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Lecture - 14 

Classical Methods for Developing Shape Functions 
 

Let us continue from our previous classes. And we have seen that the shape functions 

play the major role, because without shape functions, we cannot do any finite element 

calculations. We need the shape functions for interpolation and also for forming the B 

matrix and then for doing all the calculations like n transpose bdv or b transpose bdv 

and so on. 

 

And let us see how we can define or develop the shape functions by the classical 

methods. By classical I mean, the methods that were originally developed, the 

generalized coordinate method. And later, we have this Lagrange’s methods. And 

then, after this, we have more recent ones like isoperimetric and so on. And before we 

go into more advanced elements, let us look at the classical methods for developing 

the shape functions. 

(Refer Slide Time: 01:22) 

 

See these shape functions, they are basically interpolation functions. And they 

because they depend on the shape of the element, they are called the shape functions 

in the finite element context. And the shape functions, they express the variation of 

the nodal variables over the element. 



(Refer Slide Time: 01:44) 

 

Then they also help us in getting our B matrix and so on. And theoretically, the 

continuum can have infinite number of nodes and elements. But it is not possible to 

include infinite numbers. We can only include finite number of nodes and finite 

number of elements. And in fact, the term finite element was coined by Professor 

Clough in 1960. 

 

That is just about the time when the digital computers were coming in, and the power 

of the computers was also gradually increasing. In fact, in those days, it used to 

increase exponentially, but now it has more or less stabilized, okay? And the 

Professor Clough in 1960, he coined the word finite element, because actually, we can 

have infinite number of elements and infinite number of degrees of freedom. 

 

But we are considering only certain number of finite elements. From that this word 

finite element was coined. And our requirement for monotonic convergence is as we 

include more and more number of elements by decreasing the size of the elements, we 

should or finer mesh, our numerical solution should be tending towards the exact 

result. And that is called as the monotonic convergence. 

(Refer Slide Time: 03:17) 



 

And so let us see what exactly we mean by comparison between our numerical result 

and then the, and then our theoretical result, okay? Let us see it in the context of 

simple, simply supported beam. Let us say that we have two elements and the three 

nodes. And the two ends, it is a simply support, simply supported beam, so the 

displacement is zero. 

 

And let us say that whatever numerical method that we have, it is exact. So at the 

central point also our numerical result is exactly matching with the exact result. But 

then what about in between, in between these two nodes? There is a large variation 

between the theoretical solution that is given by this red line and this dotted line. So 

this is the numerical error that we have. 

 

And so actually we see that at most, in most locations, our predicted displacement is 

lesser than the theoretical one. So that means that our stiffness is overestimated. Only 

when we have a higher stiffness, we get lower displacement. So we are inadvertently 

over predicting the stiffness. And that over prediction can be reduced by introducing 

more number of nodes in the mesh. 

(Refer Slide Time: 05:09) 



 

Let us see the same thing for larger number of nodes and elements. In this case, we 

have four elements and five nodes. And once again, let us assume that at all these 

nodes, we are exact, our solution is exactly matching let us say, and that is only an 

assumption, that may or may not be true. And in between we see that there is still 

some deviation between the theoretical result and then the finite element result. 

 

But this difference is smaller compared to what we had before. Here the difference is 

large, whereas here it is smaller. 

(Refer Slide Time: 05:56) 

 

Then let us make it more finer. Let us consider six elements 1, 2, 3, 4, 5, 6. And in 

this case, the elements around the load are made smaller. And then here we see that, 

we are even more closer to the theoretical result. And, so as we are including more 



number of nodes and elements in the mesh, we can come closer to the theoretical 

result and that is what we mean by monotonic convergence and it is not an automatic 

process. 

 

So we have to take some precautions so that as we include more number of nodes in 

the mesh, our solution is tending towards the exact result, okay? 

(Refer Slide Time: 06:46) 

 

So the development of shape functions is a very important step in all the finite 

element analysis and we should be very systematic so that our results are also as 

accurate as possible. And our aim is to satisfy the requirements for the monotonic 

convergence. And as the mesh is made more and more finer, the solution should 

approach the exact solution. And the criteria are very simple. 

