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Lecture - 17
Isoparametric Elements Part-11

Hello students, welcome back. So in the previous class, I had introduced you to the
concept of isoparametric elements, which are defined from -1 to +1.
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#In previous lectures, the concepl of isoparameiric elements defined in the space of -1 to +1 was
introduced

# Shape & Mapping functions were infroduced
# Derivation of shape functions was illustrated through one-dimensional examples
#The shape funclions for d-node quadilateral elements were derved using both Lagrange &

generalized coordinale method
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And we had the derived some shape functions and let us continue this concept for

higher order elements.
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Shape functions for 4-node quadrilateral by Lagrange method
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We have seen the derivation for 4-node quadrilateral element. We have derived the

shape functions using both the Lagrange’s method and then the generalized

coordinate method.
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Shape functions for 4-node quadrilateral - generalized coordinate mathod
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And we saw that we got the same functions.
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9-node Lagrange element
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Now let us go on to the much higher order element say a 9-node Lagrange element.

This is a pure Lagrange element because we have the same number of nodes along

each line, whether along the psi direction or along eta direction. And node 1 is in the

positive quadrant. Node 2 is in the second quadrant. Node 3 is in the third. Node 4 is

in the fourth quadrant and so on.



And by looking at our 3-node bar element, we can say that our shape function at this
point is psi of +1 is psi times psi + 1 by 2. And the shape function at -1 is psi times psi
- 1 by 2 at this point at the mid side point at psi of 0, 1 minus psi square. Then in eta

direction eta times eta + 1 by 2, 1 minus eta square.
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And this and the advantage with the Lagrange’s method is we get the shape function
separately in the two directions at psi and eta directions and then take a product to get
our shape function. So the N 1 will be the product of this and this. So the N 1 is psi
eta times 1 plus psi, 1 plus eta by 4. Whereas N 9 is just simply the product of this and
this, 1 minus psi square, 1 minus eta square. And then similarly, all the other at all the
other nodes, okay?
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9-node quadrilateral - generalized coordinate method
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The shape functions derived by this method will be exactly the same as
those from Lagrange procedure
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And we can get the same shape functions even by using the generalized coordinate

method. The polynomial for the 9-node quadrilateral is alpha naught plus alpha 1 psi



plus alpha 2 eta plus alpha 3 psi square plus alpha 4 psi eta and so on, okay? And we
can derive the shape functions and we will see that the shape function that we get
from the generalized coordinate method are exactly the same as what we get from the
Lagrange’s method.
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Quadratic elements with variable number of nodes - serendipity elements
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And the advantage with the serendipity method of correction is we can incorporate the

elements with which are not exactly Lagrange elements like with any variable number
of nodes. Say for example, we can think of a quadratic element with 5 nodes. Say let
us say we have a fifth node here or we can have a 6-node elements 1, 2, 3,4, 5, 6 or 7,

5, 6, 7 or 8-node element 5, 6, 7, 8.

And these are not Lagrange elements, these are called as serendipity elements. And
for deriving the shape functions for this, we need a separate procedure. And so let us
see what that is. So in fact, this 8-node element is very popular in finite element
analysis because it is very powerful and we get a good accurate result in not only in
the elastic analysis, but also in the elastic plastic analysis.

(Refer Slide Time: 04:40)



5-node quadratic serendipity element (transition element)
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So for the 5-node element, we have the, we can start with the shape functions for the
4-node element 1, 2, 3, 4 and then introduce the fifth node and do the correction,
okay? And so we can actually directly write our, these shape functions based on the
Lagrange’s procedure like this, okay? And if you see, at node 1, the shape function for

4-node element is 1 plus psi, 1 plus eta by 4.
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And at node 2, 1 minus psi times 1 plus eta by 4. And at node 3, 1 minus psi times 1
minus eta by 4 and node 4, 1 plus psi 1 minus eta by 4. Okay now, we have
introduced the fifth node at this point. And that is 1 minus psi square because this is
the middle node along the psi direction when you have three nodes. And then in the

eta direction, this is at eta of +1 and there are only two nodes along the eta direction.
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So this could be written as 1 plus eta by 2. But if you introduce this node, the problem
is if you substitute eta of 0 and psi of 1 we have a problem. We do not get 0, because
our object is the shape functions should have value of 1 at their own node and 0 at all
the other nodes. So when you had a 4-node element, that was easy like, if you

substitute psi of the eta 1, you get 1.

