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Lecture - 15 

Numerical Integration Techniques 
 

So very good morning to all of you. I hope you have read the previous lectures before 

listening to this lecture. Let us look at other aspects of computations. That is, let me 

start the laser pointer, okay. Let us look at the numerical integration techniques that 

we require. 

(Refer Slide Time: 00:44) 

 

And just recall in the previous few classes, we had developed the equilibrium 

equations for a continuum. And we had seen number of integrals. See when starting 

from the stiffness matrix, integral B transpose DB integrated over the volume and 

then the force vector due to surface traction integrated over the surface. Then the 

force vector due to body weight and the force vector due to initial stresses. 

 

We have number of these integrations and then we have also seen that the shape 

functions are expressed in terms of polynomial series. And then our B matrix is 

nothing but the matrix of the shape function derivatives. Then when we do this 

product B transpose DB or N transpose B or something, we will end up with 

polynomial of different orders. 

 



Then how do we evaluate those integral quantities especially if the shape of the 

element is irregular. If it is a pure rectangle or something, it is okay we have the 

limits, but then say you have an irregular shape say something like this. So I have an 

element something like this, how do we do the integration? Because the x and y they 

are dependent on each other, and it is not possible. 

 

So we need to look for other methods and especially those methods that are directly 

suitable for computer implementation, because if it is analytical integration, we know 

how to use, how to use our brains and do the calculations. But then when it comes to 

computer implementation, it will only do if you are able to program. And whatever 

method that we are going to develop, it should be easily programmable and that is 

what we are going to do that in this lecture. 
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See as I said we have this integrations. Let me just see the, okay? So we have these 

integration quantities and the simplest one is let us say we have limits x 1 and x 2 and 

we have some function f and we want to integrate. And integration is just simply the 

summation. 

 

Because actually, if you plot this function over x 1 and x 2 we can manually calculate 

the area of this function within each of these panels and then add them up to get the 

integral. And so there are different methods starting from trapezoidal method that is 

the simplest one. And in civil engineering, trapezoidal method is the one that we use 



for all the surveying calculations for estimating of volumes, at work volumes and so 

on. 

 

Then the trapezoidal method is good for linear variations like if you have a straight 

line curve, a straight line, then we can integrate. And Simpson’s method is a bit more 

involved and it is good up to exactly integrating up to cubic polynomials. Then we are 

going to develop one method called as Gauss quadrature or Gauss-Seidel quadrature 

method. 

 

And it is more versatile, more easy to implement and also given a polynomial order, 

we know how much, what is the order of Gauss quadrature that we require, okay? So 

we will see the theory behind, and then how to implement them also we will see. 

(Refer Slide Time: 04:58) 

 

See the trapezoidal method is actually suitable for linear functions, okay? And then 

the area of each panel, like for example say you have a limit of x 1 to x 3.  

 



And here, I have shown you two panels. Let us say we divide this into two panels, 

panel 1 and panel 2. Then we can separately evaluate the area in each panel. Like this 

area of panel 1 is the average value of F 1 and F 2, multiplied by delta x.

 

And the area in the panel 2 is the average value of F 2 and F 3 multiplied by delta x. 

And so the total area comes out like delta x by 2, multiplied by F 1 plus F 3 plus 2F 2, 

right? 
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And in general, we can write like this. We can divide this length x 2 

number of intervals. Or we can write a generic formula I is delta h by 2 or the 

function value at x 1, and then the function value at x 2, plus two tim

of all the intermediate function values, x 1 to say x 2 minus delta h okay? So these 

values that are highlighted in red, 1, 2 and 1 these are called as weight factors.

And here, I have shown you two panels. Let us say we divide this into two panels, 

panel 1 and panel 2. Then we can separately evaluate the area in each panel. Like this 

is the average value of F 1 and F 2, multiplied by delta x. 

And the area in the panel 2 is the average value of F 2 and F 3 multiplied by delta x. 

And so the total area comes out like delta x by 2, multiplied by F 1 plus F 3 plus 2F 2, 

 

And in general, we can write like this. We can divide this length x 2 - x 1 into say n 

number of intervals. Or we can write a generic formula I is delta h by 2 or the 

function value at x 1, and then the function value at x 2, plus two times the sum total 

of all the intermediate function values, x 1 to say x 2 minus delta h okay? So these 

values that are highlighted in red, 1, 2 and 1 these are called as weight factors.

