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Hello students. In the previous class we had seen three different types of isoparametric
calculations. One is the estimation of this stiffness matrix and the other is the load vector due
to the body weight then the load vector due to the stresses B transpose sigma and in this class
let us look at how we can calculate the force vector due to surface pressure.
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Nodal loads due to surface traction
Nodal load vector, {P} = [ [N]"{t}.ds = ffll[N]T{t}. |J|déxfactor =

Z[N]Tx{t}xlllxwinactor
&

-l

t,7pressure acting normal to the surface

t.= pressure acting parallel to the surface

[N] is the matrix of shape functions

Factor = thickness for plane stress, 1 for plane strain and r(€) for axisymmetric surfaces
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And the equation for this is integral N transpose t ds and this is a surface integral whereas the
previous ones are all volume integrals so this is a surface integral and in two dimensional
case we have surface means length multiplied by width and so we have only integration 1
direction and then multiplied by either the thickness or unit value or radius because in the

case of axisymmetric and so here it is N transpose T and our T is the traction vector.

Nodal loads due to surface traction
Nodal load vector, {P} = [. [N]"{t}.ds«= [*[N]"{¢).|/|déxfactor =

ZINIT"[I]"UIxW. xfactor

E

-

o-[3

t,=pressure acting normal to the surface

t, = pressure acting parallel to the surface

[N] is the matrix of shape functions

Factor = thickness for plane stress, 1 for plane strain and r(Z) for axisymmetric surfaces
J is the Jacobian determinant d Xi and then the factor is the thickness for plane stress and one
for the plane strain and then the radius for axisymmetric case and this traction is there could

be a normal traction or a shear traction.

(Refer Slide Time: 02:08)

Surface pressure acting on 8-node element - surface is treated as a line element
with thickness in plane stress/strain or a surface of unit radian in axisymmetric
problems

+1 TR
41 Ry
3

Ny =

-1
. 5(52 )
Ny=(1-§2)
Surface traction equation,
P=[, [NI".{t}.ds = ffll[N]T.{t}. dE x || X thickness (or radius)

= Z[N]"{t}.wi. |J] X thickness (or radius)
&
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So, let us look at the surface pressure acting at the 8 node element and this we can treat it as a

line element with some thickness or unit thickness and N 1 we have already derived them in

the context of 1 dimensional isoparametric elements N 1 is Xi times Xi + 1 by 2, N 2 is Xi



times Xi — 1 by 2 and N 3 is 1 — Xi square and our equation is N transpose t ds and initially

we will do simple calculations.

Surface pressure acting on 8-node element - surface is treated as a line element
with thickness in plane stress/strain or a surface of unit radian in axisymmetric

problems
n
§(E+1)
N, = - 5 phibiiiid IR ;
3
N, =f(s‘2- 1) ;
Ny =(1-¢§%)

Surface traction equation,
F’=j; [N]T.{t}).ds = f_+11|N]T. {t}.dE x |J| x thickness (or radius)

= ZIN]T[I}‘ w;. /| X thickness (or radius)
And then we will not assume any direction for these forces except that we know. If there is a
normal pressure acting on the surface it is in the negative y direction or if it is acting on this
side it is along the x direction and so on, but we will later we will see how to automate them
because we humans we have the brains and we can say that this is horizontal surface and then

we have vertical pressure.

But then how do you make a computer know that this is a horizontal surface and this force
should be acting in the negative y direction that we will see later.