 

The shape function should not permit straining of an element to occur when the nodal 

displacements are caused by rigid body displacements. That is what we had seen 

earlier. See if this pen whether it is here or here there are no strains or stresses within 

the element, within the pen, because it has undergone only rigid body displacement, 

like all the points on the pen have undergone the same displacement. 

 

So that means that there is no relative displacement between two points on the pen or 

no strains. And if there are no strains, there are no stresses and that is what we mean 

by the first condition that if you subject a body to rigid body displacement, the shape 

function should be such that they should not predict any strain. 



 

And then the second condition is if the nodal displacements correspond to a constant 

strain condition, we should be able to predict the same constant strain, okay? That we 

will see with an example. And the shape functions should be such that the strains at 

the interface between elements are finite and the continuity of displacements need to 

be ensured, okay? 

 

Because we will come across the interface between different elements and at those 

points also, we need some continuity of displacements and then the continuity of 

strains. And there should not be any singularity in the shape functions. The shape 

function should be well defined at all the points within the elements. 

(Refer Slide Time: 09:05) 

 

What we mean by continuity is like this. Let us consider a mesh consisting of 8-node 

quadrilateral elements. And let us look at two elements A and B. And these three 

highlighted nodes are common for both element A and element B. And if you look at 

the displacement at these points, whether you are looking from element A or whether 

you are looking from element B, we should get the same displacements. 

 

And if we get the same displacements, that means that we are maintaining the 

continuity of the displacements, okay? And the displacement at these three points 

calculated from A will include the displacements at all these 8 points. Whereas from 

B, they will include all these 8 nodes, okay? And the strain continuity or the interface 



may not be satisfied or may be satisfied only approximately, because the strain is not 

our field variable. 

 

It is only a derivative quantity. And the continuity of strain can be simulated by 

making the mesh as fine as possible. So if you have a very coarse mesh, we may not 

be able to get the strain continuity between the elements. But as the mesh is made 

more and more finer, we will get the strain continuity. So here we have taken both 

elements A and B of the same type. Both are 8-node quadrilaterals. 

(Refer Slide Time: 11:02) 

 

And now, let us consider an interface between a 4-node quadrilateral and an 8-node 

quadrilateral. Say a 4-node element is a, it has only 4 nodes. So along each line, we 

have only a linear function, okay? So it is a, we call it as a linear element. Whereas a 

8-node element, it is a quadratic element. It is along each line, there are 3 nodes, 

okay? 

 

And so the displacement that we predict from this side, from the 4-node element may 

not match with the displacements that we get from 8 node, 8-node element, because 

one is a linear function of displacements and the other is a quadratic function of 

displacements. So we will not be able to maintain the continuity or we call it as 

incompatibility between the two elements. 

 

So one way to overcome that is by reducing the size of the elements so that we get a 

better representation. And invariably, we will have to do this type of thing like linking 



a 4-node elements to 8-node elements and so on, especially in the transition zones, 

okay? 
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So our generalized coordinate method or the polynomial expansion used to express 

the internal displacements in terms of the nodal values, okay? And then the number of 

polynomial terms is equal to the number of nodes in the element. And then the 

polynomial terms are constructed from the lowest order that is the constant term, 

linear, quadratic, cubic and so on. 

 

And the polynomial terms should be spatially isotropic so that the results are 

independent of the coordinate system, whether you take a coordinate system like this 

x and y, or x and y, x vertical and y horizontal, or y going down instead of going up, 

whatever may be the coordinate system, the results should be the same okay, 

numerical value of the result. 

(Refer Slide Time: 13:23) 



 

To help us in and satisfying the spatial isotropy we can take the help of this Pascal 

triangle that gives you all the polynomial terms of different order; constant term, 

linear x and y, quadratic x square xy and y square. And then cubic x cube, x square y, 

xy square, y cube and so on, okay? 

(Refer Slide Time: 13:53) 

 

And the choice of polynomial terms, say the number of terms in the polynomial 

should be equal to the number of nodes in the element. And as far as possible, the 

polynomial should be complete and symmetric. Complete in the sense should include 

all the lower order terms before you start including higher order terms, okay? 