And here, I have shown you two panels. Let us say we divide this into two panels, 

panel 1 and panel 2. Then we can separately evaluate the area in each panel. Like this 

 

And the area in the panel 2 is the average value of F 2 and F 3 multiplied by delta x. 
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They are multiplying the function values with some weight factors 1 and 2 okay? And 

it is actually it is a very simple method, the trapezoidal method. And if we have a 

higher order curve, or higher order polynomial, we need to divide this into more 

number of panels, okay? 

(Refer Slide Time: 07:06) 

 

So let us look at an application. 

 

 Let us say that you want to integrate a function x from 10 to 20. And the exact value 

is x square by 2 and the limits are 10 and 20. So this value is 150. And this being a 

linear function, it is varying like this. So we can just divide this entire length into one 

single panel, and then our integral value by trapezoidal method, is just simply delta x 

by 2 average value times 10 plus 20. 



10 plus 20 is divided by 2 is the average value, and delta x is this value. And that is 

150. That is exactly matching with the result. That is because we have a linear 

polynomial. And now let us look at higher order polynomial, like let us take x square, 

integral of x square dx is integrated from 10 to 20 is 2333.333. That is the exact value. 

And let us try with one single panel, okay?

So this I is at 10, the function value is 10 square, that is 100. And at 20, the function 

value is 400. And this comes out as 2500. And what we 

more than the exact value. 
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y 2 is the average value, and delta x is this value. And that is 
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polynomial. And now let us look at higher order polynomial, like let us take x square, 

is integrated from 10 to 20 is 2333.333. That is the exact value. 

And let us try with one single panel, okay? 

So this I is at 10, the function value is 10 square, that is 100. And at 20, the function 
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y 2 is the average value, and delta x is this value. And that is 

150. That is exactly matching with the result. That is because we have a linear 

polynomial. And now let us look at higher order polynomial, like let us take x square, 

is integrated from 10 to 20 is 2333.333. That is the exact value. 

 

So this I is at 10, the function value is 10 square, that is 100. And at 20, the function 

should notice is, this value is 



So now, let us try with by dividing this into two panels, and see what happens to the 

accuracy of the solution.  

 

So at 10, the function value is 100 x

integral values. Now our delta x is only 5. 5 by 2 100 plus two times 225 plus 100. 

That is 2375. And if you look at the exact value is 2333 okay? So we are coming 

closer to the exact result. 

And now let us try with four panels. Instead of two panels let us take four and the x 

values are at x of 10, 12.5, 15, 17.5 and 20 okay because our delta h is 2.5 and the 

function values at each of these x values are like this. So our integral value is 2.5 by 2

that delta h by 2 multiplied by the function values at x 1 and x 2 and then two times 

all the intermediate function values.

 

And this comes out as 2343.75. So in general we notice that, as we increase the 
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exact value? That we do not know. We have to go on trying out. And the number of 

panels also may require, may depend on the order of polynomial. 

 

So in this case, we have a polynomial of x square. But let us say we have another 

polynomial of x to the power 5 or x to the power 6. We do not know how many panels 

we need. 
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So now let us look at some other method that is the Simpson’s rule. And this method 

is exact up to a third order polynomial.  

 

And this method involves in dividing the entire region into certain number of even 

number of panels; 2 panels, 4, 6, 8, 10 and so on. And our n is even. Whereas in the 

trapezoidal method, there is no such restriction. You can have any number of panels 

like 1, 2, 3, 4 and so on. 

 



And our delta h is x 2 – x 1 by n. And these function locations function value, 

locations are numbered as 0, 1, 2, 3, 4 and so on. So 0 and the last one, the function 

values at x 1 and x 2. And the function values at 1, 3, 5 so on they are called as odd 

numbers, odd terms. And the function value is evaluated at 2, 4, 6 and so on. These 

are the even locations. 

 

And as per the Simpson’s rule, the integral value is delta h by 3 where delta h is x 2 – 

x 1 by n, one times the function value at x 1 and one times the function value at x 2, 

plus four times the sum total of all the function values evaluated at odd locations, 1, 3, 

5, 7 and so on. So f of x 1 plus delta h x 1 plus 3 delta h and so on, plus two times the 

sum total of all the function values evaluated at even locations, x 1 plus 2 delta h, x 1 

plus 4 delta h, and so on. 