(Refer Slide Time: 03:49)
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t.=normal pressure on surface & £=tangentjal pressure on surface
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And our shape function matrix will be N 1 0, N 2 0, N 3 0 because we have only 3 nodes and

then the traction is t n and t s. The t n is the normal pressure on the surface and t s is the
tangential pressure on the surface sorry I think this should be Xi, but somehow because if
incompatibility between different computers this happens, but I will correct it later.

w=[¥ 0 N 0 N 0]

0O N, 0 N, O N

- tn
@ =)
,=normal pressure on surface & ¢=tangential pressure on surface

(Px1) 'N; 07
Py4 0 N,
P> N, O [tn}
— > = . =
{P} =+ Py, J; 0 Nt ds '
\.PySJ L 0 N3« ’
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Term by term, the forces at each node could be evaluated as,

+1
Py= j Ny (8).tn(8). 1) ()|. déxthickness /radius
1

QR 1y e
tw H ‘ ﬂ | | tu
o

ta(6) = Ny.tng + Ny.tyy + Na by _

t,;, t,, & t,5 are the normal traction pressures at the three nodes 1,2 & 3
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Term by term, the forces at each node could be evaluated as,

+1
Py = j Ny (8).ta(€). 1 (B)|. déxthickness /radius
-1 i

to Pl -_tnl

tn(8) = Ny.tpy + Na.tng + N3 tys _

t.. t., &t ; are the normal traction pressures at the three nodes 1,2 & 3

So, our normal force at node 1 is N 1 times t n and then the Jacobian at different Xi and the
integrated over — 1 to + 1 and in general the traction at any point could be written as N 1 tn 1
+N2tn2+N3tn3 wheretn 1 isthe magnitude of the normal traction at node 1, tn 2 is
the magnitude of the normal traction at node 2 and this is at node 3 and this is an input
parameter this we have to give as an input as a data.

(Refer Slide Time: 05:09)



Uniform normal pressure acting on three-node plane strain surface
Ul

Let the three nodes N;, N, & Ny beat L, 0 & L/2
2 |
For horizontal planar surfaces, |J|=6x/6¢ 0 [':' — L/2 i 1L

b=y, 2 EE s -y

Ox ('*’N1 ON, (N3 2§+1 2&1 L L
XX 1+1§X2+«E 3=——.L+ 0+(0- Zé; :

Pij g(;+1)thL i 7 (:3+:2)+1 q.sziq.L
12 | ——qdfsxl=——(+= s
S LR # 36 The three node surface could

HeE-1) L _ql(@ g # ok 2 gl also be on 6-node triangles
P, = @ %=
1

7 ddgd=T

3 2

-3
1 e
he[ a-aba-ts-5) <a0e
-1

Total applied load
@k dal of
6+6+6 =ql o £
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And so our N 1 is Xi times Xi + 1 by 2, N 2 is Xi times Xi— 1 by 2, N 3 is 1 — Xi square and

the determinant of the Jacobian matrix just simply dou x by dou Xi because we have only one
coordinate Xi and then this being horizontal surface there is no dou y by dou Xi it will be 0.
So, our dou x by dou Xi comes out as L. by 2 because the center node is exactly at the mid

length.

o
2[[11111] i 1
¢
=L
T2
E(E+1) f(f

Ny = 2+ ; Np=—=——; N3=(1-¢§?)
o = S x, +Jﬁx‘,_+‘-iixj_2'~* .L+2‘ 0+ (0-28s==
dt =~ ot 2 2

So, the Xi’s cancel out and then we are left with only the L by 2. If this is the length L dou x
by dou Xi is L by 2 and the loaded node 1 is N 1 times q; q is the normal traction acting on
that surface d Xi times mod J determinant is L by 2 multiplied by unit thickness. So, P 1 is q
L by 6 and then P 2 is also q L by 6 if you do this integration then P 3 is 1 — Xi square that is
the shape function q d Xi L by 2 times 1.



+1 3 +1

E(E+1) L q..f.(_ _*) gL 2 gq.L

P, = e =x] = 4 - = =
1 I, - i a\372) T 6
P teE-1 L _el(P #\ _qL 2 _gql
‘_.[1 2 T TA\372) T 4736
+1 , L q.L ' oL 4 4.9q.L

f;—J:I{l—,_ }.q.:f.,_.E.-l— 7 (..—T) = ra

And this comes out as 4 q L by 6. We see that at the two corner nodes the load is q L by 6
whereas at the center node at the mid side node it is 4 q L by 6 it is 4 times the load at the two
corner nodes and similar response we have also seen when we calculated N transpose b or B
transpose sigma. Always the mid side node they have higher contribution compared to the

corner nodes and then the center node it might have much higher contribution.

