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Lecture - 14
Classical Methods for Developing Shape Functions

Let us continue from our previous classes. And we have seen that the shape functions
play the major role, because without shape functions, we cannot do any finite element
calculations. We need the shape functions for interpolation and also for forming the B
matrix and then for doing all the calculations like n transpose bdv or b transpose bdv

and so on.

And let us see how we can define or develop the shape functions by the classical
methods. By classical I mean, the methods that were originally developed, the
generalized coordinate method. And later, we have this Lagrange’s methods. And
then, after this, we have more recent ones like isoperimetric and so on. And before we
go into more advanced elements, let us look at the classical methods for developing
the shape functions.
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Shape functions

* The shape functions are simply interpolation functions

+ They depend on the shape of the element, hence are called as shape
functions

* These help in expressing the variation of field variables in the interior of
elements in terms of the nodal values

See these shape functions, they are basically interpolation functions. And they

because they depend on the shape of the element, they are called the shape functions
in the finite element context. And the shape functions, they express the variation of

the nodal variables over the element.
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Monotonic convergence

#Theoretically, continuum consists of infinite number of nodes & elements

Flts not possible to include infinite nodal points in the computations - only
finite number of elements & nodes are considered in the analysis

#The term finite element was coined by Prof. R. Clough in 1960 just about
when digital computers have come into vogue

#As the number of nodes is increased (finer mesh), the numerical solutions
should converge towards the exact result

»Monotonic convergence is the term used to describe the convergence of
solutions as the mesh is made finer and finer
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Then they also help us in getting our B matrix and so on. And theoretically, the
continuum can have infinite number of nodes and elements. But it is not possible to
include infinite numbers. We can only include finite number of nodes and finite
number of elements. And in fact, the term finite element was coined by Professor

Clough in 1960.

That is just about the time when the digital computers were coming in, and the power
of the computers was also gradually increasing. In fact, in those days, it used to
increase exponentially, but now it has more or less stabilized, okay? And the
Professor Clough in 1960, he coined the word finite element, because actually, we can

have infinite number of elements and infinite number of degrees of freedom.

But we are considering only certain number of finite elements. From that this word
finite element was coined. And our requirement for monotonic convergence is as we
include more and more number of elements by decreasing the size of the elements, we
should or finer mesh, our numerical solution should be tending towards the exact
result. And that is called as the monotonic convergence.
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Simply supported beam under central point load
(two 2-node elements)

Assume that the solution at node points
exactly matches with theoretical value

Numerical
solution _~

-

-

Displacements from numerical Analysis
are lesser than the exact value = stiffer
response
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And so let us see what exactly we mean by comparison between our numerical result
and then the, and then our theoretical result, okay? Let us see it in the context of
simple, simply supported beam. Let us say that we have two elements and the three
nodes. And the two ends, it is a simply support, simply supported beam, so the

displacement is zero.

And let us say that whatever numerical method that we have, it is exact. So at the
central point also our numerical result is exactly matching with the exact result. But
then what about in between, in between these two nodes? There is a large variation
between the theoretical solution that is given by this red line and this dotted line. So

this is the numerical error that we have.

And so actually we see that at most, in most locations, our predicted displacement is
lesser than the theoretical one. So that means that our stiffness is overestimated. Only
when we have a higher stiffness, we get lower displacement. So we are inadvertently
over predicting the stiffness. And that over prediction can be reduced by introducing
more number of nodes in the mesh.
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Simply supported beam under central point load
(four 2-node elements)

Numerical

solution _ - =

-
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Let us see the same thing for larger number of nodes and elements. In this case, we
have four elements and five nodes. And once again, let us assume that at all these
nodes, we are exact, our solution is exactly matching let us say, and that is only an
assumption, that may or may not be true. And in between we see that there is still

some deviation between the theoretical result and then the finite element result.

But this difference is smaller compared to what we had before. Here the difference is
large, whereas here it is smaller.

(Refer Slide Time: 05:56)

Simply supported beam under central point load
(six 2-node elements)

Numerical
solution

Exact solution

As the number of nodes & elements is increased, the numerical and exact solutions get
closer to each other
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Then let us make it more finer. Let us consider six elements 1, 2, 3, 4, 5, 6. And in
this case, the elements around the load are made smaller. And then here we see that,

we are even more closer to the theoretical result. And, so as we are including more



number of nodes and elements in the mesh, we can come closer to the theoretical
result and that is what we mean by monotonic convergence and it is not an automatic

process.

So we have to take some precautions so that as we include more number of nodes in
the mesh, our solution is tending towards the exact result, okay?

(Refer Slide Time: 06:46)

Development of shape functions

Monotonic Convergence - as the mesh is made more and more finer the solution should approach

Ihe exact solution

CRITERIA

1. The shape functions should not permit straining of an element lo occur when the nodal

displacements are caused by rigid body displacements.

2. I nadal displacements correspond to a constant strain condition, such a constant sirain is predicled

in the element,

3. The shape functions chosen should be such that the strains at the interface between elements are

finite - continuity of displacements needs io be ensured

4. There should not be any singulanity in the shape functions - shape functions should be well defined

al all points within the element /
4
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So the development of shape functions is a very important step in all the finite
element analysis and we should be very systematic so that our results are also as
accurate as possible. And our aim is to satisfy the requirements for the monotonic
convergence. And as the mesh is made more and more finer, the solution should

approach the exact solution. And the criteria are very simple.

The shape function should not permit straining of an element to occur when the nodal
displacements are caused by rigid body displacements. That is what we had seen
earlier. See if this pen whether it is here or here there are no strains or stresses within
the element, within the pen, because it has undergone only rigid body displacement,

like all the points on the pen have undergone the same displacement.

So that means that there is no relative displacement between two points on the pen or
no strains. And if there are no strains, there are no stresses and that is what we mean
by the first condition that if you subject a body to rigid body displacement, the shape
function should be such that they should not predict any strain.



And then the second condition is if the nodal displacements correspond to a constant
strain condition, we should be able to predict the same constant strain, okay? That we
will see with an example. And the shape functions should be such that the strains at
the interface between elements are finite and the continuity of displacements need to

be ensured, okay?

Because we will come across the interface between different elements and at those
points also, we need some continuity of displacements and then the continuity of
strains. And there should not be any singularity in the shape functions. The shape
function should be well defined at all the points within the elements.

(Refer Slide Time: 09:05)

Nodes along the interface of two 8-node quadrilateral elements A & B

. A [ ] B .
. - [} - -

displacements along this interface should be the same
whether looking from Element-A or Element-B =
continuity of displacements is ensured in this case

Strain continuity at interface may be satisfied approximately as it is not a field variable
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What we mean by continuity is like this. Let us consider a mesh consisting of 8-node
quadrilateral elements. And let us look at two elements A and B. And these three
highlighted nodes are common for both element A and element B. And if you look at
the displacement at these points, whether you are looking from element A or whether

you are looking from element B, we should get the same displacements.