 

And so here, these factors 1, 4, and 2, these are called as weight factors. Previously, 

we had only two factors 1 and 2. But now in the Simpson’s rule, we have three weight 

factors 1, 2 and 4. 
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And let us apply the Simpson’s rule for different polynomials. Let us apply this for 

linear polynomial, the same one that we had seen earlier.  



 

And we require minimum two panels because we have to divide the region of 

integration into even number of panels. So our x values are located at 10 that is x 1 

and x 2 is at 20 and intermediate value is at 15. 

 

So our I the integral value is delta h by 3 that is 5 by 3 10 plus four times the function 

value at odd locations four times 15 plus the last one that is 20. That is exactly 150. 

That is the exact value. And the integral value by the trapezoidal method we already 

calculated 150. See both of them, they have given exactly the same value and both are 

correct. Both are matching with the exact result. 

 

But which one is more optimal. So if you look at the trapezoidal method involved in 

only two function calculations 10 and 20. Whereas, the Simpson’s method it required 

minimum three, 10, 15 and 20. So obviously the Simpson’s rule is requiring more 

effort, even for a simple problem like this, the first order polynomial. 

 

So when we decide on the choice of the numerical method, we also need to look at the 

computational effort that we need to spend on for getting the result. 
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So now let us look at the second order polynomial integral of x square, integrated 

from 10 to 20.  

 

And the exact value is 2333.333. And it is divided into two panels. The x 1 is 10. And 

the function value is 100. And x 2 is 20. And the function value is 400 and 

intermediate values at 15. That is 225. And the integral as per the Simpson’s rule is 

delta h by 3 that is 5 by 3 times 100 plus four times the function values at odd 

locations 225 plus 400. 

 

So that comes to 2333. And this is the exact value. And for this polynomial, the 

trapezoidal rule is not very accurate, and it is not suitable. Like we should not try 

applying method that does not work. Because we do not know exactly how many 

panels we need to take so that we get the exact result. 
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And let us apply this to a third order polynomial x cube dx, from the integrated from 

10 to 20.  

 

 

 

And the exact value is 37,500. So the function value at x 1 is 10 cube that is 1000. 

And at 20 it is 8000. And at 15, it is 3375. And the integral value as per the Simpson’s 

rule is delta h by 3. Delta h is 5 by 3 multiplied by 1000, plus four times the function 

value at odd locations 3375 plus the last function value. And it is 37,500. It is exact. 

(Refer Slide Time: 17:52) 



 

And now let us apply this to a higher order polynomial, like more than the third order 

polynomial, let us go to fourth order polynomial. 

 

 So the exact value here is 620,000. And if we apply the Simpson’s rule with two 

panels, we get the value 620,833.33. And this value is not correct, and it is actually 

more than the exact value. See even in the trapezoidal method, our estimates are 

always more than the exact values. 

 

 

And only for the case where we are able to handle that polynomial, we were able to 

get the exact result. But in all other cases, the values are higher than the exact value. 
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And now let us try with four panels. And with four panels, we get 620,052. And this 

value is better than the previous one, but then not exact, not an exact value. And once 

again, we do not know how many panels we need to take so that we can get exact 

value of 620,000. So that is another limitation of the Simpson’s rule. 

 

 

But at least the Simpson’s rule is valid up to third order polynomial, whereas the 

trapezoidal rule is good only up to linear polynomials. 
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And let us apply this for slightly higher order polynomial x to the power 5

And the exact integral value is 10,500,000. This is the exact value. And if you apply 

the Simpson’s rule with the minimal number of panels, that is 2, we get 11,062,500 

which is more than the exact value.
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And the exact integral value is 10,500,000. This is the exact value. And if you apply 

the Simpson’s rule with the minimal number of panels, that is 2, we get 11,062,500 

which is more than the exact value. 

And the exact integral value is 10,500,000. This is the exact value. And if you apply 

the Simpson’s rule with the minimal number of panels, that is 2, we get 11,062,500 

 



 

And if you divide this into four panels, you get better result. But it is more than the 

exact value. So both the trapezoidal method and then the Simpson’s rule, they are 

exact up to the order of polynomial of 1 and 3. But beyond that, beyond their own 

capacity, they tend to overestimate the integral value. 
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Okay that is one thing that we need to notice. And let us proceed further. 
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Let us look at one more similar integration rule, Weddle’s rule. This is good up to 

fifth order polynomial. And we divide this into six even panels 1, 2, 3, 4, 5, 6 and 

evaluate the function values at f naught, f 1, f 2, f 3 and so on.  