 

And the constant term is required to be able to simulate rigid body translation without 

straining the element. Then the linear terms are required to be able to simulate the 



constant strain condition. So these three, they are observed only from experience, 

okay? That we will see with an example, what happens if you do not have a constant 

term or if you do not have a linear term and so on, okay?

(Refer Slide Time: 14:45) 

And these are some of the typical elements and then the polynomials. See you can 

have a four node quadrilateral like this, the rectangular element or a distorted element 

like this.  
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okay? That we will see with an example, what happens if you do not have a constant 

And these are some of the typical elements and then the polynomials. See you can 

have a four node quadrilateral like this, the rectangular element or a distorted element 



And the polynomial for a 4-node quadrilateral can be a naught plus a 1 x plus a 2 y 

plus a 3 x y. And this is a spatial isotropic expansion, because for every x there is a y, 

okay? And our strains are epsilon xx is doh u by doh x. 

 

That is alpha 1 or a 1 plus a 3, a 1 plus a 3 y and epsilon yy is doh v by doh y. That is 

a 2 plus a 3 x and gamma xy is doh v by doh x plus doh u by doh y. That is equal to a 

1 plus a 3 y plus a 2 plus a 3, sorry it should be x, okay?  

 

And for an 8-node quadrilateral, our polynomial can be like this, a naught plus a 1 x 

plus a 2 y. That is including the constant term and then the linear terms. 

 

Then the quadratic terms x square a 4 y square plus a 5 x y plus higher order terms a 6 

x square y plus a 7 x y square.  

 

Actually, let us look at our Pascal triangle. So when you have a 8-node quadrilateral, 

we have this constant term 1 and then the linear terms x and y. Then the quadratic 

terms x square, x y and y square. So these are six terms and we need two more terms. 

 

And we can include either x cube and y cube, so that we have the spatial symmetry or 

x square y and x y square. So how we decide whether to take x cube and y cube or x 



square y and x y square is very simple. See in the 8-node quadrilateral along each line, 

we have only three nodes, right? And if you have three data points, the maximum 

order of polynomial that you can fit is two. 

 

So we can choose these two terms x square y and xy square. Then, we are satisfying 

the spatial isotropy, for every x there is a y. So even if you interchange x and y 

coordinates, it does not matter because our polynomial expansion is especially 

symmetric. The 9-node quadrilateral, the polynomial is like this. And for choosing the 

polynomial terms for higher order elements requires the observations from the Pascal 

triangle. 

 

 

 

See for 8-node quadrilateral, we have the terms up to x square y and xy square. And 

for the 9-node quadrilateral we can include this term, x square and y square because in 

the 9-node quadrilateral also along each line, we have only three nodes. So that means 

that maximum order of polynomial that you can fit is only two. So we can choose x 

square y square as our ninth term. 

 

And as we see, all the polynomials that we have for the quadrilaterals, they are 

incomplete. See for the 4-node quadrilateral we have a naught plus a 1x plus a 2y plus 

a 3 xy but we are missing x square and y square terms. And in the 8-node 

quadrilateral we are missing x cube and y cube. See for the 8-node quadrilateral we 

included these two terms x square y and xy square but missed out an x cube and y 

cube. 

 

And for the 9-node quadrilateral we have included x square y square, but we did not 

include x cubed y xy cube y 4 and x 4, okay? So all the quadrilateral elements, they 

have an incomplete polynomial. 
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And let us look at the triangles. 

 

The 3-node triangle we have already seen. Let us look at the 6

and 15-node and so on. See the 6

can have curved edges like this. And our 6

strain triangle LST because the strain is linear and the polynomial expansion is a 

naught plus a 1x plus a 2y plus a 3x square plus a 4 y square p

 

And let us look at the triangles.  
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node triangle, 10-node 
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strain triangle LST because the strain is linear and the polynomial expansion is a 



 

And so for the 10-node triangle, it is a quadratic strain, because we have a cubic 

variation of displacements. 

