickness its
happening faster and so on. But then in none of the 3 cases that we had seen earlier we were
able to reach this theoretical limit. See previously it stopped at about 57 or 58 whereas the

theoretical limit is 67.74.



(Refer Slide Time: 38:06)

Stress-strain curve with zero-thickness joint element
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Now let us apply this joint element to some practical problem. Let us say that we are doing a

triaxial compression test on a cylindrical rock sample with a joint like this. And this joint is at
an angle of alpha and we would like to know what is the maximum pressure that we can
apply on the surface Sigma v. The C and Phi are the shear strength properties of the interface
and Alpha is the angle of the joint and that is greater than Phi.

And we would like to know what is the maximum pressure that we can apply without failing
this interface and see how we can perform is we do not know what is the what is the
maximum pressure. So, if we do not know we cannot really apply any pressure. And see if
you look back on how we perform this Laboratory test all these strength tests are mostly

displacement control test in our direct shear test or in the triaxial compression test.

We deform the sample and then and then find the response or how much force is developed
and the same thing we can do we can apply equal vertical displacements or the upper node
upper surface and then see what is the reaction force developed. And as we are moving the
upper surface the stresses will be transferred to the interface element and then it will develop
some normal stress and then the shear stress they will continue to increase with the

displacement.

Then at some stage the shear stress on the interface might reach a limit state right. And then
after that at the upper block will simply slide relative to the lower box. In fact this is what you

see here after some deformation the shear strength of the of the joint is reached and then the



upper block will just simply slide. And so, after the failure or the limit state the normal and
Shear stresses on the interface will remain constant.

(Refer Slide Time: 40:56)
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So, we can define some theoretical values by giving some numerical values. So, on the shear
plane the normal stress is Sigma v times cosine square alpha in fact these are easily derived
by drawing the Mohr Circle and then you know that any line drawn from the pole will
intersect the Mohr Circle and that gives the normal and shear stress and a plane parallel to

that to that line.

And if you apply that you can easily derive that the normal stress on the interface is Sigma v
times cosine Square Alpha and the shear stress is Sigma v times cosine Alpha sine Alpha
right. And our the maximum stress on the interface Tau Max is C plus Sigma and tan Phi the
C and tan Phi are the shear strength properties of the interface and the sigma n is the normal

stress on the on the on the interface.

And this we can write as C + Sigma v cosine square alpha times tan Phi because our the
maximum shear strength is C plus Sigma and tan Phi over Sigma n is Sigma v times cosine
Square Alpha and so, we can get the maximum shear stress like this and at the limit state the
sigma t should be equal to Tau Max and by equating these 2 we can get an value get an

equation for Sigma v.

g, = 0,.C0s°a

, T = ¢ + 0,.tang
[ = 0,.c05a.sina — .



Like this Sigma v is a C by cosine Square Alpha times tan Alpha minus tan Phi. So, the C is
given as 10 and then the alpha is a 26.56 and Phi is at 20 degrees and so, this is 91.90 actually
if the alpha is less than Phi they will not be any failure you can apply any amount of Sigma
V. So, that is the reason why I said that our Alpha is greater than Phi that is because of this
theoretical limit. So, actually we are applying vertical deformations are the upper surface and

then the upper block is moving.

So, after the interface reaches the limit state what would happen to the strains within the
upper box will the strains continue to increase or will it move like a rigid body.

(Refer Slide Time: 44:04)

Normal and shear stresses on the interface are,
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After the interface fails, how would the upper block displace - does it develop any further
strains or move like a rigid body?
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That we can we can see it by performing the finite element analysis and looking at the results.

So, here this is our graph between the vertical displacement and then the vertical pressure and
this is about 91.9 it is increasing the vertical pressure goes on increasing and at some stage it
will reach the limit when your interface fails. And these dots are the locations where our
stresses are computed in the Continuum element.

c 10

G cos?a(tana-tang) = cos?(26.56){tan(26.56)-tan(20)} =91.90

And the continuum stiffness matrix of the Continuum is formulated in terms of 2 point
integration 2 points in each direction and then for the interface element it is done with the 3
points because it is a 6 node element and if you look at the stresses and strains in the in the
upper block. So, I am looking at this point any point like you can see at any point see our

stress vertical stress is going on increasing with the strain 6.7, 13.4, 20.1, 26 and so on.



And its increasing up to about is increase slightly to 92 because at that point the shear limit
comes into picture initially slight increase has happened because before only after the stresses
are calculated we check for the yields limit and then correct. So, the maximum stress is
91.906. And you see here until that until this limit your stress vertical stress is increasing and

then even your vertical strain is increasing.

But beyond this your vertical stress is remaining constant and then even your strain is
remaining constant that means that beyond that point the entire body is sliding like a rigid
body. So, it is from this point onwards our upper block is moving like a rigid body and our
strains and the vertical stresses are remaining constant. So, in fact this is one of the

requirements when we develop our shape functions.

If there is any constant strain state that happens we should be able to represent and that is
exactly what we are able to represent through this example.
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TANGENTIAL STRESS ~ NORMAL STRESS (at vertical displacement of -0.0020
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And let us look at the stresses that are developed in within the interface element. the This

interface element is formulated in terms of 3 point integration 1 2 3 these are these look these
refer to the in integration points and this is the shear stress and then the normal stress under
different displacements. You see they are increasing up to up to this point the normal stress of

73.661 and then the shear stress of 36.79.



And beyond this point the normal and the shear stress they remain constant. So, after the limit
state they do not change. So, here through this simple example we are able to demonstrate the
use of interface element for for doing the they come modelling of the rock joints are some
other weak planes like for example. So, you have 2 layers of soil and we can place an
interface so, that we can capture the stresses that are that are active at the interface between
the 2 layer between the 2 soil layers or between a retaining wall. And then soil we can place a
the interface layer and see what is happening.
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Concluding Remarks

* Zero thickness isoparametric joint elements are compatible with
isoparametric continuum elements

* These elements can help in modelling the relative displacements

* Shear and normal stresses on these surfaces can be monitored
independent of the continuum elements

* Exact limit loads can be obtained using these joint elements
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So, I think these just to conclude see we have seen zero thickness isoparametric elements

which are compatible but then the main problem is we can have numerical issues. We could
have especially if you have elements with very very large aspect ratio say a length of one and
the thickness of point zero one means. So, the aspect ratio is 100. So, we are not sure whether

the results that we get with that type of element are reliable or not.

So, we can go in for our zero thickness joint elements and these are versatile and we will see
later on how we can apply them for modelling the joints between the retaining walls and then
the soil are between geosynthetic reinforcement on the soil and so on. So, that we will see
after we deal with constitute to modelling. So, this is the end of today's lecture and if you

have any questions please write to me.