And if we get the same displacements, that means that we are maintaining the
continuity of the displacements, okay? And the displacement at these three points
calculated from A will include the displacements at all these 8 points. Whereas from

B, they will include all these 8 nodes, okay? And the strain continuity or the interface



may not be satisfied or may be satisfied only approximately, because the strain is not

our field variable.

It is only a derivative quantity. And the continuity of strain can be simulated by
making the mesh as fine as possible. So if you have a very coarse mesh, we may not
be able to get the strain continuity between the elements. But as the mesh is made
more and more finer, we will get the strain continuity. So here we have taken both
elements A and B of the same type. Both are 8-node quadrilaterals.

(Refer Slide Time: 11:02)

Nodes along the interface of a 4-node quad & 8-node quad elements
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A-node B-node
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displacements along the interface should be the same
whether looking from Element-A or Element-B -
continuity of displacements may not be ensured due to
incompatibility between the two elements
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And now, let us consider an interface between a 4-node quadrilateral and an 8-node
quadrilateral. Say a 4-node element is a, it has only 4 nodes. So along each line, we
have only a linear function, okay? So it is a, we call it as a linear element. Whereas a
8-node element, it is a quadratic element. It is along each line, there are 3 nodes,

okay?

And so the displacement that we predict from this side, from the 4-node element may
not match with the displacements that we get from 8 node, 8-node element, because
one is a linear function of displacements and the other is a quadratic function of
displacements. So we will not be able to maintain the continuity or we call it as

incompatibility between the two elements.

So one way to overcome that is by reducing the size of the elements so that we get a

better representation. And invariably, we will have to do this type of thing like linking



a 4-node elements to 8-node elements and so on, especially in the transition zones,
okay?
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Generalized Coordinate Method
+ A polynomial expansion is used to express the internal displacements in terms of nodal values
+ The no. of polynomial terms is equal to the no. of nodes in the element

+ Polynomial terms are consirdcled from lowest order (i.e.) constant term, linear lerm, 2™ order elc.

+ The polynomial should be spatially isotropic so that the results are independent of the coordinate
system chosen
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So our generalized coordinate method or the polynomial expansion used to express
the internal displacements in terms of the nodal values, okay? And then the number of
polynomial terms is equal to the number of nodes in the element. And then the
polynomial terms are constructed from the lowest order that is the constant term,

linear, quadratic, cubic and so on.

And the polynomial terms should be spatially isotropic so that the results are
independent of the coordinate system, whether you take a coordinate system like this
x and y, or x and y, x vertical and y horizontal, or y going down instead of going up,
whatever may be the coordinate system, the results should be the same okay,
numerical value of the result.
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Pascal Triangle for 2-dimensional cases
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To help us in and satisfying the spatial isotropy we can take the help of this Pascal
triangle that gives you all the polynomial terms of different order; constant term,
linear x and y, quadratic x square Xy and y square. And then cubic x cube, x square y,
Xy square, y cube and so on, okay?

(Refer Slide Time: 13:53)

Choice of polynomial terms

* The number of terms in the palynomial is equal to the number of nodes in the
element .

* As far as possible, polynomial should be complete & symmetric

* Constant term is required to be able to simulate rigid body translation without
straining the element

* Linear terms are required to be able to simulate the constant strain condition
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And the choice of polynomial terms, say the number of terms in the polynomial
should be equal to the number of nodes in the element. And as far as possible, the
polynomial should be complete and symmetric. Complete in the sense should include

all the lower order terms before you start including higher order terms, okay?

And the constant term is required to be able to simulate rigid body translation without

straining the element. Then the linear terms are required to be able to simulate the



constant strain condition. So these three, they are observed only from experience,
okay? That we will see with an example, what happens if you do not have a constant
term or if you do not have a linear term and so on, okay?

(Refer Slide Time: 14:45)

Quadrilateral elements with four sides - the sides could be distorted or

4-node quadnlateral

curved »
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And these are some of the typical elements and then the polynomials. See you can

have a four node quadrilateral like this, the rectangular element or a distorted element
like this.
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And the polynomial for a 4-node quadrilateral can be a naught plusa 1 x plus a2y
plus a 3 x y. And this is a spatial isotropic expansion, because for every x there is a y,

okay? And our strains are epsilon xx is doh u by doh x.

u(x.y)=a, ta,x+a,yta,xy

du
£y =—=(4 + A3V
XX [].1’ 1 .L]'
dv
Eyy ==— =15 + A3 X
¥y r}y 2 3
dv du
oy =m—t=—=0,+ Azx¥ + a> + A2y
Yoy ox " dy 1 T a3) 2 T a3y

That is alpha 1 ora 1 plus a 3, a 1 plus a 3 y and epsilon yy is doh v by doh y. That is
a 2 plus a 3 x and gamma xy is doh v by doh x plus doh u by doh y. That is equal to a
1 plus a 3 y plus a 2 plus a 3, sorry it should be x, okay?

And for an 8-node quadrilateral, our polynomial can be like this, a naught plus a 1 x
plus a 2 y. That is including the constant term and then the linear terms.

8-node quadrilateral

u(x.y)=a +a,x+a,yta,x*+a,y +axy+axy+a,xy?
Then the quadratic terms x square a 4 y square plus a 5 x y plus higher order terms a 6
X square y plus a 7 X y square.

Pascal Triangle for 2-dimensional cases
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Actually, let us look at our Pascal triangle. So when you have a 8-node quadrilateral,
we have this constant term 1 and then the linear terms x and y. Then the quadratic

terms x square, X y and y square. So these are six terms and we need two more terms.

And we can include either x cube and y cube, so that we have the spatial symmetry or

x square y and x y square. So how we decide whether to take x cube and y cube or x



square y and x y square is very simple. See in the 8-node quadrilateral along each line,
we have only three nodes, right? And if you have three data points, the maximum

order of polynomial that you can fit is two.

So we can choose these two terms x square y and xy square. Then, we are satisfying
the spatial isotropy, for every x there is a y. So even if you interchange x and y
coordinates, it does not matter because our polynomial expansion is especially
symmetric. The 9-node quadrilateral, the polynomial is like this. And for choosing the
polynomial terms for higher order elements requires the observations from the Pascal

triangle.

9-node quadrilateral

u(x,y)=a_+a,.x+a,.y+a,.x+a, yHHax.ytax? y+a,x.y? +a.x.y?

See for 8-node quadrilateral, we have the terms up to x square y and xy square. And
for the 9-node quadrilateral we can include this term, x square and y square because in
the 9-node quadrilateral also along each line, we have only three nodes. So that means
that maximum order of polynomial that you can fit is only two. So we can choose x

square y square as our ninth term.