But if you substitute psi of -1 or eta of -1 you will get 0 and so on, okay? But when
you introduce this node at node 5, then this is not 0 but it is half. So to make N 1 and
N 2 as 0 at this point, I can say N 1 at fifth node is N 1 for the 4-node element minus
N 5 by 2. And N 2 for 5-node element is N 2 for the 4-node element minus N 5 by 2.

And these two shape functions 3 and 4 need not be corrected because, if we evaluate
these two along this line where eta is +1, they will automatically become 0. Like for
example, if you substitute eta of 1, N 3 is 0 and N 4 is 0, okay? So just by correcting
these two shape functions, we can get the shape functions for the 5-node serendipity

element.

And then if you sum up all the shape functions, you get one, that is the corrected
shape functions N 1 and N 2 for the 5-node element plus N 5 plus N 3 and N 4 you
will get 1. That I have not done here, but you can do it yourself, okay?
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6-node quadratic serendipity element (transition element)
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And now let us introduce the sixth node, okay? Let us start with the 4-node element.
These are the basic shape functions for a 4-node quadrilateral and N 5 is 1 minus psi
square times 1 plus eta by 2. And N 6 is 1 minus psi by 2 times 1 minus eta square
because this is at psi of -1. And on the right hand side, the other one is at psi of +1

okay? So in eta direction, there are three nodes.
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So we can write like this. And if we evaluate N 1 and N 2, they are half here, and they
are also half here. Then N 3 is also if you evaluate N 3 for the 4-node element here,
you will get half. And N 3 along this line is 0. And N 4 is 0 if you evaluate along this
line or along this line. So the N 4 does not require any correction. And N 1 requires a
correction because of node 5. Whereas N 2 requires a correction for node 5 and node
6.



(<11 Ta01) (1)
2 5 1
(-1,0) ¢ & =,f
3 4
(-1,-1) (1,-1)
N.
NE=NE -
N N,
N$=N3 - 222
= = 2N 2
[ _4__6
es 3 =Ns 4 2
T
6 N”" - N" ’
&6 Yn=1  /
1 __.—"

And N 3 requires a correction for node 6. So we can write N 1 for the 6-node element
as N 1 for the 4-node element minus N 5 by 2. And N 2 for the 6-node element is N 2
4. That is N 2 for the 4-node element minus N 5 by 2 minus N 6 by 2. And N 3 for the
6-node element is N 3 for the 4-node element minus N 6 by 2. And N 4 for the 6-node

element is exactly the same as N 4 for the 4-node element.

And the sum total of all the shape functions is equal to 1 because that we require for
unique for the uniqueness in the mapping okay and that we will see later why we need
the sum total of all the shape functions as 1, okay?
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7-node quadratic serendipity element (transition element}
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And we can introduce the seventh node. And now, our N 1 is corrected because of N
5. And the N 2 is corrected because of node 5 and 6. And N 3 is corrected because of

nodes 6 and 7.
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And N 4 is corrected only because of 7, okay? And that correction is, see the
correction for N 1 is N 1 7 is N 1 4 minus N 5 by 2. That is N 1 for 7-node

quadrilateral element is N 1 for the 4-node element minus N 5 by 2.

N 2 for the 7-node element is N 2 minus for the 4-node element minus N 5 by 2 minus
N 6 by 2. Similarly, we can do for all the other nodes. And we can do this just by
observation, we do not really need to derive them. And I forgot to ask you one
question. See for the 5-node element we got these shape functions, but if you assume
a polynomial and derive using the generalized coordinate method, you will see that

you will not get the same shape functions.

Because earlier we got the same shape functions whether we used Lagrange method
or the generalized coordinate method because we were applying the procedure for a
purely Lagrange element, but these elements, these transition elements are not
Lagrange elements. These are something else. So we have to use only the method that

we are using, the serendipity method.