Total applied load
- ﬂ + ﬂ + ﬂ — l
T 6 o g T
And if youaddup P 1 + P 2 + P 3 it comes to q L and we are considering unit length in the
perpendicular direction because this is a plane strain case so it is just simply q L and this
surface could also be a part of 6 node triangle, it need not be of 8 node quadrilateral or 9 node

quadrilateral.

(Refer Slide Time: 07:58)

Nodal loads by numerical integration

As the polynomial is of 2 order, 2-point Gauss quadrature is required
£=+1/V/3, weight factors =1

C(MEE+D) L glf{-1{-1 /31 m
e[, aaga-{lge)e g )5
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And we can do the same thing even with the numerical integration. So, previously we have

done the analytical integration, but now let us do with a numerical integration. Let us use a 2

point integration because we have a second order polynomial.



Nodal loads by numerical integration

As the polynomial is of 2™ order, 2-point Gauss quadrature is required
&=+1/v3, weight factors =1

P J‘”&'(;H) g = q'L(_](_l+1)x1++1(+1+1)x1) LA
= qudemxl=—|—=|—= —|— =E-—m
%L, 2 ¥\ V3\V3 G

+1 - z 2
Py =j (1 —i.z).q.di,.gxl =q'—L((1—[T;] )x1+(1 —[%] )xl)si()'l'
-1 - - ‘

So, if you go through this product and use the brackets correctly you will get q L by 6 that is

the P 2 and then at the mid side node we get 4 q L by 6 like if you go through this entire thing
and then simplify we will get 4 q L by 6 that is the same as what we got analytically.
(Refer Slide Time: 08:56)

Uniform normal pressure acting on three-node axisymmetric surface
Ul

Surface traction equation,
|
P=[, [NI".{t).ds = [ [NT".{¢8).d2 x || x radius 2 LTI 1
0 3R/2 R
’ E[N]T{t}. wi |  radius ;
&
Let the three nodes N, N, & N, be at R, 0 & R/2

For horizontal planar surfaces, /J/=cr/c¢

+1 =1
b=y, =Ly - -y

Radius, (&) = Ny (€).r1 + Ny (&).12 + N3(§).73
S5y SED gy (g B (U0
2 2 2

2

Or _ONy . 0Ny 0Ny 2841

o Oy GO0 0Ny BGH p L B 0L =2y R =t
%—aéﬁ""aérz"‘aéﬁ— 2 R+ 20+(0 2.&).2—2
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And now let us look at an axisymmetric surface and the only difference between the plane
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strain and axisymmetric is the radius. So, in the plane strain case we have a unit thickness,
but in the case of axisymmetric we have the radius that is varying along the length along Xi
and our N 1 is Xi times Xi + 1 by 2, N 2 is Xi times Xi— 1 by 2 and N 3 is this and our radius

can be written as 1 in general N 1 r 1+ N 2r2 + N 3 r 3 and that comes out as 1 + Xi r by 2.



Uniform normal pressure acting on three-node axisymmetric snurface

Surface traction equaton, 1
P=J, [N)".{t}.ds = [ [N)".{t}.d& x |J| x radius e 1
0 3|r/2 R
= Z[N]T{t}.wt‘ lJ| x radius ¢
Let the three nodes i\li, N, & N, beatR,0&R/2

For horizontal planar surfaces, [//=cr/cs

(£+1) (£-1)
Ny =E80 N, =50 N = (1-6)
Radius, r(&) = Nt(’) ry + N2(E).m + N3(E).r3
=_t_+1) R+ "'(;j_”_{]-i-(l _2) (H-)R
4 2 2
%z%rl+%rz+%’«?3fvgz_‘:+_lﬂ+_'_ﬂ+(n 2-}_—5
- - - =

So, when Xi is — 1 we are at this point node 2 that is 0 and at Xi of + 1 you have at node 1
that is R 1 + 1 by 2 times R then at the mid side node Xi is 0 so that is R by 2. So, dou r by
dou Xi comes out as r by 2 just as how we got as L by 2 for the plane strain case we will get
the same thing r by 2.