And as we see, all the polynomials that we have for the quadrilaterals, they are
incomplete. See for the 4-node quadrilateral we have a naught plus a 1x plus a 2y plus
a 3 xy but we are missing x square and y square terms. And in the 8-node
quadrilateral we are missing x cube and y cube. See for the 8-node quadrilateral we
included these two terms x square y and Xy square but missed out an x cube and y

cube.

And for the 9-node quadrilateral we have included x square y square, but we did not
include x cubed y xy cube y 4 and x 4, okay? So all the quadrilateral elements, they
have an incomplete polynomial.

(Refer Slide Time: 19:46)
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And let us look at the triangles.
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The 3-node triangle we have already seen. Let us look at the 6-node triangle, 10-node
and 15-node and so on. See the 6-node triangle, it need not have straight edges, we
can have curved edges like this. And our 6-node triangle, we also call it as a linear

strain triangle LST because the strain is linear and the polynomial expansion is a

Triangular clements with three sides (lines could be distorted or curved)

naught plus a 1x plus a 2y plus a 3x square plus a 4 y square plus a 5xy.

6-node triangle (Linear strain triangle-LST)

u(x,y)=a ta,x+a,y+a,;x+a,y>+a.xy




And so for the 10-node triangle, it is a quadratic strain, because we have a cubic

variation of displacements.
10-node triangle (quadratic strain tnangle):

u(X,y)=a a,xtayraxraxyrayraxra,xlyraxy ray’

So that means that the strain will be one order less, that is x square y square. So it is
quadratic. In the 15-node triangle, it is called as a cubic strain triangle, because our
displacements are of the fourth order. So the strain should be of third order. And this
is the expansion for a 15-node cubic strain triangle.
1 5-node triangle (cubic strain tnangle):
u(x,y)=at+a,x+a,y+a;x+axy+ay Ha x +a.xly+axy+agx’

faggxtta, Xy tapxtytta Xy tta,

See, if you look at the number of terms in the Pascal triangle up to any particular row,
up to second row, we have three terms and up to third row we have nine terms three
plus three nine. Sorry, three plus three is six, not nine, okay? And then up to fourth
row, we have 10, 6 plus 4 is 10. And then in the quadratic terms in the fifth row, we

have five terms 1, 2, 3, 4, 5, so 15 terms.

And if you look at the number of nodes in the triangles is 3, 6, 10, 15. And then next

one will be 21 and so on.
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21-node triangle:

u(x,y)=a_+a,x+a,y+a,x+a,xy+ay+a x +a,xy+axy+a x’
ta,ox*a, X y+a, X2y HHa, Xy ta, 4 a o xMa  xy +a,5.0 y a g X, y e Xy e

So our number of nodes in the Pascal triangle allows us to have complete polynomial

like alpha naught plus alpha 1x plus alpha 2y or including alpha 2x square, alpha 3xy



alpha 4y square and so on, okay? So our triangular elements, they allow us to have a
complete polynomial.

(Refer Slide Time: 22:19)

21-node triangle:

u(xy)=a ta tay et tay gy v sy gy g
Fa ot Xy Xty ey 0 Ak Bty sty M y X y Y

Polynomials for triangular elements are complete polynomials leading to more
accurate & numerically stable solutions
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And this next one is a 21-node triangle and these triangular elements they have a
complete polynomial and that gives us some advantage. In fact, we get more stable
numerical solutions, because our polynomial is complete and because of that some
spurious modes of displacements are not excited. Whereas we will have problems

with the quadrilaterals like 4-node quadrilaterals and so on, okay?

So in the geotechnical program PLAXIS, that is one of the most popular commercial
programs, they give you the option of only two elements. One is a 6-node triangle and
the other is a 15-node triangle. Both are known to perform well. And depending on
the nature of problem that you have, you can either choose a 6-node triangle or a 15-
node triangle.

(Refer Slide Time: 23:23)



Influence of polynomial choice using 1-d examples
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And we can look at the influence of the polynomial choice using 1 -d examples.
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Develop Shape functions for a 2-node bar element

- -
Node-1 Made-2
r=0 =

u(x) = oy + a,x (complete polynomial of first order)

wr=0=g;=u = aq =1,

Uy = Uy
ur=f=q+qf=uy=q = _f_

Wy=uy X I I 3 o i
aulx)=uy + =1 =y (l - ;) tip7= Ny (x)uy + Na(x)u, } linear variation
i r ]
= N,(x) = i—F'_* 1 atx=0 & Nyx)= 1—;:!] at x=1¢
=.~.‘.',!l:$]=%=i| at x=0 & I'l'_-{r]=.,i=| at x={
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Like say if you want to do any two dimensional examples, we have to go in for finite
element analysis, we cannot do by hand. And by doing some simple calculations by
hand, we can see what is the effect of different orders of polynomial. Let us consider
once again a 2-node bar element. It is an axial element. So we have only one

displacement u. Node 1 displacement is u 1. Node 2 displacement is u 2.

Develop Shape functions for a 2-node bar element

M,y u
— ) o

MNode-1 Node-2

X 0 X f

And our polynomial is alpha naught plus alpha 1x. And it is a complete polynomial of

the first order because we have constant term alpha naught and the linear term alpha 1



x. So if you determine the shape function that we had already done several times, our
u(x)isu I N 1 where N 1 is 1 minus x by I plus u 2 times N 2. N 2 is x by I. And our

N 1 and N 2 are either 1 or 0. 1 at their own node and 0 at the other node.

u(x) = a, + a,x (complete polynomial of first order)
ux=0)=aqy=u;, = ay =1,

Uy — Uy

4

ux=€)=aq+af=u;=aq, =

su(x) =u; + "";“‘ X = uy (1 - %) + u_,? = Ny(x)u; + Na(x)u, ] linear variation

=NE)=1-3=1 atx=0 & Nx)=1-5=0 atx=¢
=N, (x)=7=0 at x=0 & N;(x)=3=1 at x=¢
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Ny#Ny=(1-5) +2=1

u(x) = Ny(x)uy + No(x )y

; Cdu ANy Ny ug—ty
Strain in the element, geom = =y + =y = =

Strain is constant within the element
When the element is subjected to rigid body deformations with u,=u,=u
Strain within the element=0
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And our N 1 plus N 2 is exactly equal to 1. And the strain within the element epsilon

is doh u by doh x. That is, you will get u 2 minus u 1 by | and the strain is constant
within the element. And then if you subject this element to a rigid body displacement

that is u 2 and u 1 are the same and the strain within the element is 0.

u(x) = Ny (x)u; + No(x)u,

du dN, dN, Up—uy

Strain in the element, Boem =y Uy =~



So if you subject this element to a rigid body displacement will predict a 0 strain. And
if you apply a strain corresponding to or displacements corresponding to constant
strain, your strain is constant within the element. So that means that this polynomial
that we have assumed for the 2-node bar element will satisfy our requirements for the
monotonic convergence.
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Shape functions for 2-node bar element without linear term
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FEARCM Lictuie- 12 /- 4\

And let us repeat the same problem. But now, let us do without the linear term.