And basically all these elements with variable number of nodes these are called as
transition elements.
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&-node quadratic serendipity element

el x & 1% &
Y A (1445 (1+n)
....... - Ll
S W (1={).(1+q) ioeg 7Y
]
N; W,
T T | =fii-n  Nr=pgl-—_2
i CEEETOR 2 ! 4
& 41 L+ ki-n [-1-1] f&-1] (L-1l
N
L e
s oa gl 12
& -10 1=f. N
5 =1 N_jﬁzﬂjl_{_%
L “'ml.Tﬂ i
B 18 1+ Ny Ny N=1
. . soyi M E &
et NN - : | /
L. towau | ,

7 and then 8-node quadrilateral is actually it is is a very powerful element wherein all
the 4 nodes N 1, N 2, N 3, N 4 they get corrected. Say N 4 for the 8-node element is N
4 for the 4-node element minus N 7 by 2 minus N 8 by 2 and so on, okay? N 1 8 is N

1 for the 4-node element minus and N 5 by 2 minus N 8 by 2

these directly by observation we can write.
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and so on, okay. So
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And the main advantage here is we can easily program them. And these elements are
formulated in terms of — 1 to + 1. So if it was x 1 to x 2, we do not know how much
correction we need to apply, because we cannot do this type of simple calculations.

(Refer Slide Time: 13:53)

The shape functions of the 9-node Lagrange element can be obtained
from thase of 4-node Lagrange element by progressive correction. In
maost commercial FEA programs, these variable order elements are
used in adaptive meshing, in transition zones between regions of fine
and coarse meshes
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So these are the two elements, the 4-node quadrilateral and 9-node quadrilateral, they
are pure Lagrange elements. And the others with 5 nodes, 7 nodes, 6 nodes, 8 nodes,
these are all called as transition elements. And they are used in adaptive meshing.
Sometimes or some programs they give you an option for adaptive meshing so that
you get more closer mesh, where you have say some very high strain variation or

some point is of interest for you.

And we can use this variable number of node elements for transition from one type of
element to the other type of element.
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Shape functions for 4-9 Node Lagrange elements

Hode Basic function Incliide if Na-i 8 defied (cofecbons in colims 5-8 are applisd
Nusar betore the carmeetion in 8" column is applied)
| 5 B 7 B
N (141 +nyd N/ 2 Ns/2 #Ny /4
Ny (1= W1 + )4 M/ 2 Ny 2 : N,
N; (1=E)1-n)y4 Ml 2 N:l2 +N,
Ny {1 +EW1-ny4 2 Ny/ 2 +N;
{(1-£7) (1 +n)2 Mg
(1=E){1- )2 Ny
| (-E1(1-n)2 Mo/ 2
Ny (1 +E)(1-n2 N
Ne 1 O-E00-m) | e ] e b 1 |
comsE /

And so this table summarizes your different shape functions. Say N 1, N 2, N 3, N 4
these are the basic elements and N 5, N 6, N 7, N 8 and these columns, say if you
introduce N 5, you correct N 1 and then N 2, okay? And if you introduce node 6, you
correct N 2 and N 3. And with node 7 we correct N 3 and N 4 and so on. Like with, if

you introduce eight node, we correct 1 and 4, okay?

And then with ninth node, we have correction for all the other 8 nodes. These are the
corrections that we need to apply. And this table tells you what to do. And it is very
easy to program or to change the number of nodes from 4 to 9. And this is what is
done in most finite element programs. I will show you one program like later on how
this is done to change the number of nodes from 4 to 9 and adapt any number of nodes
that we have okay?
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#Tha mapping & shapa functions, M and N are formed in tarms of { and ; instead of
Canrlesian coordinates x and y

»We cannot directly determine the terms E% elc. which are required for forming the
B-matrix

#As M & N are functions of £ & n which are in turn related to the Cartesian
coordinates x & y, we can use chain rule of partial differentiation to obtain the
required derivatives
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So now we have developed our mapping and shape functions in terms of psi and eta
instead of the Cartesian coordinates x and y. And so we cannot directly determine our
Cartesian derivatives of N, doh N by doh x and doh N by doh y. And unless you

derive them, we will not be able to form the B-matrix, okay?

The B-matrix is required for forming our stiffness matrix or for calculating the
equivalent loads due to your initial stresses and so on, okay? And as M and N both the
mapping and shape functions, they are written in terms of psi and eta, which are in
turn related to Cartesian coordinates x and y right? There is a relation certain relation

between psi eta and x y okay?

