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Lecture: 12 

Analysis of Continuum Systems  
 

Let us continue from our previous lectures on this the stress state and then the equilibrium 

equations and then the equation for strain within a 3-dimensional continuum. And then later 

we have seen how to simplify the or how to consider simplified stress states in 2 dimensional 

plane so, that we can we can speed up our analysis. And in today's class let us continue a bit 

further and look at how we can describe the continuous variation of displacements within the 

continuum then how we can relate them to strains and then the stresses and then how to 

develop our equilibrium equations for a continuum.  

(Refer Slide Time: 01:16) 

 

So, let us go through a brief summary of the different stress states that we had seen in the 

earlier classes then a bit more and the plane strain idealization and then discretization of the 

continuum into smaller elements. Then strain displacement and other relations and then the 

derivation of the equilibrium equations because that is the important step in our analysis.  

(Refer Slide Time: 01:43) 



 

So, in the previous class we had seen these 3 2 dimensional approximations plane stress when 

all the strain all these stresses act within a single plane and all the outer plane stresses are 0. 

So, that happens in the case of a thin plate loaded in its own plane or a cantilever beam. Then 

we have a plane strain state where all the outer plane strains are 0. So, previously it was plane 

stress now all the outer plane stresses are 0. 

 

In this case its plane strain where all the outer plane strains are 0 and this is a very common 

situation in a geotechnical engineering where we consider the analysis of very long retaining 

walls or embankments, tunnels and so on. And the other case is the axis symmetric where 

there is a symmetry there is a radial symmetry around the central axis. See this radial 

symmetry is there both in the geometry of the system and also the loading and then the 

resulting stress states.  

 

So, if you have a radial symmetry like this we can just consider a 2 dimensional stress state 

that we had discussed earlier and then we will see a bit more in today's lecture. And this axis 

symmetric case is very common for circular footings under uniform pressure or our own 

triaxial compression tests geotechnical engineering or the consolidation test and so on.  

(Refer Slide Time: 03:35) 



 

And in the previous class we had seen this example of a plane strain case where we have a 

deep excavation supported by continuous sheet pile walls or diaphragm walls and then in 

between we have the struts which are compression members which are placed at some 

vertical spacing and horizontal spacing. And how can we model this in a plane strain case 

because the sheet pile wall is not a problem because it is a continuous member but then these 

struts are discrete members they are placed that some horizontal spacing and vertical spacing. 

(Refer Slide Time: 04:17) 

 

And so, our thickness for plane strain case in the outer plane direction is 1 and if your 

horizontal spacing of the ties in a structured excavation is as such these are the compression 

members it should be just bar elements is assets. And if the area of the each bar is A then the 

area to be used the plane strain model is A by S h. So, if the horizontal spacing of each of 



these struts in a next equation is Sh and if the area of each strut is a then the area that we use 

in our plane strain analysis is A by S h.  

 

So, if S h is 0.5 meters then we are going to consider twice the area or if S h is 2 meters then 

we will consider only half the area in our analysis that is what we mean by prorating per unit 

length.  

(Refer Slide Time: 05:22) 

 

And so, now let us move on to the continuum and what are the different steps. See we are 

dealing with the displacement basin approach and we have seen the applications for discrete 

systems like the the planes truss elements and then the plane frame and so on. and it is easy to 

imagine the number of nodes number of elements and then and then the number of degrees of 

freedom. But if you have a continuum let us say you take a plate and let us say some 

dimensions and how many elements are there. 

 

Depending on your imagination you can consider very large number and theoretically a 

continuum can have infinite degrees of freedom an infinite number of elements but obviously 

we cannot consider all the infinite numbers. So, what we do is we draw some imaginary lines 

in the 2 dimensional case or imaginary surfaces in 3 dimensions to divide a Continuum into 

finite number of elements because we cannot really handle infinite number like infinite 

number of elements or number of nodes and so on.  

 

And to divide this continuum into a certain number of manageable number we draw some 

lines in the 2 dimensional problems or surfaces in 3 dimensions. And we assume that 



elements are connected at discrete number of points located at the intersection of all these 

lines that we draw or the surfaces that we draw and the interior of these lines are surfaces are 

treated as elements. And then we choose a set of functions to describe the variation of the 

displacements within each element. 

 

Because once we define the nodal points we know we are going to solve for them but once 

we get the displacements of these nodal points how do we find the displacements in the 

interior of an element because now we are dealing with the continuum so, that means 

wherever you see there is material. And so, we need some methodology to determine the 

displacements in the interior of the elements. 

 

And now once you choose some function say this function can define the state of strain 

within an element like once you have a function for the displacements derivative of that will 

give you the strain. And so, these strains will be in terms of nodal displacements then once 

you get the the strains we can get the stresses.  
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And so, what we do is then we develop our equilibrium equations as internal force is equal to 

external force if K is the stiffness Matrix K multiplied by a displacement Vector u should be 

exactly equal to the applied force P. 

[K] {u} = {P} 

 And in the process we are going to satisfy this equilibrium only at certain number of degrees 

of freedom or number of points not everywhere. So, the type of solution that we get we call 



this as a weak form solution it is the solution is not exactly valid at all the points but 

approximately valid.  

So, if you have a 2 dimensional space like this what we do is we draw some arbitrary lines 

and these lines could be straight lines

imagination of the user and the intersection of all these lines are treated as a as a node and the 

area in between these intersecting lines is treated as an element. So, here I have highlighted 

the nodes and then also I highlighted the elements. So, this is a continuum and theoretically it 

can have infinite number of elements or infinite number of nodes.