Shape functions for 2-node bar element without linear term

— Wy .
Node-1 Node-2
x=0 x=1{

Let us take two terms, u(x) as alpha naught plus alpha 2 x square. So I have neglected
the linear term alpha 1 x, but included the second order term alpha 2 x square, okay?
So if you go through the process, our N 1 is 1 minus x square by | square and N 2 is x
square by I square.

ul(x) = ap + ax?
u(x=0)=ayg=u; = ag=1u,

Up; = Uy
{’2

u(x =€) =ap+ a2 =u, = a; =

up—u

~ulx) = uy + lx? = u, (l - :—:) + u, :—: = N;(x)u, + N;.(,'r)uz}

=M@ =1-5=1 atx=0 & M@ =1-5=0 atx=¢

=>N_Z(x}="—:=0 at x=0 & Ni(x)=%=] at x=4¢

" 4



And our N 1 is 1 at x is equal to 0, and zero at x is equal to 1. And similarly, N 2 at x
is equal to 0 is 0, and at x is equal to 1, that is at its own node, it is 1, okay?
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When the element is subjected to rigid body deformations with u,=u,=u

Strain within the element = 0 - rigid body deformations can be represented
by this element (constant term included in the polynomial)

Strain varies linearly within the element
Mot able to represent constant strain condition (missing linear term ?)
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And our N 1 plus N 2 is exactly equal to 1. And then, now let us calculate the strain.
Epsilon is doh u by doh x, that is doh N 1 by doh x u 1 plus doh N 2 by doh x u 2.
That is 2x times u 2 minus u 1 by 1 square. So if you subject this body to rigid body
displacements, that is u 2 is equal to u 1, you will get zero strain. But then, you see the

strain is varying linearly within the element.

I-Iz r 4

o 12

N,+N,=

u(x) = Ny(x)uy + Na(x)u,

g Ju
Strain in the element, g=— =
dx dx

t"JN'] aNz _ Z.T.(uz-ttlj

So if you subject this body to some constant strain like let us say, you set the u 1 to 0
and u 2 to some value, you will see that the strain is varying linearly along the
element because it is a function of x. So we are not able to represent the constant
strain condition and because it is missing the linear term. And so we can say that this

element may not satisfy the, does not satisfy the monotonic convergence requirement.



So if you use this element, we may not get good results, we may not get the

monotonic convergence, okay?

(Refer Slide Time: 28:01)
Shape functions for 2-node bar element without constant term

] iz
. —
Node-1 Hode-2
u(x) = ax + agpr’ xw x=p
ulx =x) = uy =agry + gl o oulr =x) = up = apxg +agxd

2 1

= W5 =th I = X3 =iXj
27 o lta=ti) and s by
xyxalxg-x) T¥gl¥g=xy)

u(x) = Ny(x) uy + Nylx) ug;

$on z
SUAY N () =1 & Ny(x)=0

Nl{x:l - 1 xy(rg-ny) '
o hxiodx o =
M) = S No(n) =0 & Nyf) =1
FEAREM Licture-12 -
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So now, let us do one more attempt. Now, without the constant term, the u(x) is alpha
1 x plus alpha 2 x square, okay? And we get some functions like this.

Shape functions for 2-node bar element without constant term

—liy —H2
Node-1 Node-2
X=X,

x) = ax + ax? X =X,

u(x) = ayx + a,x?
u(x =x,) =u; =ayx; +ax; ; ulx =x;) =u; = a;x; + a;x;
ulxg-u:rif

U2 Xy =Uy X
xyxz(xz—x;) X xz(x3—x4)

u(x) = Ny(x) uy + Np(x) uy,

xix- o _
Ni(x) = Zﬁ ‘Ny(x)) =1 & Ny(x) =0

v T |
N,(x) = %: Na(x) =0 & Ny(x) =1

(Refer Slide Time: 28:20)



2 2 2 2

X=XX"=X'X+ XX

Ny(x) + Ny(x) = ——1 241
Xy x3(%; — xy)

Cdu (=2 0w + (203, = Xy

£(x) ===
dx X x(x = 1p)
When u, =1, strain £20 - i.e. element predicts strains even under rigid body
motions

The element cannot represent constant strain condition when u,=0 & u,=u

Hence, the constant term in the polynomial is ESSENTIAL for satisfying the
monotonic convergence requirements

4
'Ir ]

= Prumes

And then our N 1 plus N 2, we see that it is not equal to 1. And our strain within the

element is doh u by doh x is also a bit complicated function.

2x — x3x% — xix + x;x?

Ny(x) + Na(x) = : X1 x2(x2 = xq)

du  (x5-2.x5.X)uy + (2.x.x; — xH)u,
fx)=—=
dx xlxz(xz —1‘1)

And if you substitute u 1 is equal to u 2, the strain is not 0. So that means that the

element predicts strain even when we subject the body to rigid body motions. That is

because we do not have the constant term.

See if we are able to, to be able to represent rigid body displacements without
developing strains, we must include the constant term. And in this particular case, we
have not included the constant term. So we fail to represent the rigid body motion
without strains. And this element can also represent constant strain. So if you

substitute u 1 of 0 and u 2 of some value, we have this x in the equation.

So that means that your strain is going to vary linearly. So by neglecting the constant
term we fail to represent the rigid body motion without straining and then the even the
constant strain state. Whereas, previously when we included the constant term but
missed out on the linear term, we were able to represent the rigid body motion without

straining, but then we failed to represent the constant strain state.



And here, we failed in both. Both in the rigid body and also the constant strain. See
you might be wondering why? See we have the linear term, so we should be able to
represent constant strain condition. But then see even the rigid body motion also is a
constant strain condition, because it is like whether I have the pen here or there, the

strain is 0 all over, and that is also a constant strain.

It is only thing is the strain value is 0. So even the constant strain condition that we
get under rigid body motion that is O strain that is also a constant strain. And so
without the constant term, alpha naught, we will not be able to represent the constant
strain conditions. And although you have this linear term, it does not help very much,
because you do not have the constant term.

(Refer Slide Time: 31:17)

Shape functions for a 3-node bar element

Node!  Noded Nodn2 Notice that the 3" node

x=0 f x={ is defined at mid-length
2

u(x’} =fp+yx + f!_r-'f:

Ux=0) = (g =y ==ceeemmmemene 1
ux=1{) = ay+a;f + qyf? = Uy weesmcenena 2
u(r=1) = ot o5 =ty e 3
2- (3x2) = oyl +ay- 20y - Uy = 2y
(up = 2ug + u)2
o = —r

=
T

i
Faumes J

So it is very important that when we develop our shape functions, we are systematic
and we include all the lower order terms. So we extend the same thing for a 3-node
bar element and we assume a polynomial like this alpha naught plus alpha 1 x plus
alpha 2 x square. And this is a complete polynomial, because we have all the terms up

to x square, okay?