 So that means that the strain will be one order less, that is x square y square. So it is 

quadratic. In the 15-node triangle, it

displacements are of the fourth order. So the strain should be of third order. And this 

is the expansion for a 15-node cubic strain triangle.

 

See, if you look at the number of terms in the Pascal triang

up to second row, we have three terms and up to third row we have nine terms three 

plus three nine. Sorry, three plus three is six, not nine, okay? And then up to fourth 

row, we have 10, 6 plus 4 is 10. And then in the quadrati

have five terms 1, 2, 3, 4, 5, so 15 terms.

 

And if you look at the number of nodes in the triangles is 3, 6, 10, 15. And then next 

one will be 21 and so on.  
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So our number of nodes in the Pascal triangle allows us to have complete polynomial 
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up to second row, we have three terms and up to third row we have nine terms three 

plus three nine. Sorry, three plus three is six, not nine, okay? And then up to fourth 

c terms in the fifth row, we 

And if you look at the number of nodes in the triangles is 3, 6, 10, 15. And then next 

 

complete polynomial 

like alpha naught plus alpha 1x plus alpha 2y or including alpha 2x square, alpha 3xy 



alpha 4y square and so on, okay? So our triangular elements, they allow us to have a 

complete polynomial. 

(Refer Slide Time: 22:19) 

 

And this next one is a 21-node triangle and these triangular elements they have a 

complete polynomial and that gives us some advantage. In fact, we get more stable 

numerical solutions, because our polynomial is complete and because of that some 

spurious modes of displacements are not excited. Whereas we will have problems 

with the quadrilaterals like 4-node quadrilaterals and so on, okay? 

 

So in the geotechnical program PLAXIS, that is one of the most popular commercial 

programs, they give you the option of only two elements. One is a 6-node triangle and 

the other is a 15-node triangle. Both are known to perform well. And depending on 

the nature of problem that you have, you can either choose a 6-node triangle or a 15-

node triangle. 

(Refer Slide Time: 23:23) 



 

And we can look at the influence of the polynomial choice using 1 -d examples. 

(Refer Slide Time: 23:31) 

 

Like say if you want to do any two dimensional examples, we have to go in for finite 

element analysis, we cannot do by hand. And by doing some simple calculations by 

hand, we can see what is the effect of different orders of polynomial. Let us consider 

once again a 2-node bar element. It is an axial element. So we have only one 

displacement u. Node 1 displacement is u 1. Node 2 displacement is u 2. 

 

And our polynomial is alpha naught plus alpha 1x. And it is a complete polynomial of 

the first order because we have constant term alpha naught and the linear term alpha 1 



x. So if you determine the shape function that we had already done several time

u(x) is u 1 N 1 where N 1 is 1 minus x by l plus u 2 times N 2. N 2 is x by l. And our 

N 1 and N 2 are either 1 or 0. 1 at their own node and 0 at the other node.

 

(Refer Slide Time: 24:45) 

And our N 1 plus N 2 is exactly equal to 1. And the str

is doh u by doh x. That is, you will get u 2 minus u 1 by l and the strain is constant 
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is doh u by doh x. That is, you will get u 2 minus u 1 by l and the strain is constant 
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that is u 2 and u 1 are the same and the strain within the element is 0. 

 

x. So if you determine the shape function that we had already done several times, our 

u(x) is u 1 N 1 where N 1 is 1 minus x by l plus u 2 times N 2. N 2 is x by l. And our 

 

ain within the element epsilon 
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So if you subject this element to a rigid body displacement will predict a 0 strain. And 

if you apply a strain corresponding to or displacements corresponding to constant 

strain, your strain is constant within the element. So that means that this polynomial 

that we have assumed for the 2-node bar element will satisfy our requirements for the 

monotonic convergence. 
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And let us repeat the same problem. But now, let us do without the linear term.  

 

Let us take two terms, u(x) as alpha naught plus alpha 2 x square. So I have neglected 

the linear term alpha 1 x, but included the second order term alpha 2 x square, okay? 

So if you go through the process, our N 1 is 1 minus x square by l square and N 2 is x 

square by l square. 

 



 

And our N 1 is 1 at x is equal to 0, and zero at x is equal to l. And similarly, N 2 at x 

is equal to 0 is 0, and at x is equal to l, that is at its own node, it is 1, okay? 