But we have divided that into a certain number of nodes by drawing these lines and the more 

lines that we draw the more realistic your model will be. And so, more closure your solution 

will be to the real solution and these elements they could be of different shape like they can 

be quadrilateral elements or triangles or some distorted shaped elements like this

these triangles they have they will have minimum 3 nodes whereas quadrilaterals they will 

have four nodes and so on.  

(Refer Slide Time: 10:52) 
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Then if we have a 3-dimensional shape we draw the surfaces let us say; you consider a large 

Cube like this we have drawn 2 surfaces 1 is yellow surface and then the there is a green 

surface and then we divide this into four cubes like 1 2 3 four.  

 

And so then if you want you can draw more number of surfaces and divide this continuum 

into smaller number of elements then once we draw once we get these elements we can 

identify the nodes as the points at the intersection of all these lines or surfaces. 
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 An element is defined in terms of the number of nodes within the element with number of 

nodes that are available. And typically we can have either 2D elements or 3D and the 2 

dimensional elements we need minimum 3 nodes to define a 3 dimensional element like this 

3 node triangle or a 6 node triangle and then four node quadrilaterals and actually depending 

on the on the shape that we have we can decide the number of nodes. 

 

Then if you have more number of nodes along any line we can either can even define a 

curved surface. So, if you have a circle that also can be approximated the equivalent triangles 

or rectangles depending on the type of elements that you have in your program. And these are 

some of the typical 3 dimensional elements we require minimum four nodes to define a 3D 

shape. Here is a four node tetrahedron and the 8 node brick element or a 20 node brick 

element and so on.  
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Let us say we have this x and y Cartesian coordinate system and let us define 1 triangular 

element like this with the nodes 1 2 and 3 defined like this. And we define these node 

numbers are the element level and the anti

and at each of these points we have the displacements or the degrees of freedom. 

And in this case we have only displacements as the degrees of freedom certain node 1 you 

have 2 degrees of freedom u 1 v 1 node 2 u 2 v 2 node 3 is u 3 v 3

freedom. 

 

 

 

Let us say we have this x and y Cartesian coordinate system and let us define 1 triangular 

element like this with the nodes 1 2 and 3 defined like this. And we define these node 

numbers are the element level and the anti-clockwise direction that I will explain a bit later 

and at each of these points we have the displacements or the degrees of freedom. 
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lain a bit later 

and at each of these points we have the displacements or the degrees of freedom.  

And in this case we have only displacements as the degrees of freedom certain node 1 you 

totally 6 degrees of 



And a a e is the vector of the displacements or the element nodes. So, this is u 1 v 1 u 2 v 2 u 

3 v 3 and these are the displacements or the nodal points and let us say that at any point 

interior we have another displacemen

general we can write u interior displacement u in terms of the displacements or the nodal 

points like this N 1 u 1 + N 2 u 2 + N 3 u 3 or v is N 1 v 1 + N 2 v 2 + N 3 v 3 in here our N 1 

N 2 and N3 these are called as the shape functions.

 

Basically these are like our interpolation functions depending on the distance of the particular 

point from these 3 points the value will change. And these are shape functions they will have 

a value varying from 0 to 1 and the internal displacement u is we can write it as some shape 

function Matrix N multiplied by nodal displacement Vector a e that is u is N 1 u 1 + N t u 2 + 

N 3 u 3 and v is N 1 v 1 + N 2 v 2 + N 3 v 3. 

So, in terms of Matrix and Vector product w

is N1 0 N 2 0 N 3 0 N 0 N 1 0 and 2 0 and 3. And this is our nodal displacement vector and 

these ends are basically interpolation functions but we call them as shape functions in the 

finite element context because they depend on the shape of the element. Because they have 1 

form for triangular elements and some other for rectangular elements and then depending on 

the on the shape like whether you have straight edges or curved edges your shape functions 

might change. 

And the property of these shape functions are their own nodes the shape function value is 1 

and then at that nodes these are 0 and the sum total of all the shape functions is exactly equal 

to 1 these are similar to our influence functions that 

So, if you have a moving load the reaction at different supports is expressed in terms of some 
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And the property of these shape functions are their own nodes the shape function value is 1 

and then at that nodes these are 0 and the sum total of all the shape functions is exactly equal 

we come across in our structural analysis. 

So, if you have a moving load the reaction at different supports is expressed in terms of some 

interpolation functions. And the similar things we can do for our shape functions. 



 

And we will define or we will derive what these shape functions are later on because that is 1 

of our major focus in any finite element analysis.  
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So, let us look at the shape functions for a 2 dimensional sorry the 2 node bar element and let 

us consider a bar element having a length of L with the Node 1 node 2 and displacement at 

Node 1 is u 1 displacement at node 2 is u 2 right and we Define or we develop the shape 

functions by different ways and 1 is called as a generalized coordinate system where we 

assume some polynomial. 

 

And the number of terms in the polynomial is equal to the number of nodes in the element 

and then the polynomial order also we can decide based on the type of element that you have. 

And so, in this case since you have 2 nodes we can have 2 terms in the polynomial you can 

be Alpha naught + Alpha 1 x because actually this is similar to our Rayleigh-Ritz procedure 

where we assume the solution in terms of polynomial series the similar thing applies here. 

 

And this polynomial could be anything it could be Alpha naught + Alpha 1 x or say Alpha 2x 

or Alpha 1 x Plus Alpha 2 y x square or anything because since you have 2 nodes you need to 

assume only 2 terms in this polynomial series and we will discuss how we can or what is the 

basis on which we can assume these polynomials. So, at say if you assume u as Alpha naught 

+ Alpha 1 x at Node 1 that is at x is equal to 0 all u of x is Alpha naught and that is equal to u 



1.  