(Refer Slide Time: 10:15)

Load at node-1, P, fﬂ §(§+1) . z i) ——dt = i f E(1+8)2de

P et 422 g = < 20

2

poof 1 o B RO g 08 er_gyge = O (3 gy = 0

R R(1+I

Pl =80 2 2R de = S e 1- - g = (25 =4

2

Total applied load = qxsurface area = q —= %
R2 R?* q.R?
P+P+ P = q—+0+q—=q—

COURSE

FEA & CM
And the load at node 1 is P 1 is q R square by 6 and P 2 it is coming out as 0 and P 3 is ¢ R

square by 3 and so we have 3 nodes; node 1, node 2 and node 3. At node 2 there is no load
actually you can imagine this is a circle and the center point is the point of center of gravity
and so it should not attract any load whereas the other nodes are attracting load and the mid

side load is attracting higher load compared to the outside node.




EE+1) RR
Load at node-1, P,=_|’_+11 (_; 2, =2 d

+E] :—ﬁ 1, N2 48
2 d.,— 8 f—l"—'(l+‘-) d‘-:

qQR? (41, | .3 ey ge _ 4qR? _ q.R?
P=— E+E° +2.E%).dE =——="—
1" g f_] (".' ® . ) 3 24 6

+1E8E-1) R RO+D) ,. qR? f+1.,.- . QR 1,3 on
Pl ey A= L - e =T (€ - 9de =0

+1 ) R RO+ . R? 41, . - R? 2 B?
Pl (1-82).q.5. 52 de =4 [ +1-82 - e =4 (2-3) =2E

And the total applied load is the q times surface area and we are considering only unit radian.
See pi R square is the total area of the circle multiplied by q divided by 2 pi is our applied
load q R square by 2 and our P 1 + P 2 + P 3 is also q R square by 2. So, our calculations at

the different nodes are correct like if you compare with the total applied load.

. MT.R® qR’
Total applied load = qxsurface area=q.—— = —
ray [

q-R* q.R?
32

q.R?
P1+P2+P3=T+ﬂ+
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Numerical evaluation of load at 3 node of
axi-symmetric element

Pl (-2, 2 209 e -

2 2
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And we can also apply our numerical integration and our polynomial order is of 3. So, our R

at any Xi is R times 1 + Xi by 2 and since we have a third order polynomial we can use 2



point integration and then we get exactly the same as what we got analytically q R square by
3.

Numerical evaluation of load at 3@ node of
axi-symmetric element

+1 R R(1+E)
P=_,(1-8).q.53.——.dg=

() (oo (1 () ) e+ e - 2
" 4
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Surface pressure acting on 4-node quad element or 3-node triangular element -
surface is treated as a line element with thickness in plane stress/strain or a
surface of unit radian in axisymmetric problems

§+1) TTTTTTTTITTIT
M= T, LTI,

_(t-9)
7 ¥

N,

Surface traction equation,
P=, [N]".{t).ds = [*[N]".{t}.d& X |]| X thickness /radius

= Z[N]T{t},wi. || X thickness/radius
& —
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And the surface pressure on 3 node triangles or 4 node quadrilaterals are much simpler.