Shape functions for a 3-node bar element
Uz

—lly —ellz me——
Node 1 Node-3 Node-2 Notice that the 3" node
- x=1¢ is defined at mid-length

'_P
.

u(x) = ag + a;x + ayx?

u(x=0) = ay=u; -1
u(x=() — a(]‘*‘ﬂ,f‘*‘ﬂz(z:'uz ------------- 2
¢ ¢ £
u(x=3) = ap+ay;+ay 5 =uz 3

2

2- (3x2) = 02{’2+aﬂ—2u0—u2%=u2—2u3
(uz - 2“.3 + u;)z
32

a; =

And you notice that the third node is at the mid length, node 1 and node 2. See for
defining a bar element, we require minimum two nodes. And naturally, we will keep
these nodes at the two ends. And if you want to place more number of nodes then you
can choose some interior points. In this particular case, the node 3 is placed at mid
length, but it could be placed anywhere else.

(Refer Slide Time: 32:24)

_u?-u-,-f:—u.-, o Mamup Ay =Rug iy a3l 4y

¢ £ f

L
Substituting values in equation we get

s
AT b
3x 2% 2t ox  4x 4x? _
N1+N2+H3_I_?+f_’+f_’_F+T_F=
w3 & a1 4 Bx
a—tl—u]?+ﬁ|+uzﬁ-ﬁl+lt3 F-Fl

rigid body displacement is when,

ix . it T
sulx)= ll Tt E|ut lF - ;I ity +

Uy =Uy=u3 =1
-3 4x 4x 1 4 Bx . 'y
E=U 7+;+;-;+;-:—2| = ( at all values of x; zero strain during rigid

body motions can be simulated by these shape functions

FEARCM [pcture- 1] ‘
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And we can determine alpha naught alpha 1 and alpha 2. And we had seen this
example earlier, we see that N 1 plus N 2 plus N 3 is exactly equal to 1. And if you
subject this element to rigid body displacements as u 1 is equal to u 2 is equal tou 3 is
u bar our epsilon is 0. So that means that we are able to move the body as a rigid body

without developing any strains.



U2-u2(2-UQ u2-2u2+4u3-2u1-u1 - ‘H2-3u1+4u-_|

.'.{112 ¢ = 7 = 7
Substituting values in equation we get
2x? 4x  4x?
~u(x) = [1——+—u,+[Jc lu2+ —x—:z Uz

3x  2x?  2x? x  4x  4x? _
N1+N2+N3=1—T+(—2+{—2—;+T—? =1

du -3 4x 4 Bx

x_ aTU|TrE f? rl Wl rZ]

rigid body displacement is when,

G = =Uz=U

(Refer Slide Time: 32:56)

Constant strain condition i s i
& Node-1 Node-3 Mode-2
Sayu|={},uz=u,u3=— x=0 l_l° xmf
2 X _E
04 [41 1 +u 4 Bx
E = U|=—=-—= - —
I O B £
I :
- 1,8 4 v
=u|z=3t;-7| =7 = constantin the element

The shape functions derived satisfy the convergence requirements

These shape functions are able to represent the constant strain condition &
rigid body deformations without strains. Hence, they can help in monotonic

convergence.

FEARCM Lecture-11 ‘\‘

And then if you subject the element to some displacement field corresponding to
constant strains thatisu 1 is O u 2 is u and u 3 is u by 2, we do predict the strain as u

by 1 that is constant within the element.

Constant strain condition I 3+ Y
u Node-1 Node-3 Node-2
sayu; =0,u; =u,uz3 = - x=0 _t x=¢
2 x _E
0+ ] I4 8xl
£y = Uu|l—-—- e i Sl
* {’ 2le 2
4x 1 2 4x u -
=1y [; g kS Ty = constant in the element

So by choosing the constant term and the linear term in the polynomial, we are able to

represent the rigid body motion without developing strains.



And then if your displacement field is corresponding to constant strain, we are able to
represent that. So this element can be satisfying the monotonic convergence
requirement. So if you increase the number of elements we will be approaching the
theoretical result, okay?

(Refer Slide Time: 33:49)

Shape functions for 6-node triangle
u(x,y) = @y +a,x + azy + azx? + a,x.y + agy’

Ly »n ¥ oy ¥ a,
1l X, % 8 Ny % [0
L x3 95 3 x5 ¥ ||
Ul (1 xy 3 xy N
1 x5 y5 X5 X595 }’§
1 X Y % YeVs Vi

{a} = [C)Y{u}; the inverse cannot be written out directly as was done for 3-
node CST

FEARCM Licture- 1] ﬁ i
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So now, let us continue for higher order elements like a 6-node triangle. So earlier, we

had derived the shape functions for a 3-node triangle. And if you remember, the 3-
node triangle, we got the coordinate matrix, a 3 by 3 matrix and that we can easily

invert analytically.

Shape functions for 6-node triangle
u(x,y) = a, + a;x + a;y + azx? + a,x.y + asy?

) . o
Uy 1 x3 y x5 X1 Y5 a,
2 2
U, 1 x3 Y2 X3 X2.¥2 Y3 a,
2 2
uz| _ |1 x3 y3 X3 X3.¥3 Y3 a;
u - 2 2 a
u4 1 x4 ya X§ X3.Ys Vi (13
" 1 x5 ¥s X3 Xs.¥s5 Y3 i
Ug 2 > | \as
1 x¢ Yo X X6.Y6 Ve A

And after we invert, we have grouped all the displacement terms underu 1,u 2, u 3.

{a} = [C]*{u}; the inverse cannot be written out directly as was done for 3-
node CST

And then came out with our shape functions N i is alpha naught alpha i plus a plus b i

x plus ¢ iy divided by 2 delta and so on. But here, when you have a 6-node triangle,



your coordinate matrix is a 6 by 6 matrix. So we cannot directly write out the inverse

of this matrix.

(Refer Slide Time: 34:50)

Procedure to derive shape functions for higher order elements

U=t QX EY b b G XY

Where, n - no. of nodes in the element
iy 1 5y O e o] @

L/ [ PR S—
iy e - " # i iy
Jh R S G e |
or (] = [C]fz)
(o} = [C]*{a®}
{2} = (P)[€][a")
) = Nl{a} = IN] = (PIIC]!

determined for each and every element separately

FEARCM Lisctisre- 1

Pr={1 x y xy x* .. = = «](vectorof polynomial lerms)

In some cases [£]~' may not exist; computationally very expensive because || has lo be

\

So we need some other procedure. And that procedure is explained here. Actually it is

a procedure to derive shape functions for higher order elements using an automated

process. So let us say that your u is alpha 1 plus alpha 2 x plus alpha 3 y and so on,

okay? And our u is this coordinate matrix C, multiplied by this alpha. Alphas are the

generalized coordinates.