 

So, that means that our Alpha naught is equal to u 1 and the x is equal to l; u of x is Alpha 

naught + alpha 1l and that is equal to u 2 at node 2. And so, our alpha 1 can be determined as 

Alpha 2 minus u 1 by l and server u of x you can substitute the values of alpha naught and 

Alpha 1 in this equation u of x is u 1 + u 2 minus u 2 minus u 1 by l times x. And by grouping 

all the terms under the different displacements we can write u of x is u 1 times 1 minus x by l 

+ u 2 times x by l. 

 

 

And we see that we have a linear variation that is corresponding to the linear polynomial that 

we had assumed ok. So, our N 1 is 1 minus x by l and our N 2 is x by l and at x is equal to 0 

that is at node 1 your N 1 is 1 and x is equal to l our N 1 is 0 because if you substitute x of l 

we get 0 and similarly N 2 is x by l and that is 0 at x is equal to 0 that is at node 1 and at node 

2 our value is one x over N 1 + N 2 is exactly equal to 1 that is 1 minus x by l Plus x by l that 

is equal to 1. 

 

And if you want to determine the strain within the element we just simply take the first 

derivative dou u by dou x and that comes to just simply alpha 1 and Alpha 1 is u 2 minus u 1 

by l.  
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And so, the the determination of strains we have already seen the definition of strains in the 

previous lecture and if we use the small strain definitions for plane stress and plane strain our 

Epsilon xx is a dou u by dou x and our Epsilon yy is dou v by dou y and Gamma x y is dou u 

by dou y + dou v by dou x. 

 

 So, our Epsilon the strain Vector is Epsilon xx Epsilon yy gamma xy and actually we can 

write this as a product of an operator Matrix like this dou by dou x 0 0 by dou y dou by dou y 

and dou by dou x multiplied by displacement Vector u and v where u and v are the the 

displacements are the interior points. 

 

And this Matrix we can write as l that is the Matrix of the linear operators times u and our u 

is actually N times a e we have already expressed that in the previous step. Here we have 

seen that our internal displacement to u can be written as N times a e where N is the shape 

function Matrix and a e is the vector of nodal displacements. So, our l times N we can is 

written as B. And so, our Epsilon we can write as B times a e where B is actually the shape 

the derivatives of the shape functions that we will see in the next step. 



Epsilon is B times a e and our B is actually it is very important Matrix the that relates the the 

displacements to the strains or the strains to the displacements l is the Matrix of linear 

operators and the B is the Matrix of shape function derivat
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And our u is N 1 u 1 + N 2 u 2 + N 3 u 3 and our Epsilon xx you can write as dou u by dou x 

that is dou N 1 by dou x u 1 + dou N 2 by dou x u 2 + dou N 3 by dou x u 3. And similarly 
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function derivatives we can write like this say the first row refers to Epsilon xx the se

row refers to Epsilon yy these are the 2 normal strains.
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ives and B is l times N. 

 

And our u is N 1 u 1 + N 2 u 2 + N 3 u 3 and our Epsilon xx you can write as dou u by dou x 

that is dou N 1 by dou x u 1 + dou N 2 by dou x u 2 + dou N 3 by dou x u 3. And similarly 

write as dou v by dou y that is dou N 1 by dou y v 1 + dou N 1 by dou N 2 

by dou y u 2 + v 2 + dou N 3 by dou y v 3. So, this B Matrix that is the Matrix of the shape 
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dou x dou N 3 by dou x and so on. And the second row Epsilon y dou N 1 by dou y dou N 2 



by dou y dou N 3 by dou y and the third row is for the shear strength gamma xy . So, the 

number of rows in the B Matrix is equal to the number of strain components see for the plane 

stress and plane strain we have only 3 strain components.  

 

So, we have 3 rows for axis symmetric we have four strain components. So, we will have 

four rows and for a full 3 dimensional case we have 6 strains. So, we will have 6 rows in the 

B the B Matrix then the number of columns is equal to the number of nodes in the element 

multiplied by number of degrees of freedom. So, for a 3 node triangle we have totally 6 

degrees of freedom 3 nodes multiplied by 2 that is 6.  

 

And so, we have 6 columns 1 2 3 4 5 6. So, once you have the stresses now sorry the strains 

we can determine the stresses as Sigma is D times Epsilon minus Epsilon naught + Sigma 

naught where Epsilon naught are the initial strains and Epsilon is the is the is the strain and 

our displacement vector may also consist of initial displacements. And so, we get the total 

strain Epsilon minus the Epsilon naught corresponding to some initial strains multiplied by d 

plus initial stresses Sigma naught. 

 

 

And the sigma naught in the geotechnical constant context could be the in-situ pressures and 

that depends on the geological conditions that we will see later.  

(Refer Slide Time: 27:01) 

 



So, how do we write the B Matrix for axis symmetric case? So, for the axis symmetric case 

we have four strain components Epsilon rr Epsilon zz gamma rz and Epsilon Theta. Epsilon 

Theta is what we had seen in the previous class circumferential strain that the change in the 

circumference because of any displacements and this we have seen as u by r and our Epsilon 

Theta is a radial displacement u divided by the corresponding radial distance r and that can be 

written as N 1 by r u 1 + N 2 by r u 2 + N 3 by r u 3. So, the first 3 rows for the axis 

symmetric case are similar to our B Matrix for plane stress and plane strain except in place of 

x we have r and in place of y we have z. 