So we can use the chain rule of partial differentiation to obtain the required
derivatives, okay?
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And what we do is, we can write our doh N by doh psi because our psi is related to
both x and y. So I can write doh N by doh psi as doh N by doh x times doh x by doh
psi plus doh N by doh y times doh y by doh psi. Because this is a chain rule of
differentiation, because psi is dependent on both x and y. Similarly, the doh N by doh
eta I can write as doh N by doh x times doh x by doh eta plus doh N by doh Y, doh Y
by doh eta.

dN; _dN; dx N, dy
9§ dx 9§ Ay 9§

dN; dN; ox " dN; dy
dn ~ dx dn Ay oy

And here if you look at these two equations doh N by doh psi we can directly evaluate
because our shape functions are formulated in terms of psi and eta. And our doh x by
doh psi and doh y by doh psi also we can evaluate because our mapping functions are
formulated in terms of psi and eta and our x is sigma of M i x i, okay. So our x is

sigmaof MixiandyissigmaMiyi.

As x and y are related to the nodal coordinates through the mapping functions,
x=YXM.x; & y=E M.y
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So we can write doh x by doh psi as doh M by doh psi x i and so on okay? So here we
know the left hand side and then we know the doh x by doh psi, doh x by doh eta, doh
y by doh psi, doh y by doh eta and so on okay?
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And so we can actually write this in matrix form like this. doh N by doh psi, doh N by
doh eta and then doh x by doh psi, doh y by doh psi, doh x by doh eta, doh y by doh
eta multiplied by doh N by doh x, doh N by doh y.
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And here we know the left hand side because our shape functions are written in terms
of psi and eta. So we can determine this. Then this bracket is a very important
quantity that we evaluate. This is called as Jacobian matrix that is consisting of the
derivatives of x and y with respect to psi and eta. So by inverting this matrix, we can

get doh N by doh x and doh N by doh y, right?

And our inverse of the Jacobian matrix is 1 by determinant of the Jacobian times doh
y by doh eta minus doh y by doh psi minus doh x by doh eta doh x by doh psi okay.
And the determinant of the Jacobian matrix is doh x by doh psi times doh y by doh eta
minus doh x by doh eta times doh y by doh psi, okay? So this is also very important

quantity, the Jacobian should be positive definite for unique mapping.

Because previously we said some things like our all the internal angles should be less
than 180 degrees and then they should not be and then the intermediate point should
be within the middle third and so on. And the more check is done by this Jacobean
matrix that we derive, okay?
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And the determinant of the Jacobian matrix will be positive definite only when

element nodes are in anti-clockwise direction. We have to number all the nodes in the
anti-clockwise direction and it has to be positive definite, because it represents the
area of the element to some scale, okay? And then if it is positive definite, that means

that we have unique mapping.



And the shape function derivatives with respect to Cartesian coordinates now, can be
written like this, doh N by doh x, doh N by doh y in terms of all the other parameters,
okay? And all the quantities on the right hand side, we can actually write out in
analytical form when we are programming. It is very simple to program, okay?

dN; 1 [dy dN; dy ON,

dx |J||on” 0§ 9& an

aN;* 1[ ax aN; ax aN,

_— . o —
dy I on 9§ o9& on

And now we got a relation to get your shape function derivatives with respect to
Cartesian coordinates x and y. And now, we are dealing with integration in Cartesian
space integral of x and y. But now, we have the, with mapping we are working in
terms of -1 to +1.
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Relation between area integrals in Cartesian & isoparametric space
area of infinitesimal space A = dr.dy in Carlesian space

df.dn in isoparamelnic space

n F = comstant
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So how do we do that? And how do we establish the relation between the Cartesian
space and then the isoparametric space, isoparametric or natural space, okay? So let
us take an infinitesimal element dA of dx dy in the Cartesian space and then in the
isoparametric space d psi d eta. And now, we want to establish a relation or the scale

factor between dx dy and d psi d eta, right?



area of infinitesimal space dA = dx.dy in Cartesian space

dé.dn in isoparametric space
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dip —dn
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And how do we do that? So for that, we can go back to our vector calculus and let us
imagine these two lines P Q and P R as two vectors. And along this line, your eta is

constant right, because we are moving along psi. And then along this line your psi is

constant, okay?
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Vector P = dx.i + dy.j, 1 = constant along this line
. e LAy
Py = rifdh +.J§ dé.J