So our alpha can be determined as C inverse a e, and our u can be P, that is the

polynomial series 1, x, y and so on, okay? And so our N can be P times C inverse,

okay? And the P is the polynomial vector of polynomial terms 1, x, x square and so

on; y, y square and so on. And the C is the inverse of this matrix. But only problem

here is C inverse could be very difficult to obtain.



Procedure to derive shape functions for higher order elements

n—m

U= + X + Ay + e e e F A X 2 g

Where, n — no. of nodes in the element

Uy 1 x4 ¥ XXiYV1 «-- ]
Uz - {a,
Uz = . - - . - - @y
:‘FT - ee - css - eon ‘tﬂ

or {a} = [CHa)
{a} = [C] ' {a®}
{u} = (P}IC]"*{a"}
{u) = [Nl{a®} = [N]=(P}C]®
(Pl=(1 x ¥y xy x* .. = = .} (vector of polynomial terms)

In some cases [€C] 'may not exist; computationally very expensive because [C] ' has to be
determined for each and every element separately

Like let us say if you are doing, if you are using a 21-node triangle, you need to invert
21 by 21 triangle. And if you have some 1000 elements in the mesh, you will be
spending lot of time on just simply inverting these matrices. And after you invert the
matrix, then you get your shape functions and then proceed with the rest of the
analysis.

(Refer Slide Time: 36:30)

[llustration of procedure for 2-node bar element

ulx) = a, +ayx b _
(P=11 e -t

=0 r={

x=0atx; &fatx,

= Yirer=a,
m=e=0 01’ H
]

{=x X
Ny (x) = T Ny (x) = 7
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So let us illustrate this process for a 2-node bar element a naught plus a 1 x and this is

the coordinate matrix 1, 0, 1, 1.



[lustration of procedure for 2-node bar element

u(x) = a, + ayx 14y u;

[p} = {1 X} Node-1 Node-‘2

x=0atx, &fat x,

@< fher=3l4

f-x
N} = (PHEY =1 =3[ ‘l’}={ ]

I

f—x x
Nl(r)=—€“i N; (x) =7

The C inverse is 1 by I; 1, 0, -1, 1. And the N is P times C inverse. P is the matrix of
this polynomial terms 1 and x. And our C inverse is 1, 0, -1, 1. And then the C inverse
is this. And then we have this shape function and this product will give you the shape
functions. And N 1 is | minus x by l and N 2 is x by 1.

(Refer Slide Time: 37:21)

Another example without constant term

LU M2

. .
Node-1 Kode-2
xmx =1l r=x=20

u(x) = ayx 4y’
u(x =x) = ax; +axf = 10a; +100a; = u;
u(x = x,) = ayx; +apx; =200, + 400a; = uy

by algebraic manipulations, a, and a, can be determined as,

20 soolle) =l
1 -
)= 2al20 10 )

FEARCM Liscture- 12

And we can look at one more example without the constant term. Let us take x 1 at 10
and x 2 of 20 so that if you have an x of 0, then it becomes difficult to find both alpha
1 and alpha 2. So because of that, the element is translated so that x 1 is not 0, okay?

So our u at x is equal to x 1 is this and the u at x is equal to x 2 is u 2, that is this.



Another example without constant term

-—.ul _.“Z
Node-1 Node-2

u(x) = a;x + a;x?
u(x = x;) = a;x; + a;x; = 10a, + 100a; = u,
u(x = x;) = aqyx; + ayx; = 20a, + 400a; = u,

by algebraic manipulations, a, and a, can be determined as,

20 400l faz) = fuc)

a 1 1400 -100)(u
[al}=m -20 10 [1}

(Refer Slide Time: 38:04)

O = M= )[40 10

Ny(x) = ‘”“;nof;” Ny(x, =10) = 1; Ny (x, = 20) = 0

_ 2
My(x) = 25 Ny, =10) = 0 Ny, = 20) = 1
300.x - 10.x*
Hj(i’) + Nz{x] = _2'm’"u_ #1
FEARCHA Lineture- 17
[ — i

And by solving we get our N 1 as 400 x minus 20 x square by 20,000. And N 2 is
minus 100 x plus 10 x square by 20,000.



.+ 1 r400 -100
T —fN N.- = F
VT = M= x5555220 10

- 2
Ny(x) = 200X=20X7. oy (xy = 10) = 1; Ny(x; = 20) =0

2000

_ 2
Np(x) = =25 Ny(xy = 10) = 0; No(xp = 20) = 1

300.x — 10.x?
N]('\')“"‘ Nz(.‘l’) = W #+= 1

And then if you add up N 1 and N 2, you do not get 1. You get some other value. So

that means that you cannot assure the monotonic convergence with this type of

element.

(Refer Slide Time: 38:46)

Procedure to derive shape functions for higher order elements

TR TR £ 1 R e F

| 1 5y 0¥ o M
L} I [PTROR im0
Bimla & & # = s|d®
w2 e o rR
o (a*] = [C][a)
(a} = [C]"Ya®}
{u) = (PHC] " {a®)
{u] = [Nla"} = [N]=(PYC]
(Pl={1 x y xy & .. = = «](vecorof polynomial lerms)

In some cases [€] " may not exist; computationally very expensive because [C]™" has to be
determined for each and every element separately

d
FEARCM Lictufe- 12
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And then getting the shape functions using the generalized coordinate method is also

very tedious, because we have to go on inverting the so many matrices. Sometimes

these matrices are fully populated. So inverting that will take lot of time.

(Refer Slide Time: 38:57)



* Although the procedure for shape functions is automated, their
determination is cumbersome

* Evaluation of different integrals is tedious, especially for higher order

elements
* If an element is distorted, X & Y coordinates are interdependent
leading to complexity in integrations 4

e

+ Iv x%.y*dx.dy integrated over a distorted element

FEARCH |peture-11 d
J

So although the procedure for finding the shape functions is automated, their
determination is cumbersome and the evaluation of the integrals is also tedious. So if
you have a complicated shape like this, and I ask you to integrate, we cannot do it,
because of irregular boundary. And because the two coordinates, they are not normal

to each other orthogonal to each other.

Whereas previously we had seen X is along the x axis and Y is along y axis, they are
perfectly orthogonal to each other, okay? And so if your shape is like this, then it is
difficult, we cannot easily do the integrations.