 

And the integral value is three times delta h by 10 times f naught + 5 f 1 + f 2 + 6 f 3 

+ f 4 + 5 f 5 + f 6. Actually here, this 1, 5, 6 and so on, these are all the weight factors. 

 

And actually we are not interested in how this formula was derived. But we are only 

interested in how to apply this for our integrations. And let us take the fifth order 

polynomial and integrate from 0 to 12. The exact result is 497,664 and our delta h is 

12 by 6 that is 2 and our integral value is three times delta h by 10 multiplied by all 

these quantities. And you get exact value of 497,664. 
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And let us apply this to a seventh order polynomial and the integral value in this 

particular case is 209,952.  

And then the predicted value from the numerical analysis is 210,060 which is not 

correct. And also it is more than the exact value, right? So 

methods like the trapezoidal method, Simpson’s rule, and then the Weddle’s rule, they 

are good up to certain order of polynomial.

 

Beyond that they are not good. And in the case of trapezoidal and Simpson’s rule, we 

can improve the accuracy by increasing the number of panels but we do not know 

exactly up to what number of panels we need to consider. So we need a better method 

for numerical integration. 
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And that we find in this Gauss Legendre quadrature or the Gauss quadrature method. 

And this is actually it is a more mathematical procedure. But in this course, I am not 

going into the mathematics but in a very simple manner we will see how to apply this 

for our calculations. In this procedure, both the sampling point locations and then the 

corresponding weight factors are treated as unknowns. 

 

So in the previous case, once you fix the number of panels, we know these sampling 

point locations x naught, x naught plus delta h, x naught plus 2 delta h and so on. And 

then the weight factors are also fixed 1, 2, 1 in the case of trapezoidal method. 1, 4, 2, 

1 in the case of the Simpson’s rule. And similarly in the Weddle’s rule, we have 1, 5 

and 6 and so on. 

 

And so whereas in the Gauss quadrature method, the sampling points and also their 

corresponding weight factors are treated as unknowns. And we will come out with 

different set of weight factors depending on the number of points that we consider. So 

for in this case, for each sampling point, there are two unknowns, the location and 

then the weight factor, the location psi and the weight factor w. 

 

So if we have m number of sampling points, the number of unknowns is 2m okay? 

And if you have 2m data points for fitting a polynomial, the order of polynomial that 

could be fit through 2m number of data points is 2m - 1. So it is very simple. Like if 

we have two data points, we can fit a straight line and the straight line is a first order. 

And if you have three data points, we can fit a quadratic curve of second order. 



 

And if we have four points, you can fit a cubic curve and so on. So actually this 

method is advantageous because if we know the order of polynomial, we can decide 

on the number of sampling points and we can equate n to 2m - 1 and then we get the 

number of sampling points as n + 1 by 2. So if you know the order of polynomial that 

you need to integrate, we can get the number of sampling points as n + 1 by 2. 

 

And this is the main advantage of the Gauss quadrature method or Gauss Legendre 

quadrature. Because in advance, we know how many sampling points we need to 

consider like similar to number of panels that we need to consider. In the case of 

trapezoidal any number like odd or even does not matter. But in the case of Simpson’s 

rule, we need only even number of panels. 

 

Whereas in the Weddle’s rule we need six panels. Whereas here in the Gauss 

quadrature method, it is more flexible. And we can decide on the number of data 

points based on the order of polynomial that we have. 
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And so, in the mathematical derivation is done in the space of -1 to +1. See the 

sampling point locations psi are derived in the space of -1 to +1 so that we can scale 

them later. And we can scale the space of -1 to +1 to Cartesian space of x 1 to x 2 

okay through the mapping factors or scale factors. 
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So if you have an order of polynomial of 1, the number of sampling points is 1 plus 1 

by 2 that is 1. And if you have 3, 3 plus 1 by 2 is 2. And if you have 5, fifth order 

polynomial, you need 3 points. If you have seventh order polynomial you have 4. So 

if you have an even number of polynomials like 2 and 4, if you apply that formula 2 

plus 1 by 2 that comes to 1.5. 