Vector PR = dx.i +dy.j = :::r dn. i+ 3: dn.j, £ =constant along this lina

/

Lo g

And in general, our vectors are written like a dx, we can write in terms of doh x by
doh psi d psi plus doh x by doh eta d eta. Because our x is a function of both psi and
eta, I can write it like this, doh x by doh psi d psi plus doh x by doh eta d eta. And dy
also also can be written as doh y by doh psi d psi plus doh y by doh eta d eta because

both x and y are related to psi and eta, okay?



dx dx

dx = EEd‘f + qun
dy dy
dy = (Tf—d£ +adl}

Vector PQ = dx.i +dy.j, n = constantalong this line

P0 =X dr.i+ 2 ae
Q—E s‘—l+52 $.J

Vector PR = dx.i + dy.j = g_: dn. % %dq.}'. £ = constant along this line
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Relation between area integrals in Cartesian & isoparametric space
area of infinitesimal space dd = dx.dy in Carlesian space

di.dn in soparameine space

] £ = constant

R = conslant

P e

X
Mappéd Parent /
Eoims

And so along this line, your eta is constant. That means d eta is 0. So we do not have

the doh x by doh eta terms like and doh x by doh eta terms because d eta is 0. So we

can write this length as doh x by doh psi times d psi. And this as doh y by doh psi d

psi, okay? And the PQ is this is actually it is a vector doh x by doh psi d psi i plus doh

y by doh psi d psi d psi in the j direction.
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dx dx

dr = —df +—
; ¢ : an o
ri
4 e+
r)ir
Veclor PO' = dx.i + dy.J, n = conslant along this line

. g By
Fu:ri{d{'”:rl;fd{'l

Vecior PR = dx.{ + dy.j= rl'rJ P d:p J, = constant along this line

= A

So we can write the vector is in general written as dx i plus dy j. And along this PQ

eta is constant. So I can write the PQ vector as doh x by doh psi times d psi i plus doh
y by doh psi d psi j okay? And this is a vector and similarly along the vector PR your
psi is constant. So d psi is 0. So we can write dx i plus dy j as doh x by doh eta d eta i
plus doh y by doh eta d eta j okay?
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unitarea in Cartesian space, dA= PJ x PR
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o f

And in the vector calculus the area is a cross product. So we have developed two
vectors PQ and PR and if you take a cross product we will get the area, okay? So
your, and then when we are doing the cross product i cross j is k, i cross i is 0, j cross j
is 0 and j cross i is -k right? So if you do this cross product, we will get doh x by doh
psi d psi doh y by data eta d eta k, positive k, minus this multiplied by k.



unit area in Cartesian space, dA = PQ x PR

‘*—"d{‘”’d k-2 d{—d k Note:

iIXj=k Jxi=s-k
. dA = dudy = (22 _2x2y R
o dA = dxdy = (m” a”a{) dédn IxT=0 JxJ=0

~dxdy = | J|dédn

+1 +1

f f dxdy = f f [/1d&dn

X3 N -1 -1
So our, this is our dA that is dx dy and that is equal to, this is actually determinant of
the Jacobian matrix multiplied by d psi d eta. So now, we can say dx dy is nothing but
the determinant of the Jacobian matrix multiplied by d psi d eta. So we can write in
general integral x 1 x 2 integral y 1 y 2 dx dy as integral of -1 to +1 integral -1 to +1
determinant of the Jacobian matrix j d psi d eta.
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Pascal triangle in isoparamatric coordinates

f

CamsE /

And so actually for the 9-node element this is what we have done. We took these 9
terms 1, psi eta, psi square, psi eta eta square, psi square eta psi eta square and psi
square eta square. We have the 9 terms for the 9-node Lagrange element. So now, let
us apply this and so if you want to do any calculations we can do this. And then how

do we do this numerically.



So we can write in a summation form for doing the numerical calculation. So I can
evaluate the psi and eta at some specific locations and then do the calculation. That is
what we are going to do, okay?
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Find area of rectangutar element using single pomt Gauss quadrature
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4 4 4
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Let us say that we are given a 4-node quadrilateral or a rectangle with these
coordinates and then we are interested in finding the area of this element. And the
area of the element we can get as, okay? So this is the area of the element, integral dx
dy integrated from x 1 to x 2 y 1 to y 2 is determinant of the Jacobian matrix j d psi d

eta integrated from -1 to +1.