Surface pressure acting on 4-node quad element or 3-node triangular element —
surface is treated as a line element with thickness in plane stress/strain or a
surface of unit radian in axisymmetric problems

$+1)
N = 2 1
2 PETITRRRITINI N,
{1-E)
Ny = ——= -
2 2 $

Surface traction equation,
P=f£ [N]".{t}.ds = J’fll [N]7.{t}.d& x |J| x thickness/radius

= Z{N]Tlc}.w,. |/| x thickness/radius

(Refer Slide Time: 12:39)



Uniform normal pressure acting on two-node plane strain surface
N

tL=q AT TR
Let the two nodes N, & N, beat L &0 J L
For horizontal planar surfaces, /J/=cx/c¢

(1+§) (1=9

N1=_;E,' Nz=_2€:'
oy Wy 1 -
—=—xn+—r=cl+—=.
EoRATRER2TTUTY

My L qlf, &\ ql
”‘=f1 zs"”“?Z“:T(‘-*%) =7 Total applied load
E -1
oAk _
=yt el

M-y L qlf, &\ ¢l
P=| —qdiax=—(t-2) =
2 L 2 q szx 1 (s )—1
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We can follow the same procedure and we will get equal load at these two nodes q L by 2 q L
by 2 and the total load is q L because we are considering a unit thickness without a plane

direction.
Uniform normal pressure acting on two-node plane strain surfﬁce

!n =q o TTTTTTIT] l ---------

Let the two nodes N, & N, be at L& 0
For horizontal planar surfaces, ///=cx/c

(=]

(1+8) | (1-§)
N, % N, i
0x ("Nl ("Nz 1 L+ -1 0 L
—=—xy+—x==.L+ —.0==
“.;' (Ai' 1 (_; 2 2 2 2
‘148 L, qlf. &\" qL
h :L B Bt i "i{'(‘-* 2) e Total applied load
=ﬁ+q—"=q.L
H(1-8) q.L ToqL Lo
P—JI 2 qd.‘zn]:“(_‘_z) _2
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Triangular variation of normal pressure
Ul
q(€) = Np.q + Np- 2 + N3. g3 b

91=9s 920, 45=0,/2 ;

1 =01+9.3
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Then we could apply our numerical integration procedure for any distribution like our q need

not be constant. Let us say we have a triangular distribution like this q is q 0 at Xi of + 1 0 at

Xi of — 1 and then q by 2 at node 3.
q(€) = Ny.q; + N2.q2 + N3.q3
9:=9» 9:=0, 4:=q./2

9® =1+8.2

The q at any Xi can be written as 1 + Xi times q 0 by 2 and we can use this q in our equation
and then do the integration either by analytically or by numerical integration then we can get
the solution.

(Refer Slide Time: 13:48)



uniform pressure acting on two adjacent elements

g
&"

FEAGCM .,

So, if we have a situation like let us say we have two elements A and B and what we do is we

calculate the nodal forces separately on each of these elements. Element A we are going to
calculate and element B we are going to calculate separately and then assemble and this
particular node is common for both element A and element B. So, the force at this node is

going to get added up from element A and B.

Whereas for other nodes it is just simply at the load from its own element just as how we are
assembling this stiffness matrices we have to also assemble the load vectors.

(Refer Slide Time: 14:41)

Thick cylinder subjected to internal and external
pressures

P

Db,

P.

ol ety A b i i

D,
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See till now we considered only plane surfaces, but then let us say we have thick cylinder

subjected to internal pressure. So, now our surface is not a planar surface it is a curved

surface because it is so complicated shape and how do we deal with it? So, for that we need



to completely change our approach because till now we considered only a single surface, but
then we may have a situation where our slope itself is changing like instead of being
horizontal or vertical we could have a curved surface.

(Refer Slide Time: 15:32)

Loading on inclined surfaces

ax Ny N  x-x;
PR R )
dy 0N N, -¥y

0_§=6_¢’y1+¥yz 7

2 2
o\ (% =w=£=|]| P CLL P (7
) "\ 2 2 1= 7 =7
Z—gz |lcosa; g—éz Ulsin oN, 10N, -1
0 "2 2

The derivatives of x &y wrt. € represent the direction cosines which can be used to resolve S
the applied forces in different Cartesian directions
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And before we generalize let us do the calculation for simple two cases like this. Let us take

an inclined case like this wherein our surface is inclined at an angle of alpha and we have
node 1 and node 2 and once again we number in the anti clockwise direction. Node 1 isx 1y
1 node 2 has coordinates x 2 y 2 and dou x by dou Xi is x 1 —x 2 by 2 and dou y by dou Xi is
y1l-y2by?2.