(Refer Slide Time: 26:42) 

 

And our N 1 plus N 2 is exactly equal to 1. And then, now let us calculate the strain. 

Epsilon is doh u by doh x, that is doh N 1 by doh x u 1 plus doh N 2 by doh x u 2. 

That is 2x times u 2 minus u 1 by l square. So if you subject this body to rigid body 

displacements, that is u 2 is equal to u 1, you will get zero strain. But then, you see the 

strain is varying linearly within the element. 

 

 

So if you subject this body to some constant strain like let us say, you set the u 1 to 0 

and u 2 to some value, you will see that the strain is varying linearly along the 

element because it is a function of x. So we are not able to represent the constant 

strain condition and because it is missing the linear term. And so we can say that this 

element may not satisfy the, does not satisfy the monotonic convergence requirement. 

 



So if you use this element, we may not get good results, we may not get the 

monotonic convergence, okay? 
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So now, let us do one more attempt. Now, without the constant term, the u(x) is alpha 

1 x plus alpha 2 x square, okay? And we get some functions like this. 

 

 

 

 

(Refer Slide Time: 28:20) 



 

And then our N 1 plus N 2, we see that it is not equal to 1. And our strain within the 

element is doh u by doh x is also a bit complicated function.  

 

And if you substitute u 1 is equal to u 2, the strain is not 0. So that means that the 

element predicts strain even when we subject the body to rigid body motions. That is 

because we do not have the constant term. 

 

See if we are able to, to be able to represent rigid body displacements without 

developing strains, we must include the constant term. And in this particular case, we 

have not included the constant term. So we fail to represent the rigid body motion 

without strains. And this element can also represent constant strain. So if you 

substitute u 1 of 0 and u 2 of some value, we have this x in the equation. 

 

So that means that your strain is going to vary linearly. So by neglecting the constant 

term we fail to represent the rigid body motion without straining and then the even the 

constant strain state. Whereas, previously when we included the constant term but 

missed out on the linear term, we were able to represent the rigid body motion without 

straining, but then we failed to represent the constant strain state. 



 

And here, we failed in both. Both in the rigid body and also the constant strain. See 

you might be wondering why? See we have the linear term, so we should be able to 

represent constant strain condition. But then see even the rigid body motion also is a 

constant strain condition, because it is like whether I have the pen here or there, the 

strain is 0 all over, and that is also a constant strain. 

 

It is only thing is the strain value is 0. So even the constant strain condition that we 

get under rigid body motion that is 0 strain that is also a constant strain. And so 

without the constant term, alpha naught, we will not be able to represent the constant 

strain conditions. And although you have this linear term, it does not help very much, 

because you do not have the constant term. 
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So it is very important that when we develop our shape functions, we are systematic 

and we include all the lower order terms. So we extend the same thing for a 3-node 

bar element and we assume a polynomial like this alpha naught plus alpha 1 x plus 

alpha 2 x square. And this is a complete polynomial, because we have all the terms up 

to x square, okay? 



 

And you notice that the third node is at the mid length, node 1 and node 2. See for 

defining a bar element, we require minimum two nodes. And naturally, we will keep 

these nodes at the two ends. And if you want to place more number of nodes then you 

can choose some interior points. In this particular case, the node 3 is placed at mid 

length, but it could be placed anywhere else. 

(Refer Slide Time: 32:24) 

 

And we can determine alpha naught alpha 1 and alpha 2. And we had seen this 

example earlier, we see that N 1 plus N 2 plus N 3 is exactly equal to 1. And if you 

subject this element to rigid body displacements as u 1 is equal to u 2 is equal to u 3 is 

u bar our epsilon is 0. So that means that we are able to move the body as a rigid body 

without developing any strains. 



 

(Refer Slide Time: 32:56) 

 

And then if you subject the element to some displacement field corresponding to 

constant strains that is u 1 is 0 u 2 is u and u 3 is u by 2, we do predict the strain as u 

by l that is constant within the element.  