 

And obviously, we cannot have 1.5 number of sampling points. We need to decide 

either 1 or 2. Or when you have a fourth order polynomial, it comes out as 2.5. So you 

need to decide between 2 and 3, whether you want to use 2 or 3. So obviously, that we 

will decide later. I will not tell you the answer now how to decide whether 2 points or 

3 points or 1 point or 2 points, okay? That we will discuss later. 
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And here I am going to derive the sampling point

weight factors in a very simple manner by term by term comparison. We are not going 

to go through the Gauss Legendre mathematics, because we are not really interested 

in the mathematics behind this, but we need to know ho

our finite element calculations.

(Refer Slide Time: 29:15) 

Let us look at the first order polynomial and this function could be like our a naught 

plus a 1 psi.  

This is similar to our polynomial that we had assumed for deriving our shape 

functions or in the Rayleigh

 

And here I am going to derive the sampling point locations and their corresponding 

weight factors in a very simple manner by term by term comparison. We are not going 

to go through the Gauss Legendre mathematics, because we are not really interested 

in the mathematics behind this, but we need to know how to apply this procedure for 

our finite element calculations. 

 

Let us look at the first order polynomial and this function could be like our a naught 

 

This is similar to our polynomial that we had assumed for deriving our shape 

functions or in the Rayleigh-Ritz procedure also we had a polynomial. And let us 

locations and their corresponding 

weight factors in a very simple manner by term by term comparison. We are not going 

to go through the Gauss Legendre mathematics, because we are not really interested 

w to apply this procedure for 

Let us look at the first order polynomial and this function could be like our a naught 

This is similar to our polynomial that we had assumed for deriving our shape 

Ritz procedure also we had a polynomial. And let us 



integrate this from -1 to +1. See if you integrate this quantity from -1 to +1, because 

psi is an odd function, if you integrate it becomes an even function. 

 

And if you substitute the limits of -1 and +1, that gets cancelled out. So you are left 

with only 2a naught, a naught psi and psi varying from +1 to -1. Sorry it should be -1, 

okay? And so if we have one sampling point, the sampling point location is psi 1 and 

then the weight factor is w 1. And we can evaluate this function as w 1 multiplied by 

a naught plus a 1 psi a 1 psi 1 okay? 

 

And this is 2a naught is the exact value, exact integral value and we are making it 

exactly equal to w 1 times a naught plus a 1 psi 1. And by comparing the left hand 

side to the right hand side we can determine our weight factor w 1 and then the 

location psi 1 okay. So if you compare the term by term, 2a naught is equal to w 1 a 

naught. So this gives w 1 is 2. And then w 1 times psi 1 is 0. 

 

So that means that the sampling point location one is 0. So the sampling point location 

and then the corresponding weight factor for one point Gauss quadrature is 0 and 2. 

Psi 1 is 0 and w 1 is 2. So it is very simple. It is actually we take a polynomial and 

then integrate it and then equate that to w times that function value, okay? 

(Refer Slide Time: 32:07) 

 



So now, let us take a cubic polynomial. The function is a naught + a 1 psi + a 2 psi 

square + a 3 psi cube. And for exactly integrating the third order polynomial we 

require two Gauss quadrature points. Why because 2 times 2 - 1 is 3 so that the 3 is 

the order of polynomial, okay? So here the integral value is integrated from -1 to +1 is 

2a naught plus 2 by 3 a 2. And we need two sampling points psi 1 and psi 2. 

 

And then the corresponding weight factors w 1 and w 2. So let us equate this to this 

numerical value exactly w 1 times a naught plus a 1 psi 1 plus a 2 psi 1 square plus a 

3 psi 1 cube plus w times w 2 times a naught plus a 1 psi 2 plus a 2 psi 2 square plus a 

3 psi 2 cube. So now, we can set up four simultaneous equations, because we have 

four unknowns; psi 1, psi 2, w 1 and w 2. 

 

And by comparing the term by term against a naught, a 1, a 2, and a 3 we get four 

simultaneous equations. So our w 1 + w 2 is equal to 2. w 1 plus two times a naught is 

2 a naught. So we can write w 1 + w 2 is 2.  And similarly, our a 2 term is associated 

with psi 1 square. So w 1 times psi 1 square plus w 2 times psi 2 square is two thirds. 

And there are no a 1 and a 3 terms. 

 

So w 1 times psi 1 plus two times psi 2 is 0. Then there is no a 3 term. So w 1 times 

psi 1 cube plus w 2 times psi 2 cube that is 0. And by solving these four simultaneous 

equations, we get w 1 and w 2 as 1 and psi 1 is -1 by root 3 and psi 2 is +1 by root 3. 