(Refer Slide Time: 39:50)

LAGRANGE FAMILY OF ELEMENTs - only for rectangular shapes

S-node &
Tinc 12-node
3 . 4
1 . 0w
I. 4
SR .
m - no. of nodes in x-direction
" ; n -+ no. of nades in y-direction
Shape functions are ' S
writien directly as, yxy) = NxpN0)
0 = 2y )(x = Xz} oo (0 = 21 )2 = 7y )X = X)

hi(x) = T8 = 1000 = X2) o o 0y = ) i

O30 =) = 9l = a0 = )

Niy) —
4 e ( .TII]

So the new family of elements that are developed are the Lagrange family of

elements. And these are pure rectangular elements.



LAGRANGE FAMILY OF ELEMENTs — only for rectangular shapes

4-node 9-node
¥ -

4 3 10-node 12-node
3 4
29 . 5 s « =

2 s =

’ 1

1 2 1 2 3 1 2 3 &

m - no. of nodes in x-direction

R - o n — no. of nodes in y-direction

And the way their shape functions are developed is slightly different from what we
have seen earlier with the generalized coordinate method. And let us consider a 4-
node Lagrange element, so it has four nodes 1, 2, 3 and 4. And then 9 node, it has

three nodes along the x axis, and then three nodes along the y axis.

And it could have either four nodes along the x axis and four nodes along y axis. And
it is not necessary to have the same number of nodes along both x and y axis. So here
we have a 12-node Lagrange element that has four nodes along the x direction, and
then only three nodes in the y direction. And because of that if any quantity is moving

along the x direction, the y remains constant.

And then similarly, if we are moving along the y, x remains constant. And we can
write the shape functions N(x, y) as product of two separate functions, one written in
terms of x and the other written in terms of y. And let us say that we have m number
of nodes in the x direction, and then n number of nodes in the y direction. And then

the shape function in the x direction is written as the ratio between two quantities.

- - _—— g -

Shape functions are
Nij(x,y) = Ni(x)xN;(y)

written directly as,

oy X=X )X = X5) e (= X )X = X )X = X))
Nix) = (= 2 )(x; = x3) e e . (X = X )
M) = Lm0 Y2 e (= 1)y = 9y )Or = )

i =) = ¥2) e (¥ = )

In the numerator we have, say for i-th node, it is x - x 1 multiplied by x - x 2. You
continue and X - X i - 1 times x - x i + 1. Then continuing up to x - x m, where m is the

number of nodes in the x direction. And in the denominator, we take the x coordinate



at the i-th node, x i-x 1 xi-x 2 and so on. And then we will not have the term x i — x

i in the denominator also.

So we will have x i-x1i-1times x1i-x1i+ 1. And then continuing up to m-th node
like this. And similarly, for j-th node in the y direction N j(y) isy -y 1 timesy -y 2
and so on, up to y - y n. And in the denominator, we have yj—y 1,yj—y 2 and so
on. So we see that in the numerator, we have the variables x and y whereas in the
denominator, we have only constant quantities X i - x 1 and so on. And this could be a
bit confusing.

(Refer Slide Time: 43:24)

Four node Lagrange element

Shape functions can be written directly as,

X=X Y=Y

Ny(x.y) = L, g
X=X Yo=W
r=x ¥Y=XN

N:(x,¥) = K ——

ha(x) =X Ya=¥h X
X=X; ¥=Y

O P, s
H=xn h=n
X=X -y

e e 1
h=X h=h

N #N,#N;+N, =l ~

4
!
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But if you look at particular elements, it becomes more simple. Let us consider a 4-

node Lagrange element.

h |
2 1
y:
3
i 4
X X

- X

And it has four nodes 1, 2, 3 and 4. And along the x direction we have the coordinates
x 1 and x 2. And along y direction, we have y 1 and y 2. And let us say that we are

interested in writing the shape function for node 1.



So node 1 x of x and y is equal to x - x 1, because the coordinate at node 1 is x 2, and
x - x 1 divided by x 2 - x 1. And similarly, the y coordinate at node 1 is y 2. So we
have y - y 1 divided by y 2 - y 1. And similarly, the shape function for node 2 will be
X - X 2 divided by x 1 - x 2 and then y — y 1 divided by y 2 - y 1 because the

coordinate at node 2 is x 1 y 2. And at node 3, we have the coordinates x 1 and y 1.

Shape functions can be written directly as,

X = X Fy =X
X

N,(x,y) =
Ll Xz —=X3 Yz—M
X=Xz y—hn
Na(x,y) = - — X -
Xy =—=X2 Y2—M0
X=X y—Yy2
Ns(x,y) = x
X=Xz N~z
X =X y—¥y:
Ny(x,¥v) = X
Xz2—X1 M1~ )Xz
Nl T N: T N; T .‘\Il ‘

So we have the N 3 written as x - x 2 divided by x 1 - x 2 multiplied by y - y 2 divided
by y 1 -y 2. And similarly at node 4, the coordinates are x 2 and y 1. So we have the
shape function in the x direction is x - x 1 divided by x 2 minus x 1. And in the y
direction it is y - y 2 divided by y 1 - y 2, okay? And directly, we have written the

shape functions for all the nodes in the element.

And if you look at the sum total of all the shape functions N 1 + N2+ N 3 + N 4, it
will be exactly equal to 1. That you can check it for yourself.

(Refer Slide Time: 45:49)



9-node Lagrange Element

Shape functions can be directly written by observation as,

Ny = BT 000 -32)
(x3=x)(xy=x3) (a=n)0s=ya)

_mxn)x-x)  -n)l-)

Ns(x,y) = (=1 =%3) (5=y)0s=-12)
P = (E-':: i:ii::_—xi] : t? = i:;gj;:l
e e e
)
. 2:‘.-\',- = ;} ‘

And similarly, we can extend this procedure even for higher order elements. Let us
look at 9-node Lagrange element that has three nodes along the x direction and three

nodes along the y direction.

And we have the nodes 1, 2, 3 and 4 and then 5, 6, 7, 8 and 9. And you notice that we
have first numbered the corner nodes first, because for defining a rectangle, you

require minimum four points and four corner points.

And then 5, 6, 7, 8 they are the intermediate points along each direction, and the ninth
node is at the center of the element, okay? So at node 1 N 1(x) will be x - x 1 times x -
x 2 divided by x 3 -x 1 and x 3 - x 2, okay? Because the coordinate value at node 1 is
x 3 in x direction and y 3 in y direction. So in the y direction, your shape function will

bey -y 1 multiplied by y -y 2 dividedbyy3 -y 1,y 3 -y 2 and so on.