   

 

And then the fourth row e is our N 1 by r N 2 by R and N 3 by r and since there are no v 

terms we have 0s in these second fourth and 6th columns. 
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And now let us see how we can derive the equilibrium equation for a continuum because this 

is what we require so, that we can do all the computations. And we are going to follow the 

virtual work method and we have seen this virtual work method earlier for the Prismatic 

elements yeah that states that internal work done should be exactly equal to the external work 

done for equilibrium. 

 

And we will follow that approach that will give us an easy method for establishing the 

equilibrium equations and let us say let us define some quantities. When we have a 

continuum we can have different types of loads. See one is the concentrated nodal loads let us 

say that that is given by vector q and with a superscript e that refers to the element because 

we are going to derive all these at element level and then we are going to assemble them into 

some global matrix corresponding to the entire enter structure. 

 

And a e is the vector of nodal displacements and t is the traction forces on the surface the 

traction force is nothing but the pressure. So, the external loading we can have as 



concentrated loads or uniform pressure or something like the traction force and then the other 

type of force that you can have is the body force vector of body forces per unit volume B is 

basically because of the gravitational effect on the unit weight.  

 

So, gamma is our body force vector and in general we can have a gamma in x direction 

gamma in the y direction. And so at b is the body force vector is a b, b x and b y rho g x and 

rho g y that is gamma x and Gamma y and if our x axis is in the horizontal direction and y 

axis is in the vertical direction our gamma x could be just simply 0 because we do not have 

any gravitational force in the horizontal direction and then in the vertical Direction since the 

weight is acting down we will have minus gamma for gamma y and the stresses in the 

element and sigma. 

 

And let us say epsilon is the total strain including the pre-existing strains and sigma naught 

and Epsilon naught are the pre-existing stresses and strains. So, our stress vector d we can 

calculate as d times Epsilon and Epsilon is b times a e and we can expand this the stress in 

terms of initial strain and initial stresses like this d times Epsilon minus Epsilon naught + 

Sigma naught right. 
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Let us say we give some virtual displacement to the system that is already under equilibrium. 

So, under the action of all these the body is in equilibrium and we are giving some 

disturbance Delta a e right are the element nodes we are applying some virtual displacement 

field Delta a e and because of that the internal displacements Delta u can be calculated as N 



times Delta a e right where our N is the shape function matrix N 1 0 N 2 0 and 3 0 0 and 1 0 

N 2 0 and 3.  

 

The number of rows in the shape function matrix is equal to the number of degrees of 

freedom then the number of columns is equal to the number of degrees of fre

element. So, the external work done the work done by the concentrated forces is Delta a 

transpose multiplied by q e that is the work done by the virtual displacements and then work 

done by the body forces is actually our body force is acting ou

So, it should be integrated over the volume and Delta e u transpose b where Delta u is our 

internal displacements u x and u y transpose times b that is b x and b y and integrated over 

the entire volume and our Delta u is N times Delta a e right. So, if you

whole thing we get Delta a e transpose and transpose b. And in here our Delta a e refer to the 

nodal displacements and they are not going to vary within the element. 

 

So, we can actually bring out this Delta a

for this element. So, Delta a e transpose integral over volume and transpose b dv where N is 

our shape function Matrix N 1 0 and 0 and 2 0 and so on, b is our body Force Vector b x and 

b y. And similarly the work done by the traction forces these are acting on the surface of the 

element. So, we need to take an integral over the surface of the element Delta u transpose t 

and once again Delta u is N times Delta a e. 

So, the transpose of that is Delta a e 

constant because they refer to the to the displacements of the nodes. So, we can bring this 

Vector out Delta a e transpose integral over the surface and transpose t ds.
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for this element. So, Delta a e transpose integral over volume and transpose b dv where N is 

our shape function Matrix N 1 0 and 0 and 2 0 and so on, b is our body Force Vector b x and 

the work done by the traction forces these are acting on the surface of the 

element. So, we need to take an integral over the surface of the element Delta u transpose t 

and once again Delta u is N times Delta a e.  

So, the transpose of that is Delta a e transpose and transpose t ds and once again Delta a e is 

constant because they refer to the to the displacements of the nodes. So, we can bring this 

Vector out Delta a e transpose integral over the surface and transpose t ds. 

e right where our N is the shape function matrix N 1 0 N 2 0 and 3 0 0 and 1 0 

 

The number of rows in the shape function matrix is equal to the number of degrees of 

freedom then the number of columns is equal to the number of degrees of freedom in the 

element. So, the external work done the work done by the concentrated forces is Delta a 

transpose multiplied by q e that is the work done by the virtual displacements and then work 

t the entire volume.  

 

So, it should be integrated over the volume and Delta e u transpose b where Delta u is our 

internal displacements u x and u y transpose times b that is b x and b y and integrated over 

take transpose of this 

whole thing we get Delta a e transpose and transpose b. And in here our Delta a e refer to the 

e outside the integral because these are constants 

for this element. So, Delta a e transpose integral over volume and transpose b dv where N is 

our shape function Matrix N 1 0 and 0 and 2 0 and so on, b is our body Force Vector b x and 

the work done by the traction forces these are acting on the surface of the 

element. So, we need to take an integral over the surface of the element Delta u transpose t 

 

transpose and transpose t ds and once again Delta a e is 

constant because they refer to the to the displacements of the nodes. So, we can bring this 



(Refer Slide Time: 35:10) 

And and our internal work done is corresponding to the stresses and strains that we have 

inside and our internal work done is in Delta Epsilon transpose Sigma where Sigma is our 

stress Vector Delta Epsilon is our strain vector and our Delta Epsilon is b time

right. And our Delta Epsilon transpose if we take a transpose of this Delta u e transpose B 

transpose. So, actually whenever we take a transpose of a product the terms get interchanged. 