 

So by choosing the constant term and the linear term in the polynomial, we are able to 

represent the rigid body motion without developing strains. 

 



And then if your displacement field is corresponding to constant strain, we are able to 

represent that. So this element can be satisfying the monotonic convergence 

requirement. So if you increase the number of elements we will be approaching the 

theoretical result, okay? 
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So now, let us continue for higher order elements like a 6-node triangle. So earlier, we 

had derived the shape functions for a 3-node triangle. And if you remember, the 3-

node triangle, we got the coordinate matrix, a 3 by 3 matrix and that we can easily 

invert analytically.  

 

And after we invert, we have grouped all the displacement terms under u 1, u 2, u 3. 

 

And then came out with our shape functions N i is alpha naught alpha i plus a plus b i 

x plus c i y divided by 2 delta and so on. But here, when you have a 6-node triangle, 



your coordinate matrix is a 6 by 6 matrix. So we cannot directly write out the inverse 

of this matrix. 
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So we need some other procedure. And that procedure is explained here. Actually it is 

a procedure to derive shape functions for higher order elements using an automated 

process. So let us say that your u is alpha 1 plus alpha 2 x plus alpha 3 y and so on, 

okay? And our u is this coordinate matrix C, multiplied by this alpha. Alphas are the 

generalized coordinates. 

 

So our alpha can be determined as C inverse a e, and our u can be P, that is the 

polynomial series 1, x, y and so on, okay? And so our N can be P times C inverse, 

okay? And the P is the polynomial vector of polynomial terms 1, x, x square and so 

on; y, y square and so on. And the C is the inverse of this matrix. But only problem 

here is C inverse could be very difficult to obtain. 



 

 

Like let us say if you are doing, if you are using a 21-node triangle, you need to invert 

21 by 21 triangle. And if you have some 1000 elements in the mesh, you will be 

spending lot of time on just simply inverting these matrices. And after you invert the 

matrix, then you get your shape functions and then proceed with the rest of the 

analysis. 
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So let us illustrate this process for a 2-node bar element a naught plus a 1 x and this is 

the coordinate matrix 1, 0, 1, l. 



 

 The C inverse is 1 by l; l, 0, -1, 1. And the N is P times C inverse. P is the matrix of 

this polynomial terms 1 and x. And our C inverse is l, 0, -1, 1. And then the C inverse 

is this. And then we have this shape function and this product will give you the shape 

functions. And N 1 is l minus x by l and N 2 is x by l. 
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And we can look at one more example without the constant term. Let us take x 1 at 10 

and x 2 of 20 so that if you have an x of 0, then it becomes difficult to find both alpha 

1 and alpha 2. So because of that, the element is translated so that x 1 is not 0, okay? 

So our u at x is equal to x 1 is this and the u at x is equal to x 2 is u 2, that is this. 



 

(Refer Slide Time: 38:04) 

 

And by solving we get our N 1 as 400 x minus 20 x square by 20,000. And N 2 is 

minus 100 x plus 10 x square by 20,000.  



 

And then if you add up N 1 and N 2, you do not get 1. You get some other value. So 

that means that you cannot assure the monotonic convergence with this type of 

element. 
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And then getting the shape functions using the generalized coordinate method is also 

very tedious, because we have to go on inverting the so many matrices. Sometimes 

these matrices are fully populated. So inverting that will take lot of time. 

(Refer Slide Time: 38:57) 



 

So although the procedure for finding the shape functions is automated, their 

determination is cumbersome and the evaluation of the integrals is also tedious. So if 

you have a complicated shape like this, and I ask you to integrate, we cannot do it, 

because of irregular boundary. And because the two coordinates, they are not normal 

to each other orthogonal to each other. 

 

Whereas previously we had seen X is along the x axis and Y is along y axis, they are 

perfectly orthogonal to each other, okay? And so if your shape is like this, then it is 

difficult, we cannot easily do the integrations. 
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So the new family of elements that are developed are the Lagrange family of 

elements. And these are pure rectangular elements.  



 

And the way their shape functions are developed is slightly different from what we 

have seen earlier with the generalized coordinate method. And let us consider a 4-

node Lagrange element, so it has four nodes 1, 2, 3 and 4. And then 9 node, it has 

three nodes along the x axis, and then three nodes along the y axis. 