It is, we can if you are not able to solve by hand we can you use MATLAB or some 

other program. 

 



We can give these four equations in symbolic form and then we can ask the program 

to solve it. 
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So the fifth order polynomial, actually I am not considering second order and fourth 

order, because we end up with odd number of points like 1.5, 2.5 and so on, which is 

not possible. And when you have a fifth order polynomial, we need three data points 

or three sampling points because n is equal to 2m - 1. So m is 5 + 1 by 2 that is 3. 

 

And let us take a fifth order polynomial a naught + a 1 psi + a 2 psi square + a 3 psi 

cube + a 4 by psi 4 + a 5 psi to the power 5. And so if you integrate this fifth order 

polynomial, you get 2a naught + 2 by 3 a 2 + 2 by 5 a 4. And we require three 

sampling points psi 1, psi 2 and psi 3 and the three weight factor is w 1, w 2, w 3. 

 



So this should be exactly equal to w 1 times a naught plus a 1 psi 1 plus a 2 psi 1 

square plus a 3 psi 1 cube plus a 4 psi 1 4 plus a 5 times psi 1 to the power 5 plus w 2 

times the function evaluated at psi 2 and w 3 multiplied by the function value at psi 3. 
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So now, we need six simultaneous equations because we have three sampling 

locations and then three weight factors psi 1, psi 2, psi 3, w 1, w 2, and w 3, okay? So 

by comparing the term by term a naught, a 1, a 2, a 3, a 4, a 5, we get six 

simultaneous equations. And by solving them, we can get w 1 is 5 by 9. w 2 is 8 by 9 

and w 3 is 5 by 9. And psi 1 is minus of square root 0.6. 

 



 

 

Psi 2 is 0 and psi 3 is plus square root of 0.6. So actually here I have done only up to a 

fifth order polynomial. But if you see any mathematics textbooks or finite element 

textbooks, they will give you a whole page. 
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And so this particular one is photocopy from this textbook Cook, Malkus and Plesha. 

They have given up to fourth order four sampling point locations. And if you have 

four sampling points, we can exactly integrate up to seventh order polynomial, right? 

And so these are all the sampling point for 1-point integration it is 0 and 2. And for 2, 

plus or minus 1 by root 3 and 1. 

 

And for 3, plus or minus square root of 0.6. And 5 by 9 and 8 by 9. And with four 

points it is a bit more complicated. But usually we do not go beyond 3-point 

integration because it becomes very expensive. 
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And now, we derived everything in the space of 

is in the x 1 to x 2 or y 1 to y 2 and so on. So how do we extrapolate? So this space in 

the in this natural space -1 to + 1, then i

And any arbitrary point psi i what does it correspond to in the Cartesian space x i. So 

the scale factor is this length divided by this length x 2 

That is what we call is the mapping factor. And the

map to x i based on this x 1 being equal to 

scale, okay? So our x i is the average value x 2 + x 1 by 2 plus x 2 

half length multiplied by psi i. So actually 

And so -1 means x 1 and +1 means x 2.

 

And now, we derived everything in the space of -1 to +1. But then our Cartesian space 

is in the x 1 to x 2 or y 1 to y 2 and so on. So how do we extrapolate? So this space in 

1 to + 1, then in the Cartesian space, you have x 1 to x 2. 

And any arbitrary point psi i what does it correspond to in the Cartesian space x i. So 

the scale factor is this length divided by this length x 2 – x 1 by 2. 

 

That is what we call is the mapping factor. And then any arbitrary point psi 1 we can 

map to x i based on this x 1 being equal to -1 and x 2 being equal to +1 in the reduced 

scale, okay? So our x i is the average value x 2 + x 1 by 2 plus x 2 - x 1 by 2 that is 

half length multiplied by psi i. So actually psi values are varying from -1 to +1, right? 

1 means x 1 and +1 means x 2. 

1 to +1. But then our Cartesian space 

is in the x 1 to x 2 or y 1 to y 2 and so on. So how do we extrapolate? So this space in 

n the Cartesian space, you have x 1 to x 2. 

And any arbitrary point psi i what does it correspond to in the Cartesian space x i. So 

n any arbitrary point psi 1 we can 

1 and x 2 being equal to +1 in the reduced 

x 1 by 2 that is 

1 to +1, right? 