 

So, that is what we see here Delta a e transpose B transpose and our Sigma is d times b a e 

this b times a e is our Epsilon right minus d times Epsilon naught + Sigma naught. And so, 

our internal work done is integral Delta a e transpose times B transpose 

transpose d b a e dx dv minus integral of our work done due to the initial strains Delta a 

transpose B transpose d Epsilon naught Plus the work done due to the due to the initial 

stresses Delta e transpose B transpose Sigma naught dv.

 

 

d and our internal work done is corresponding to the stresses and strains that we have 

inside and our internal work done is in Delta Epsilon transpose Sigma where Sigma is our 

stress Vector Delta Epsilon is our strain vector and our Delta Epsilon is b time

right. And our Delta Epsilon transpose if we take a transpose of this Delta u e transpose B 

transpose. So, actually whenever we take a transpose of a product the terms get interchanged. 

 

 

So, that is what we see here Delta a e transpose B transpose and our Sigma is d times b a e 

this b times a e is our Epsilon right minus d times Epsilon naught + Sigma naught. And so, 

our internal work done is integral Delta a e transpose times B transpose that is Delta Epsilon 

transpose d b a e dx dv minus integral of our work done due to the initial strains Delta a 

transpose B transpose d Epsilon naught Plus the work done due to the due to the initial 

stresses Delta e transpose B transpose Sigma naught dv. 

d and our internal work done is corresponding to the stresses and strains that we have 

inside and our internal work done is in Delta Epsilon transpose Sigma where Sigma is our 

stress Vector Delta Epsilon is our strain vector and our Delta Epsilon is b times Delta a e 

right. And our Delta Epsilon transpose if we take a transpose of this Delta u e transpose B 

transpose. So, actually whenever we take a transpose of a product the terms get interchanged.  

So, that is what we see here Delta a e transpose B transpose and our Sigma is d times b a e 

this b times a e is our Epsilon right minus d times Epsilon naught + Sigma naught. And so, 

that is Delta Epsilon 

transpose d b a e dx dv minus integral of our work done due to the initial strains Delta a 

transpose B transpose d Epsilon naught Plus the work done due to the due to the initial 

 



And by the virtual work principles the work done by the external forces should be exactly 

equal to the internal work done.  
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So, equating these 2 we get this inequality this is the external work done that we have 

calculated earlier and this is equal to the internal work done. 

And so, this Delta a e transpose is common on both left hand side and also on the right hand 

side. So, we can we can take them out we can cancel them out on both left hand side and the 

right hand side. So, we get B transpose D B dv and once again our a e is the vector of noda

displacements and this we can take out of the integral we don't need to keep it in the integral. 

So, we have this bracket large bracket integral B transpose dv integrated of the volume 

multiplied by a e that is equal to q e + N transpose b dv

Epsilon naught minus integral of B transpose Sigma naught dv right. And on the right hand 

side we recognize that it is a force Vector in fact our q e is the vector of the applied forces 

And by the virtual work principles the work done by the external forces should be exactly 

 

 

So, equating these 2 we get this inequality this is the external work done that we have 

arlier and this is equal to the internal work done.  

e transpose is common on both left hand side and also on the right hand 

side. So, we can we can take them out we can cancel them out on both left hand side and the 

right hand side. So, we get B transpose D B dv and once again our a e is the vector of noda

displacements and this we can take out of the integral we don't need to keep it in the integral. 

 

So, we have this bracket large bracket integral B transpose dv integrated of the volume 

multiplied by a e that is equal to q e + N transpose b dv + N transpose t ds + B transpose d 

Epsilon naught minus integral of B transpose Sigma naught dv right. And on the right hand 

side we recognize that it is a force Vector in fact our q e is the vector of the applied forces 

And by the virtual work principles the work done by the external forces should be exactly 

So, equating these 2 we get this inequality this is the external work done that we have 

 

e transpose is common on both left hand side and also on the right hand 

side. So, we can we can take them out we can cancel them out on both left hand side and the 

right hand side. So, we get B transpose D B dv and once again our a e is the vector of nodal 

displacements and this we can take out of the integral we don't need to keep it in the integral.  

 

So, we have this bracket large bracket integral B transpose dv integrated of the volume 

+ N transpose t ds + B transpose d 

Epsilon naught minus integral of B transpose Sigma naught dv right. And on the right hand 

side we recognize that it is a force Vector in fact our q e is the vector of the applied forces 



and then transpose b is the vector

transpose T is because of the surface pressures that we applied B transpose d Epsilon naught 

is the is the vector of nodal forces because of the initial strains.

 

And B transpose Sigma naught is the vect

actually here on the left hand side we have some quantity B transpose d dv integrated over 

volume and multiplied by displacement Vector a e and that is equal to the force. So, this 

quantity this unknown quantity B transpose D B must be stiffness right because as we recall 

the stiffness multiplied by displacement is equal to force.

 

So, on the right hand side we have the force on the left hand side we have something that we 

do not know what it is B transpose D B integrated or volume v multiplied by displacement. 

So, that means that this quantity in the square brackets must be stiffness Matrix B transpose 

D B dv and actually it is easy to easy to see the the units for this and let us see what they are 

let me write the pen . So, our B is what is actually dou N by dou x and so on. 