{5.15) 15,15)

(5,7) (15,7)
area = 10=x8 = B0

+1 +1

j- j dxdy = j J |{dédn

-1 =1

And this is in a numerical form we can write it in the summation form like this. We
can write the area as the summation over psi summation over eta determinant of the
Jacobian matrix w i w j where the weight factors in the psi direction and eta direction.
So our shape functions at these four nodes are like this 1 plus psi, 1 plus eta by 4, 1

minus psi, 1 plus eta by 4 and so on.

Doh N by doh psi, doh N by doh eta. These are just simple derivatives with respect to
psi and eta. And now we can calculate doh x by doh psi as doh N by doh psi times x i
right? And we have four x values; x, x 1is 15,x2is 5, x 3is 5, and x 4 is 15, okay?
So doh N 1 by doh psi times x 1 plus doh N 2 by doh psi x 2 plus doh N 3 by doh psi
x 3 plus doh N 4 by doh psi times x 4

And these are the different derivatives and these are the coordinates. And if you do
the calculation, it is a constant value, 5. It is not a function of psi or eta. Then
similarly, doh x by doh eta if you calculate, it is coming out as 0. So why does it, why
did we get this type of answer? doh x by doh psi is an absolute constant. And doh x by
doh eta is also an absolute constant but it is 0, why?

ax

1+n 1-n

E =5 -5 5 4 20515 =5,

a§ 4 4 4 4

ax 14§ 1-¢ 1-¢§ 1+¢

— = 154 ——X5=———x5- 15=10
an 1 & ) o 4 9 =

dy 1+n 147 1-79 1-n

—_ = x15 — %15 = ———x7 + x7=0
0¢ 4 4 4 4

ly 1+ 1 - 1- 1+

W ot sl S gs 18 148

a4 4 4 4



So actually when you look at this, the shape of the element rectangle, your psi and eta
are coinciding with x and y. So psi is coinciding with x coordinate and eta is
coinciding with y coordinate. So as you are moving along X axis, your eta is
remaining constant. Similarly, if you are moving along Y your psi is remain constant,

okay? Or as you are moving along psi, your Y is constant.

And as you are moving along X your eta is constant. So our doh x by doh eta, the
variation of x along eta direction is 0. That is what we can see from this figure itself.
And then similarly, doh y by doh psi we get it as equal to 0. That is the variation of y
along psi direction. That is constant because this element itself is a rectangular shaped
element. And doh y by doh eta that is the variation of y with respect to eta that is

coming out as 4.

So this doh x by doh psi is 5 and doh y by doh eta is 4. And this 5 is coming from the
half-length. See the length along the x axis is 15 - 5, that is 10. And 10 divided by 2 is
5 okay? And the length along the y axis is 15 - 7, that is 8, divided by 2 is 4. So now,
the area of this element can be written as double summation over psi and eta mod j

multiplied by w i w j where w i w j are the scale factors.

And we can just simply use one point integration for doing this calculation because
the polynomial is anyway constant. Like this, we do not see any polynomial terms in
the doh x by doh psi or doh x by doh eta and so on; 5, 0, 0, 4 okay? So our
determinant of the Jacobian matrix is 20. And the area of element is j multiplied by w

1. That is 2 times w 1 that is 2 that is 80.

area = Z XI JI.w;.w;
n

o dx dy dy ox
=3¢ o~ a¢ o
5=0 Area of element = 20x2x2=80
So that is exactly equal to the area of this element, 20 times sorry 10 times 8, okay?
And with just one point integration, we can get the area of this element because, in
fact the polynomial order is 0. There is no variation, okay?
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Find the area of a distorted quadrilateral element

Total area of this shape = 62.5 units (13,18
{B.13)
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So now, let us take a distorted shape. Let us take the same 4 nodes 1, 2, 3, 4 and

assign some properties so that we have a distorted shape like this.