 

And in between, if it is 0, it is exactly average value. And so we can in general write 

any arbitrary point psi i is mapped to a location x i in the Cartesian space as x 2 + x 1 

by 2 plus x 2 - x 1 by 2 times psi i. And the integral value of this function, we can 

write as x 2 - x 1 by 2, that is the mapping factor multiplied by the function evaluated 

at different x i’s multiplied by the corresponding weight factor. 

 

So if we have one point integration, we have only psi 1 of 0 and weight factor is 2. 

And if you have 2-point integration psi is plus or minus 1 by root 3 and weight factor 

is 1 for each of them. And if you have three points plus or minus square root of 0.6 

and 0, the weight factors are 5 by 9 or 8 by 9. 
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So now, let us apply this Gauss quadrature method for different polynomials. Let us 

say, let us take the first order polynomial, integral of x dx integrated from 10 to 20 

that is 150. And let us apply one point Gauss quadrature. Because if your order of 

polynomial is 1, the number of sampling point that you require is 1 plus 1 by 2 that is 

1, okay? So for the first order polynomial psi 1 is 0 and the weight factor is 2. 



 

 

So the corresponding location in the Cartesian space, corresponding to psi 1 of 0 is x 

1 bar is the average, in fact 20 + 10 by 2, plus 20 - 10 by 2 times zero, that is 15. And 

our integral value is x 2 – x 1 by 2 multiplied by the function evaluated at x 1 bar, 

multiplied by w 1, okay? So the x 2 – x 1 by 2, that is the mapping factor or the scale 

factor 20 - 10 by 2. 

 

And the function at x 1 bar is 15 because the function itself is x multiplied by the w 1 

2. And it is exactly equal to the value 150. And the advantage that we gained here is 

we used only one single computation, one function evaluation. Whereas if we apply 

the trapezoidal rule, you need to evaluate the function at x 1 and x 2. And if you use 

Simpson’s rule, you need to evaluate at three points. 

 

Whereas here, the Gauss quadrature method, we had just simple 1-point integration or 

one point evaluation, and then we got the exact value. 
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And let us apply this to a fifth order polynomial integrated from 10 to 20 that is 

10,500,000. And this is the exact value. And if you have fifth order polynomial, we 

require three data points, three points for evaluation, psi of minus square root of 0.60 

plus square root of 0.6. Then the weight factors are 5 by 9, 8 by 9 and 5 by 9, okay? 

And our x 1 bar is 15 minus 5 times square root of 0.6. 

 

And our x 2 bar is 15. And our x 3 bar is 15 plus 5 times square root of 0.6. And our 

function is x to the power 5. So our integral value is x 2 minus x 1 by 2, that is 20 - 10 

by 2, multiplied by 5 by 9 times the function at psi 1, okay? And 8 by 9 times the 

function value at psi 2. And then sorry, 8 by 9 times the function value at psi 2 plus 5 

by 9 times the function value at psi 3. 

 



And our x 1 bar is 15 minus 5 times square root of 0.6. This is at psi 1. And at psi 2 of 

0, our x 2 bar is 15. And then at the location 3 at psi 3 of square root of 0.6, this is 15 

plus 5 times square root of 0.6. So if you evaluate this, you get exact value of 

10,500,000. And I did not round off any of these numbers. I have just written like this. 

And you should also do the same thing. 

 

In the calculator, you use your brackets intelligently and directly do this computation 

and do not round off any value. So if you write square root of 0.6, you will get some 

value. And depending on the number of digits that you use, your result might change. 

But in here, I did not round off any number and then I got exact value, okay? So we 

just needed only three sampling points that is three evaluations. 

 

Whereas with Simpson’s rule and then the trapezoidal rule we will not be able to 

exactly evaluate this. And when you apply the Weddle’s rule, we need seven 

evaluations that is more than double the numbers here with the Gauss quadrature. And 

that is the main advantage. So whatever is the polynomial order, we can always go 

back and choose the number of sampling points. 

 

So now, the question comes, what happens if you use lower number of sampling 

points? Say for this x to the power 5 this is the fifth order polynomial, we have used 

three points. But what if I use only one point or two points? Let us see what happens. 
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Now let us try with 2-point integration.  