 

And our shape function matrix is actually it is dimensionless. So, as we have seen for the 2 

node bar element N 1 is 1 minus x by l and N 2 is x by l. So, actually it has the uni

So, our B transpose sorry we can see the units as 1 by l d is the constitute Matrix it has the 

units of stress force by L Square multiplied by 1 by l multiplied by volume l Cube. So, that 

has the units of force by l that is the force per unit

 

 

So, we see that this quantity that we have here is it has the units of this stiffness 1 by l. And 

so, this is the equation for the stiffness Matrix of a continuum and if you are able to evaluate 

this quantity then we can get our stiffness

displacements that we need to solve for on the right hand side we have all these quantities 

this is our q e is the vector of Applied forces N transpose B is the force Vector due to the 

body weight. 

 

and then transpose b is the vector of the force Vector due to the body weight and then 

transpose T is because of the surface pressures that we applied B transpose d Epsilon naught 

is the is the vector of nodal forces because of the initial strains. 

And B transpose Sigma naught is the vector of forces because of the initial stresses. And so, 

actually here on the left hand side we have some quantity B transpose d dv integrated over 

volume and multiplied by displacement Vector a e and that is equal to the force. So, this 

quantity B transpose D B must be stiffness right because as we recall 

the stiffness multiplied by displacement is equal to force. 

 

So, on the right hand side we have the force on the left hand side we have something that we 

spose D B integrated or volume v multiplied by displacement. 

So, that means that this quantity in the square brackets must be stiffness Matrix B transpose 

D B dv and actually it is easy to easy to see the the units for this and let us see what they are 

me write the pen . So, our B is what is actually dou N by dou x and so on.  

And our shape function matrix is actually it is dimensionless. So, as we have seen for the 2 

node bar element N 1 is 1 minus x by l and N 2 is x by l. So, actually it has the uni

So, our B transpose sorry we can see the units as 1 by l d is the constitute Matrix it has the 

units of stress force by L Square multiplied by 1 by l multiplied by volume l Cube. So, that 

has the units of force by l that is the force per unit displacement.  

So, we see that this quantity that we have here is it has the units of this stiffness 1 by l. And 

so, this is the equation for the stiffness Matrix of a continuum and if you are able to evaluate 

this quantity then we can get our stiffness Matrix. And then we have this the vector of nodal 

displacements that we need to solve for on the right hand side we have all these quantities 

this is our q e is the vector of Applied forces N transpose B is the force Vector due to the 

of the force Vector due to the body weight and then 

transpose T is because of the surface pressures that we applied B transpose d Epsilon naught 

or of forces because of the initial stresses. And so, 

actually here on the left hand side we have some quantity B transpose d dv integrated over 

volume and multiplied by displacement Vector a e and that is equal to the force. So, this 

quantity B transpose D B must be stiffness right because as we recall 

So, on the right hand side we have the force on the left hand side we have something that we 

spose D B integrated or volume v multiplied by displacement. 

So, that means that this quantity in the square brackets must be stiffness Matrix B transpose 

D B dv and actually it is easy to easy to see the the units for this and let us see what they are 

And our shape function matrix is actually it is dimensionless. So, as we have seen for the 2 

node bar element N 1 is 1 minus x by l and N 2 is x by l. So, actually it has the units of 1 by l. 

So, our B transpose sorry we can see the units as 1 by l d is the constitute Matrix it has the 

units of stress force by L Square multiplied by 1 by l multiplied by volume l Cube. So, that 

So, we see that this quantity that we have here is it has the units of this stiffness 1 by l. And 

so, this is the equation for the stiffness Matrix of a continuum and if you are able to evaluate 

Matrix. And then we have this the vector of nodal 

displacements that we need to solve for on the right hand side we have all these quantities 

this is our q e is the vector of Applied forces N transpose B is the force Vector due to the 



And N transpose T is because of the surface pressures and this Epsilon naught is the body for 

sorry the force Vector due to the initial strains and what is an initial strain in geotechnical 

engineering is very difficult to define because our soil straight may have millions of years of 

History and for defining the initial strains we need initial configurations that we do not know. 

And usually we neglect this and we do not consider initial strains because we are more 

interested in knowing what happens after we construct a let us say building or an 

embankment or a tunnel. 

 

Because we are more interested in what happens after you construct. Before you construct the 

soil might have undergone lot of consolidation settlements or erosion or anything but we are 

not really concerned what happened in the historical past but what is going to happen after we 

construct. So, in general the Epsilon not is not considered I mean geotechnical engineering 

so, we do not usually evaluate this quantity whereas for Structural Engineers it is a very 

important quantity. 

 

Because the Epsilon are not may be related to misfit of a member or because of some other 

reasons and this Sigma naught is actually is very important it is it is the initial stress and this 

could be because of our pre-existing stresses and that is a very important 1 and we can 

measure this quantity. So, we can perform some pressure meter test or the dielectometer tests 

and then and determine the in situ pressures. 

 

The vertical pressure is the normally we estimate by based on the unit weight and then the 

lateral pressures we estimate by doing some field test. And so, the sigma naught is very 

important and Epsilon naught is normally we do not consider. And so, if you are able to 

calculate all these terms we will be able to do the computations for a continuum. Because 

these things we have done for prismatic elements for bar, beam and spring elements we have 

done this. 