A (13,16)

(8,13)

{15,7)
(5,5)

>

Now we see that doh x by doh psi, doh x by doh eta they are not 0, they are varying
as a function of eta and psi. Similarly, doh y by doh psi doh y by doh eta they are
functions of psi because they are varying. And so and actually here, how many
integration points do we require?

dx 147 1+ 1~ 1-
= 1,1';.- T.'H n n

S = 3= tae - s 4 a5 = 375 - 1250
:J:_::zl_:_‘fmgﬂ_;'ﬁ”_%xs_.l_:—{-x|5={J_25—1.25£
::’:1:‘?46_1:”,1;-:-1:'7!54,1;"-7=1.25+uz.=u;-
:;_::1:-!x16+¥x13_¥,5_‘”n:e..zswzs{

Say our doh x by doh psi is only eta, that is a first order polynomial. And doh y by
doh eta is also a first order polynomial, because it is 4.25 plus 0.25 psi and so on,
okay? So this product, the determinant of the Jacobian matrix is a first order
polynomial. So that means that if we use one point integration, you should get the

exact result.
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area = sz.m Wj

E.'I T.l"
Sampling point locations for one-point quadrature are £=n=0 & weight
factor=12

c.Area=(3.75x4,25-1.25x0.25)x2x2 = 62.5

Just for illustration, let us try determining the area of the element using
2x2 numerical integration

sampling points are +1/v/3 & weight factors are 1,1

i [

And so by one point integration, we get 62.5. And the area of this element, actually I

have calculated separately by splitting this into two triangles. And then we have a
formula for estimating the area of the triangle as the determinant of the coordinate
matrix 1,x 1 1,y 1 1,x2y2,1,x 3y 3. The determinant of that matrix will give you
the area of the element, okay. And by doing that procedure, we got the area of this

area = ZZUI.wf.wj
e n

=i

Sampling point locations for one-point quadrature are £=1=0 & weight
factor =2

.Area = (3.75x4.25-1.25x0.25)x2x2 = 62.5

element as 62.5, okay?

.

Just for illustration, let us try determining the area of the element using
2x2 numerical integration

Sampling points are +1/v/3 & weight factors are 1,1
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Determination of area using 2x2 integration

Mode | Shape fumction | AN N
= T o ] il
1 (L6 (14w (14§
] el T N
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4 4 4 LR ER 7Y,
3 (-0il-n -(1-n) =(1=0) F w1

4 4 4 L
4 (1={){l=n (=0 =(1#%{}

¥ G 4 1 Sum of W= 2 [for all integration orders)

Sum total of Wi, = 4 for ol mtegration orders)
4 dx dy dy ox
| Area -EiE;[d—E-M % f]”)l.f,qjxw‘ij

i
ZZ!{S.}‘S - 1.257).(4.25 +0.252) - (1.25+ 0.251). (0.25 - 1.25)} g, % w; X W

And let us see if we apply higher order of integration like 2 by 2 or 3 by 3, whether
you get any different answer. But of course, it is a tedious process. With 2 by 2
integration, our sampling point locations are -1 by root 3, -1 by root 3, and the weight
factor is 1. And -1 by root 3, +1 by root 3, and so on, okay? And so if you substitute
the various values, you will actually get a very complicated equation.
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Determination of area using 2x2 integration
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Do the above calculation carefully using the brackets without
625 writing out any intermediate values to get the exact answer

And then on top of that, we have to substitute psi and eta values at four points because
it is a 2 by 2 integration. And we will get a long equation. And if we solve this long
equation without rounding off any numbers or writing out intermediate values, we
will see that this is 62.5, okay?
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Using 3-point numerical integration
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Result will still be the same as obtained earlier, 62.5

And we can apply even the 3-point integration, but then we will end up with the same
value. And if you use a 4-point integration, we are evaluating all the quantities four
times. And if you use a 3-point integration, we need to do 9 evaluations. See for
something that could have done with just 1-point integration, if you use higher order
of integration, your computational effort is more but the result is not going to change,

okay?

So this is how we can do these computations. And in this class, we have got a relation
between the Cartesian space and then the natural space. And then we found a way of
determining the Cartesian derivatives or the shape functions doh N by doh x and doh
N by doh y. And now we are ready for doing all the finite element calculations using

our isoparametric elements.

Okay that we will do from next class. So if you have any questions, please send
emails to this address profkrg@gmail.com. And before you come for the next class,
please do try to understand all the previous lectures so that it becomes more easy,

okay? So thank you very much.