A
q.
Node-2 =
(x,,Y,)
Node-1
{11:\"1}
(}I f]N] (}Nz Il —'xz

A TR T A
f]y aNl aNz yl = yz

a_ézaéyl'*-dfy;’: 2




|

ox\’ % ay\’ V@) 0 -y)? L I
ac I 2 27

dx dy _ .
x= |/|cosa; E" |/|sina
And the length of this element we can get as this dou x by dou Xi whole square + dou y by
dou Xi whole square this whole thing under root and this is L. by 2 and that is J and what is
dou x by dou Xiitis x 1 —x 2. So, we can write this as this Jacobian determinant multiplied
by cosine alpha whereas dou y by dou Xiis y 1 —y 2 by 2 that is the vertical component. So,

we can write this diagonal length multiplied by sin alpha.

Ny, 1 aN, -1
T
The diagonal length is our J and our dou y by dou Xi is mod J times sin alpha and actually
our dou x by dou Xi and dou y by dou Xi they are not only giving us the determinant of the
Jacobian, but also the direction cosine; cosine alpha sin alpha as we can see here represent the

direction cosines we can use them for resolving our applied forces in different directions.

(Refer Slide Time: 17:46)

Nodes are numbered in anti-clock wise direction v
q, is +ve acting into the surface
q, is + while acting from node-1 towards node-2

X - direction component = g, sina — g, cos o

y — direction component = ~g,, cos o ~ g, sin o
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And so if you have any surface like this node 1, node 2 and node 3 and let us take the positive

normal component as a pressure acting into the surface. So, we need to have a consistent

scheme so that we can program them easily and the constant scheme is anti clockwise



numbering and then the normal pressure acting into the surface and then the shear force or the

shear stress acting from node 1 towards node 2.
Y
M

" =

qg

> X

So, the q n is positive acting into the surface and q t is positive acting from node 1 to node 2
and if that is so we can write the x direction component as the q n times sin alpha — q t times
cosine alpha. So, the normal force multiplied by sin alpha — tangent force multiplied by
cosine alpha. Similarly, y direction component is — q n times cosine alpha — q t sin alpha.
Basically we are just resolving them this q normal and q t by using the trigonometry into x
and y directions.

Nodes are numbered in anti-clock wise direction

q, is +ve acting into the surface
q, is + while acting from node-1 towards node-2

x — direction component = g, sina — g, cosa
y — direction component = —g,, cosa — g, sina

While our x and y are the coordinate directions and the q n and q t they are referred to the

element surface.

(Refer Slide Time: 19:30)



Pressure on inclined surface produces components in both x and y directions.
Automated procedure to take care of inclined surface which could be curved is as

follows:

Load at any node i due to traction loads are

X Factor‘ X W

Bo= ) M6 Factr], ;- ZN OIIGE
£

m

B, =- Ni({)%({) xFactor }xw, ZN(f ‘h(f)

X Factor’ X w;
§j

T P
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So, by combining the whole thing we can write our load at any node like this P x in terms of

our sin and cosine terms because our sin and cosine are related to the dou x by dou Xi dou y
by dou Xi like this. So, we can write using our derivatives of x and y with respect to Xi and
this is our x components. This minus this like here you see the g n sin alpha — q t cosine alpha

and sin alpha is with dou y by dou Xi term, cosine alpha is with dou x by dou Xi term.

Load at any node i due to traction loads are

!