 

And now we need to do the same thing for a Continuum if we are able to evaluate all these 

quantities we should be able to solve our system of finite element equations for a continuum.  
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So, I think this may be the last slide oh sorry I think you have some more let me see let me 

just. So, let us see say for the 3 node plane stress and plane strain elements our B Matrix is a 

3 by 6 Matrix 3 number of rows corresponding to 3 strains and 6 columns corresponding to 6 

degrees of freedom. And our B transpose is a 6 by 3 and d is 3 by 3 and our size of the 

stiffness Matrix is B transpose D B. 

 

B transpose 6 by 3 D is a 3 by 3 and B is 3 by 6 and the total product is a 6 by 6 Matrix that is 

the stiffness Matrix this 6 corresponds to the number of degrees of freedom that we have in 

the element and for the axis symmetric element we have four strain components. 

 

 So, B is four by 6 B transpose is a 6 by four. So, our D is four by four. So, our size of the 

stiffness Matrix is once again 6 by 6. So, for say for an eight node quadrilateral will have 16 

degrees of freedom our stiffness Matrix will be a 16 by 16 Matrix. 
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So, the next step is we need to develop our shape functions. See the shape function is the 

major component that we need to develop because our shape function Matrix is dependent on 

the shape functions and then our B Matrix is also dependent on the on the shape functions 

that we have N 1 and 2 and 3 and so on. And what are different criteria for determining these 

shape functions? 

 

See we have to ensure that as we are making the mesh finer and finer we should be 

approaching the theoretical solution the exact solution and that we call as the monotonic 

convergence. As the mesh is made more and more finer by adding more number of nodal 

points the solution should approach the exact solution and that is called as the monotonic 

convergence. And some of the requirements are that the shape functions that we define they 

should not permit the straining of an element to occur when the nodal displacements are 

caused by the rigid body displacement. 

 

Like for example if I take this pen if I apply some compression like this there is some force. 

But let us say I take this pen and simply move it from 1 place to the other that we call as the 

rigid body displacement that all the nodes within the element are subjected to the same 

displacement. And if that is so, there should not be any forces developed in the rigid body 

and in the body and the shape functions should enable prediction of constant strain within the 

element. 

 

If the nodal displacements correspond to constant strain say for example if I compress this 

pen there is some strain and whatever may be the point within the pen and the strain is 



constant because that is what is applied on the system and our shape function should be able 

to predict this constant strain. And the strains

finite and the continuity of displacements is ensured and there should not be any singularity 

in the shape functions. 

 

Say once we define the shape functions at all the points within the element they should

some finite value they cannot have some infinite value and that is what we mean by the shape 

functions not having any singularity.
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And said one of the simplest methods is the generalized coordinate method that we can use 

for developing our shape functions. So, we assume a polynomial to express the internal 

displacements in terms of the nodal values and the number of terms in the polynomial 

equation is equal to the number of nodes in the element. And the polynomial terms are

constructed from the lowest order and as we go further we add higher order terms like first 

constant term next linear term and then the quadratic term cubic term and so on. 

And the polynomial should be spatially isotropic. So, that the finite element derived can be 

applied directly to any coordinate system. So, our coordinate system is also dependent on the 

user say some users may prefer this coordinate system like axis along

along the vertical axis or you might even interchange somebody might want y to be 

constant because that is what is applied on the system and our shape function should be able 

to predict this constant strain. And the strains at the interface between the elements need to be 

finite and the continuity of displacements is ensured and there should not be any singularity 

Say once we define the shape functions at all the points within the element they should

some finite value they cannot have some infinite value and that is what we mean by the shape 

functions not having any singularity. 

 

And said one of the simplest methods is the generalized coordinate method that we can use 

or developing our shape functions. So, we assume a polynomial to express the internal 

displacements in terms of the nodal values and the number of terms in the polynomial 

equation is equal to the number of nodes in the element. And the polynomial terms are

constructed from the lowest order and as we go further we add higher order terms like first 

constant term next linear term and then the quadratic term cubic term and so on. 

 

And the polynomial should be spatially isotropic. So, that the finite element derived can be 

applied directly to any coordinate system. So, our coordinate system is also dependent on the 

user say some users may prefer this coordinate system like axis along the horizontal axis y is 

along the vertical axis or you might even interchange somebody might want y to be 

constant because that is what is applied on the system and our shape function should be able 

at the interface between the elements need to be 

finite and the continuity of displacements is ensured and there should not be any singularity 

Say once we define the shape functions at all the points within the element they should have 

some finite value they cannot have some infinite value and that is what we mean by the shape 

And said one of the simplest methods is the generalized coordinate method that we can use 

or developing our shape functions. So, we assume a polynomial to express the internal 

displacements in terms of the nodal values and the number of terms in the polynomial 

equation is equal to the number of nodes in the element. And the polynomial terms are 

constructed from the lowest order and as we go further we add higher order terms like first 

constant term next linear term and then the quadratic term cubic term and so on.  

And the polynomial should be spatially isotropic. So, that the finite element derived can be 

applied directly to any coordinate system. So, our coordinate system is also dependent on the 

the horizontal axis y is 

along the vertical axis or you might even interchange somebody might want y to be 



horizontal x to be vertical or say we might have we might flip so, that our y is a positive 

downwards instead of positive upwards index is horizontal.  

 

So, whatever may be the coordinate system that we have our result should be the same. So, if 

you get 10 millimeter displacement here we should get the same 10 millimeters even with 

other coordinate system. So, actually in this the value might change to minus 10 and here it 

could be + 10 because our y direction displacements are changing other than that the values 

themselves should not change and that is what we mean by spatial isotropic coordinate 

system. 