 

w 1 and w 2 are 1. Psi 1 is -1 by root 3. And psi 2 is +1 by root 3. So our locations are 

the Cartesian locations x 1 bar is 15 minus 5 by root 3 and x 2 bar is 15 plus 5 by root 

3. And so if we do the integration, you get slightly less than 10,500,000. 10,500,000 is 

the exact result, but the numerical value is 10,458,333.33. And it is slightly 

underestimated. 

 

And so this is the major difference between the Gauss quadrature method and the 

other methods. So in the Gauss quadrature if you use lesser number of data points or 

the integration points, your prediction is slightly on the lower side. And we can 

exploit this feature because when you analyze any continuum and the continuum that 

consists of infinite number of degrees of freedom. 

 

And since we cannot consider infinite number, we only consider a finite number say 

some 1000, 10,000, 100,000. And because of that, our stiffness matrix is actually 

overestimated. I think I illustrated that through a simple example in the past. And so 

we can compensate the over stiffness because of not considering very large number of 

degrees of freedom by using slightly lower order of integration, okay? So that is the 

advantage with the Gauss quadrature method. 
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And this method is applicable even in two dimensions or three dimensions, okay? Let 

us apply this to two dimensional problem.  

 

Let us say our function is x square y to the power 5. x is varying from 5 to 9, and y is 

varying from 4 to 7. And this exact value if you integrate is 3,810,334. And so here, 

you have two different orders of polynomial, 2 in the x and 5 for y. 

 

And the advantage with the Gauss quadrature method is, you do not need to apply the 

same order of integration in both the methods, in both the directions. So in x direction 

we can apply a 2-point integration and in y direction we can apply the 3-point 

integration. 
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And so the sampling point locations in the x direction are plus or minus 1 by root 3. 

And so our x 1 bar is 7 minus 2 by root 3.  

 

 

And our x 2 bar is 7 plus 2 by root 3. And the weight factors are w 1 and w 2 of 1. 

And in the y direction, we have three sampling points, y 1 bar, y 2 bar, and y 3 bar. 

Then the weight factors of 5 by 9 and 8 by 9. So if you do this integration 

numerically, this is what we see. 

 

And once again, do not round off any numbers. And so if you do this, you will get the 

exact value that we get by integration 3,800,334, okay. 
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And we can also apply this in three dimensions. So actually, in two dimensions, we 

have the scale factor. I think I forgot to write the scale factor in two dimensions. But 

so here is the scale factor in three dimensions x 2 - x 1 by 2, y 2 - y 1 by 2, z 2 – z 1 

by 2. So in two dimensions, we will be having only these two terms. In three 

dimensions, we have this. 

 

 

So we have three directions psi, eta and zeta each of them varying from -1 to +1. And 

the main advantage is whatever sampling points that you have in the psi direction, you 

have the same in the eta direction and also in the zeta direction. So if it is one point in 

psi one point in eta direction one point in zeta, it is only one point. So sampling point 

weight is 2. 

 

And then with two points plus or minus 1 by root 3. And with three points plus or 

minus square root of 0.6 and 0 okay? So it is actually it is a versatile method and we 

can apply this for one dimensions, two dimensions, three dimensions, and it will give 



us the exact integral value. And in general, the procedure that we are going to adopt is 

when you need to evaluate any integral for load calculation, we use the exact 

integration. 

 

And when it comes to stiffness matrix, we use a slightly lower order of integration so 

that our address because of not considering infinite number of degrees of freedom is 

slightly compensated, okay? 
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And the next question comes is, so we have derived our solution in the space of -1 to 

+1 and so, and we have seen how to map the space of Cartesian space x 1 to x 2 to 

this. And so, we can actually can we come out with a procedure so that any arbitrary 

shape can be converted into some regular shape, say square region for 2d or a cube in 

the three dimensional problems, can we do this? 

 

And if we can do this, then all our problems are solved, because we can directly apply 

the numerical method that we had developed just now, okay? So that will be our 

approach in the next few classes, okay? So if you, I think this is the last slide. So if 

you have any questions, please write to this email and then I will respond back. 

 

So just summarize, in this class, we had seen the different methods of a numerical 

integration and we have developed the Gauss quadrature method of numerical 

integration. And the main advantage is, depending on the order of polynomial that 



you have, you can choose the number of sampling points. So if you have a fifth order 

polynomial, we can use number of sampling points is 5 plus 1 by 2 that is 3 okay? 

 

And if you have seventh order polynomial you can use four points and so on okay? So 

thank you very much. We will meet in the next class. 

 

 

 

  