Shape functions can be directly written by observation as,

x-x)x-x) O-y0-y2)

Ny(x.y) = (x3 =x)(x3 —x2) (V3 —=y1)0s—y2)
_ (x=x)(x —x3) =) —y2)
Ns(x,y) = (x; — x;)(x; — x3) " s =¥z — ¥y2)
(x = x;)(x — x3) O =y)r=ys)

N, ¢ =
y(x,¥) (xz = x;,)(xz = X3) ; 0z =)0z —y3)
Ny(xy) = 2 —22)E = X3) O = Y2)O ~ %)

(X3 = ’-'2)(-:'1 -x3) O =y2)0n —Y3)

ZNI':I.

And let us look at node 9 where the coordinates are x 2 and y 2. So the shape function
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in the x direction will be x - x 1 multiplied by x - x 3 divided by x2-x 1l and x2 - x 3
and in the y direction we have y—y l andy —y 3 dividedby y2 —y 1 timesy 2 —y 3
and so on, okay? And the sum total of all the shape functions will be exactly equal to

1, okay?

And so the advantage that we are gaining now is we can directly write the shape
functions, we do not need to go through the inversion of a large matrix coordinate
matrix and so on.

(Refer Slide Time: 48:09)

Advantage of Lagrange elements is that the shape functions can be written directly -
no need to go through complicated matrix inversions

Disadvantages

« Too many intemnal nodes are generaled - inter-element continuity & solution accuracy is nol improved
by internal nodes.

+ Too many higher order polynomial terms, which are incomplele; polynomial terms are complele only
1o & lower order,

* Wild fluctuations in the shape function value between the nodes. The N-values change between 0 &
1 at the node points. In between the nodes, it could increase to much higher values
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And the main advantage of these Lagrange elements is that the shape functions can be
directly written without going through a complicated matrix inversion. But then, there
are several other disadvantages. There are too many internal nodes like as we have

seen earlier, see all these are like for a 16-node element.

These are all the internal nodes and for the 12-node element, these two are the internal
nodes and for the ninth node, this is the internal node and so on, okay? And these
internal nodes they do not help us in this inter-element continuity. We cannot satisty
the compatibility conditions along the edges of the elements. And so because of that

the solution is not improved corresponding to the effort that you take, okay?

And we also use too many higher order polynomial terms which are incomplete and
the polynomial terms are complete only to a lower order lower degree. And there
could be wild fluctuation in the shape function especially if you have too many nodes.
So your shape function will be either 0 or 1. 0 at all the other nodes and 1 at its own

node.

But in between we have no control because if you have a very high order polynomial,
there could be a lot of fluctuations like this. And so that could lead to numerical
difficulties because if you are operating at some other some location in between the
nodes, your shape function could be very high and that could lead to numerical
problems.

(Refer Slide Time: 50:19)

Nj(x,y) = N(x)N ()
Nyz = Na(x)N;(¥)

Ny(x) = el x Is a variable

{xy=2y ) (xg=x3)

(y=y)ly=3)

Naly) = y is a variable

=¥ ve=¥4)
Polynomial terms will be as follows upon expansion

(r* =2y = 22 + x20) (0" = ¥y = y9a + i)

+ polynomial terms will be, Constant x, y, x%, xy, v2, x*y?, 2%y, xy*

Missing term 7, 3, x4, &%y, xy?, !




So here the, like if you look at this 9-node Lagrange element, we have seen that in the
x direction for node 3 we have the shape function in the x direction is x - x 1, x - x 2
divided by x 3 —x 1, x 3 — x 2 where x is a variable and then the y is the variable in

the N 2(y).

X

And so for this particular node N 32 that is this sorry this node, the polynomial terms
if you expand and then take the product will be something like this.

Nij(x,¥) = Ni(x)N;(y)

N3, = N3(x)N2(y)

(x=xy)(x-x3)

Nz(x) = x is a variable

(x3=x9)x3=%x2)

=y )y=23)

: y is a variable
V2=21)yz2—¥3)

N2(y) =

Polynomial terms will be as follows upon expansion

(x? — xx1 — xx3 + X12) (¥ — yy1 — Yy3 + 1¥3)
We have an x square and then x times x 1, X - x times x 2 and so on. And then
similarly in the y direction. So we have the polynomial terms. x 1 and x 2, these are
constants and so we have a constant term x and y and then Xy, y square, X square y
square, X square y, Xy square and so on. While we are missing some other higher
order terms like x cube and y cube, see corresponding to x square y and xy square we

should have x cube and y cube for our complete polynomial that we do not have.
= polynomial terms will be, Constant x, y, x* xy, y*, x*y*, x*y, xy*

lj i ,"

Missing term x3, y3, x*, x3y, x93,y

J‘r.

And corresponding x square and y square the other fourth order terms are x to the
power 4, x cube y, xy cube and y to the power 4. So these are missing in our
polynomial.
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Polynomial terms included in Lagrange elements
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So if we look at the included terms for the Lagrange element, for the 4-node Lagrange

element, we have 1.

Polynomial terms included in Lagrange elements

Py 1 ;g 4-node Lagrange
» ‘\\ element
D X 5
P . e —‘2&-——- 9-node Lagrange
S XY 7 y© »~. clement
. P )

2 - y3 > 16-node Lagrange
. o o ¥ element

That is the constant term x, y and xy while we are missing x square and y square.
Whereas for the 9-node Lagrange element, we have all these highlighted terms while
we are missing these terms x cube, y cube and then x cube y, Xy cube, X to the power

4,y to the power 4, okay and so on.

Like if you extrapolate for 16-node Lagrange element we will have more number of
terms but then we are also having more number of missing terms.
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Some more comments about the classical methods of analyses

* Even after getting the Shape functions, computations are not easy.

* Integral guantities are difficult to be evaluated, especially for complicated
shapes.

* Curved geometries cannot be modelled using rectangular elements

* Due to the above limitations, Lagrange elements have not become common
place.

* However, this technique is quite attractive to derive shape functions.

» Some changes are required to make the'calculations amenable for efficient
computer operations
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And we already know that for getting accurate finite element results, we should have
a complete polynomial. And that we have seen even from the earlier methods,
classical methods like the Rayleigh-Ritz and other methods. So just to summarize the
comments about the classical methods or the generalized coordinate method is that

even after getting the shape functions, computations are not easy.

Especially if you have an irregular geometry, a curved boundary or something,
integration of the quantities is not easy. And then we cannot accommodate curved
geometries and we cannot model these curved geometries with either triangular

elements or rectangular elements.

And because of these problems, the Lagrange elements have not become very
commonplace, although the procedure is beautiful, because we can directly write the
shape functions and so on. And so this technique, the Lagrange elements have not

become popular.

But then this technique is quite attractive for deriving shape functions for higher order
elements and that we are going to see from next lecture onwards because we need to
make some changes to make all the calculations amenable for computer operations.
Like we should be able to easily program these different integrals for calculating the

stiffness matrix, load vector and so on.



And that we will see from the next class onwards. And so thank you very much. We

will meet in the next class.