: ay ) m dx
P, = Zl N..(vf)d-n(s‘);)-g x Factor |£, X w;j — ;N.(f)q—;({) T3 X FacmrL X 10

% dx “ dy
_Z Ni(£)gn(¢) 3 x ;-m-mrl X wj = Z Ni(£)g. (&) E x f-m-mrl X w;j
j=1 J £ j=1 ¢ -
And similarly P y that is minus of this cosine alpha term and — of this sin alpha term the q n

and q t. So, if you apply these relations we should be able to take care of any curved surface
because at any curved surface the tangent direction is changing. At different Xi you get a
different tangent and automatically our dou x by dou Xi dou y by dou Xi if you evaluate them

at that point you will automatically take care of this tangent.

Then with these equations we can directly distribute into the correct directions whether it is
positive x or positive y and negative X or negative y.

(Refer Slide Time: 21:30)



Coordinates
X Y

Node

1 13.66 100

2 5.0 50

3 933 75
£= (- 5)2+ (3, - y)? = 10m

i (1+% 2%-1\_

=433= cos30x§= /| cos®

couse e
FEAGCM omzm. Bk

And just one small example let us take an element like this 1, 2 and 3 at an angle of 30

degrees and the coordinates are defined like this node 1, node 2 and node 3 and the length is
10 meters and if you calculate dou x by dou Xi you get 4.33 that is cosine 30 times L by 2; L
by 2 is 5, 5 times cosine 30 is 4.33 and 5 is the mod J for the dou x by dou Xi sorry the J L by
2.

Y
Coordinates
Node 1
X Y
3

1 13.66 10.0

2_30°
2 5.0 5.0
3 9.33 7.5 X

€= (x; = x)* + (y2 — y1)* = 10m

dx_(1+2€)1366 (L_l)s-z 9.33
EE—- 7 .66 + ) £ x9.

=433= cosSOX§= |/| cos @

(Refer Slide Time: 22:14)



dy (1+% 2%-1
E_(T)10+(T)5_26X7.5

=250=5in30x: = |J|sin0

dr\* dy z
o= (&) *(a

LEARN MORE ] 'y
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And similarly dou y by dou Xi is 2.5 that is sin 30 times mod J sin theta times mod J and then

our mod J is square root of dou x by dou Xi whole square + dou y by dou Xi whole square.
So, we can easily apply these equations that we have here to directly calculate our forces in

different coordinate directions.

dy (1+2¢ 2f -1

=2.50=sin30x£= I/l sin@

= (%) (&)

(Refer Slide Time: 22:56)

TRACTION CALCULATIONS
Surface 1
14¢
Ny=—r
N1 = 1 _E

oc_oN, oM 10 2_10-2

A A

by o 103 10-3_
A TR T T R B

L=y(10=-2)7+ (10-3)2 = 10,630
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So, these are all different numerical examples that you can follow and then if we implement
this algorithm into the computer program it can automatically take care of our pressure acting
in different directions.

(Refer Slide Time: 23:16)

Thick cylinder subjected to internal and external
pressures

///////////////////
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Like if you see the circular surface see the pressure value is the same, but then its component

is acting in different directions. At this point it is acting vertically up whereas at this point it
is acting horizontal to the right hand side and here it is acting down whereas here it is acting
horizontally to the left side and our cosine alpha and sin alpha terms they help us in
automatically doing these calculations without resorting to anything and the systematically
we have to be consistent.

(Refer Slide Time: 23:56)

Nodes are numbered in anti-clock wise direction v
q, is +ve acting into the surface
q, is + while acting from node-1 towards node-2

X - direction component = g, sina. — g, cosa

y - direction component = g, cos o — g sina.

FEA & CM LEARN MORE Instcteigey
psi//nptel.aci Dr. K. Rajagopal



And our consistent notation is our node number is in the anti clockwise direction 1, 2, 3 and
then the normal force is normal to the surface tangential force is acting from node 1 to node
2. So, as long as you do that you will get the correct x and y directions. So, I think that is the
end of my lecture and if you have any questions please send an email to my email

profkrg@gmail.com. So, thank you very much.