 

Whatever may be whatever may be the coordinate system that we have we should get the 

same value. 
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And to help us in choosing the terms we have a Pascal triangle and this particular 1 is in 2 

dimensions in terms of x and y and we need to include a constant term in the polynomial and 

then the linear terms and then quadratic terms x square xy y Square and then the cubic terms 

x Cube x square y xy Square y Cube and so on. The quadric terms quintic sectic septic and so 

on.  
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So, this and there is one example given here previously we had derived the shape functions 

for a 2 node bar element and let us consider a 3 node bar element with node 1 at x is equal to 

0 node 2 at x is equal to l and node 3 at Mid length l by 2 and because we have 3 nodes we 

need 3 terms. And so, our displacement function u of x can be assumed as Alpha naught + 

Alpha 1 x + Alpha to x square we can have up to the quadratic term x square. 

 

So, if you substitute x is equal to 0 u of x is Alpha naught and that should be equal to u 1 and 

similarly we can set x is equal to l when your u is u 2 and x is equal to l by 2 u is u by 3 and 

so on..  

 

And so, by solving we can get the 3 constants Alpha 1 Alpha naught Alpha 1 and Alpha 2 

and then substituting and then grouping the terms under u 1 u 2 and u 3 we get like this our N 

1 is 1 minus 3 x by l + 2 x square by l square and 2 is 2 x square by l Square minus x by L 

and 3 is four x by l minus 4 x square by l Square. 



 

And if you add up all the shape functions N 1 + N 2 + N 3 that should come as 1 and that is 

indeed 1 like if you add up all the terms you get 1. And then our strain dou u by dou

Epsilon x that is if you differentiate u 1 times minus 3 by l + 4x by l square + u 2 times minus 

1 by l + four x by l Square + u 3 times 4 by L minus 8 x by l square right and if you apply a 

rigid body displacement for the system.

Let us calculate strain in this system and rigid body displacement is when u 1 is equal to u 2 

and u 3 is equal to u 3 and let us say that that is equal to u bar. And so, if you calculate 

Epsilon xx and because u 1 u 2 u 3 are constant at u Bar we can take it out and then 

the sum total of all these bracketed terms is equal to 0. So, that means that our strain is 0 

within the element if we subject the body to some rigid body displacements that is what we 

require as one of the conditions for monotonic convergence.
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And if you add up all the shape functions N 1 + N 2 + N 3 that should come as 1 and that is 

indeed 1 like if you add up all the terms you get 1. And then our strain dou u by dou

Epsilon x that is if you differentiate u 1 times minus 3 by l + 4x by l square + u 2 times minus 

1 by l + four x by l Square + u 3 times 4 by L minus 8 x by l square right and if you apply a 

rigid body displacement for the system. 

 

strain in this system and rigid body displacement is when u 1 is equal to u 2 

and u 3 is equal to u 3 and let us say that that is equal to u bar. And so, if you calculate 

Epsilon xx and because u 1 u 2 u 3 are constant at u Bar we can take it out and then 

the sum total of all these bracketed terms is equal to 0. So, that means that our strain is 0 

within the element if we subject the body to some rigid body displacements that is what we 

require as one of the conditions for monotonic convergence. 

 

And if you add up all the shape functions N 1 + N 2 + N 3 that should come as 1 and that is 

indeed 1 like if you add up all the terms you get 1. And then our strain dou u by dou x is 

Epsilon x that is if you differentiate u 1 times minus 3 by l + 4x by l square + u 2 times minus 

1 by l + four x by l Square + u 3 times 4 by L minus 8 x by l square right and if you apply a 

strain in this system and rigid body displacement is when u 1 is equal to u 2 

and u 3 is equal to u 3 and let us say that that is equal to u bar. And so, if you calculate 

Epsilon xx and because u 1 u 2 u 3 are constant at u Bar we can take it out and then if we see 

the sum total of all these bracketed terms is equal to 0. So, that means that our strain is 0 

within the element if we subject the body to some rigid body displacements that is what we 



 

And similarly we can examine whether we can predict a constant strain state within the 

element. Let us say our u 1 is 0 that is the left side node is fixed and the right side node is 

deformed by u and the central node should defined by u 2 u by 2 right. So, our Epsilon xx is 0 

+ u times 4x by l Square minus 1 by l + u by 2 times 4 by l minus 8x by l Square these are the 

terms that we derived earlier. So, our Epsilon xx is if you take the total of this it is just simply 

u by l. 

 

 

And that is constant in the element it is not a function of x so that means that if you are 

applied displacements are corresponding to a constant strain state we should be able to 

predict a constant strain within the element that is u by l. And so, the the shape functions that 

we derived they correspond to monotonically convergence monotonically convergent 

solution. So, we can say that our polynomial that we assumed is will ensure our convergence.  

 



 

So, if you assume a polynomial like this Alpha 1 x Plus Alpha to x square + Alpha 3 x Cube 

or Alpha naught + Alpha to x square + Alpha 3 x Cube it is possible these are also admissible 

but then we may not be able to satisfy our monotonic convergence requirements and because 

of that our solution may not be accurate. So, that we are going to see more in the in the next 

lectures. 
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So, just to summarize we have seen how to divide a Continuum into some finite number of 

elements and we have seen continuous variation of the displacements within the element by 

developing our shape functions and the shape function Matrix N for interpolation of 

displacements and the strains from displacements in terms of Epsilon is B times u but B times 

a and our we have seen the equilibrium equations for a continuum.  

 

So, this we will do a bit more in the next lecture. So, that we understand how we can do the 

analysis ok. So, thank you very much. 

 

 

 