 

And it could have either four nodes along the x axis and four nodes along y axis. And 

it is not necessary to have the same number of nodes along both x and y axis. So here 

we have a 12-node Lagrange element that has four nodes along the x direction, and 

then only three nodes in the y direction. And because of that if any quantity is moving 

along the x direction, the y remains constant. 

 

And then similarly, if we are moving along the y, x remains constant. And we can 

write the shape functions N(x, y) as product of two separate functions, one written in 

terms of x and the other written in terms of y. And let us say that we have m number 

of nodes in the x direction, and then n number of nodes in the y direction. And then 

the shape function in the x direction is written as the ratio between two quantities. 

 

 

In the numerator we have, say for i-th node, it is x - x 1 multiplied by x - x 2. You 

continue and x - x i - 1 times x - x i + 1. Then continuing up to x - x m, where m is the 

number of nodes in the x direction. And in the denominator, we take the x coordinate 



at the i-th node, x i - x 1 x i - x 2 and so on. And then we will not have the term x i – x 

i in the denominator also. 

 

So we will have x i - x i - 1 times x i - x i + 1. And then continuing up to m-th node 

like this. And similarly, for j-th node in the y direction N j(y) is y - y 1 times y - y 2 

and so on, up to y - y n. And in the denominator, we have y j – y 1, y j – y 2 and so 

on. So we see that in the numerator, we have the variables x and y whereas in the 

denominator, we have only constant quantities x i - x 1 and so on. And this could be a 

bit confusing. 
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But if you look at particular elements, it becomes more simple. Let us consider a 4-

node Lagrange element.  

 

And it has four nodes 1, 2, 3 and 4. And along the x direction we have the coordinates 

x 1 and x 2. And along y direction, we have y 1 and y 2. And let us say that we are 

interested in writing the shape function for node 1. 

 



So node 1 x of x and y is equal to x - x 1, because the coordinate at node 1 is x 2, and 

x - x 1 divided by x 2 - x 1. And similarly, the y coordinate at node 1 is y 2. So we 

have y - y 1 divided by y 2 - y 1. And similarly, the shape function for node 2 will be 

x - x 2 divided by x 1 - x 2 and then y – y 1 divided by y 2 - y 1 because the 

coordinate at node 2 is x 1 y 2. And at node 3, we have the coordinates x 1 and y 1. 

 

So we have the N 3 written as x - x 2 divided by x 1 - x 2 multiplied by y - y 2 divided 

by y 1 - y 2. And similarly at node 4, the coordinates are x 2 and y 1. So we have the 

shape function in the x direction is x - x 1 divided by x 2 minus x 1. And in the y 

direction it is y - y 2 divided by y 1 - y 2, okay? And directly, we have written the 

shape functions for all the nodes in the element. 

 

And if you look at the sum total of all the shape functions N 1 + N 2 + N 3 + N 4, it 

will be exactly equal to 1. That you can check it for yourself. 

(Refer Slide Time: 45:49) 



 

And similarly, we can extend this procedure even for higher order elements. Let us 

look at 9-node Lagrange element that has three nodes along the x direction and three 

nodes along the y direction. 

 

 And we have the nodes 1, 2, 3 and 4 and then 5, 6, 7, 8 and 9. And you notice that we 

have first numbered the corner nodes first, because for defining a rectangle, you 

require minimum four points and four corner points. 

 

And then 5, 6, 7, 8 they are the intermediate points along each direction, and the ninth 

node is at the center of the element, okay? So at node 1 N 1(x) will be x - x 1 times x - 

x 2 divided by x 3 - x 1 and x 3 - x 2, okay? Because the coordinate value at node 1 is 

x 3 in x direction and y 3 in y direction. So in the y direction, your shape function will 

be y - y 1 multiplied by y - y 2 divided by y 3 - y 1, y 3 - y 2 and so on. 



 

And let us look at node 9 where the coordinates are x 2 and y 2. So the shape function 

in the x direction will be x - x 1 multiplied by x - x 3 divided by x 2 - x 1 and x 2 - x 3 

and in the y direction we have y – y 1 and y – y 3 divided by y 2 – y 1 times y 2 – y 3 

and so on, okay? And the sum total of all the shape functions will be exactly equal to 

1, okay? 

 

And so the advantage that we are gaining now is we can directly write the shape 

functions, we do not need to go through the inversion of a large matrix coordinate 

matrix and so on. 
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And the main advantage of these Lagrange elements is that the shape functions can be 

directly written without going through a complicated matrix inversion. But then, there 

are several other disadvantages. There are too many internal nodes like as we have 

seen earlier, see all these are like for a 16-node element. 

 

These are all the internal nodes and for the 12-node element, these two are the internal 

nodes and for the ninth node, this is the internal node and so on, okay? And these 

internal nodes they do not help us in this inter-element continuity. We cannot satisfy 

the compatibility conditions along the edges of the elements. And so because of that 

the solution is not improved corresponding to the effort that you take, okay? 

 

And we also use too many higher order polynomial terms which are incomplete and 

the polynomial terms are complete only to a lower order lower degree. And there 

could be wild fluctuation in the shape function especially if you have too many nodes. 

So your shape function will be either 0 or 1. 0 at all the other nodes and 1 at its own 

node. 

 

But in between we have no control because if you have a very high order polynomial, 

there could be a lot of fluctuations like this. And so that could lead to numerical 

difficulties because if you are operating at some other some location in between the 

nodes, your shape function could be very high and that could lead to numerical 

problems. 
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So here the, like if you look at this 9-node Lagrange element, we have seen that in the 

x direction for node 3 we have the shape function in the x direction is x - x 1, x - x 2 

divided by x 3 – x 1, x 3 – x 2 where x is a variable and then the y is the variable in 

the N 2(y).  

 

And so for this particular node N 32 that is this sorry this node, the polynomial terms 

if you expand and then take the product will be something like this. 

 

We have an x square and then x times x 1, x - x  times x 2 and so on. And then 

similarly in the y direction. So we have the polynomial terms. x 1 and x 2, these are 

constants and so we have a constant term x and y and then xy, y square, x square y 

square, x square y, xy square and so on. While we are missing some other higher 

order terms like x cube and y cube, see corresponding to x square y and xy square we 

should have x cube and y cube for our complete polynomial that we do not have. 

 

And corresponding x square and y square the other fourth order terms are x to the 

power 4, x cube y, xy cube and y to the power 4. So these are missing in our 

polynomial. 
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So if we look at the included terms for the Lagrange element, for the 4-node Lagrange 

element, we have 1.  

 

That is the constant term x, y and xy while we are missing x square and y square. 

Whereas for the 9-node Lagrange element, we have all these highlighted terms while 

we are missing these terms x cube, y cube and then x cube y, xy cube, x to the power 

4, y to the power 4, okay and so on. 

 

Like if you extrapolate for 16-node Lagrange element we will have more number of 

terms but then we are also having more number of missing terms. 
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And we already know that for getting accurate finite element results, we should have 

a complete polynomial. And that we have seen even from the earlier methods, 

classical methods like the Rayleigh-Ritz and other methods. So just to summarize the 

comments about the classical methods or the generalized coordinate method is that 

even after getting the shape functions, computations are not easy. 

 

Especially if you have an irregular geometry, a curved boundary or something, 

integration of the quantities is not easy. And then we cannot accommodate curved 

geometries and we cannot model these curved geometries with either triangular 

elements or rectangular elements. 

 

And because of these problems, the Lagrange elements have not become very 

commonplace, although the procedure is beautiful, because we can directly write the 

shape functions and so on. And so this technique, the Lagrange elements have not 

become popular. 

 

But then this technique is quite attractive for deriving shape functions for higher order 

elements and that we are going to see from next lecture onwards because we need to 

make some changes to make all the calculations amenable for computer operations. 

Like we should be able to easily program these different integrals for calculating the 

stiffness matrix, load vector and so on. 

 



And that we will see from the next class onwards. And so thank you very much. We 

will meet in the next class. 

 

 


