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Hello, welcome to this week of lectures on polymer. We are in the 11th week where we are 

discussing topics related to polymer processing and recycling techniques. Having discussed 

properties and applications of various kinds, it’s very important for us to understand what are 

the different techniques by which we actually process the polymers and achieve the final 

product that we would like and towards this one of the aspects that we have discussed is in 

terms of measuring the rheological properties of polymer melts and solutions as well as 

polymeric gels and in this lecture, we will focus on the rheological models and the focus will 

remain on concepts related to rheological modeling. 
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So we will look at some class of rheological models that are useful in order to describe the 

viscoelastic properties of polymeric systems. Then we will look at some examples of viscous 

models which are the simplest possible models and these have been known for 40-50 years and 

as a first approximation they can be used at times. However, given the computational power 

that we have these days and as we discussed, flow simulations and heat transfer simulations 

have become very important in terms of simulating, moulding or other processing operations. 

We these days use a lot of complicated model and we will therefore take a close look at one of 



such models. 
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So the class of models that are generally available can be looked at from the point of view of 

energy storage and energy dissipation and energy storage of course we looked at in the context 

of solids where we looked at linear and non-linear elastic models. For fluids, we basically have 

the viscous models where the state of stress is only a function of strain rate at that instant of 

time. So stress is related to only strain rate and also the value of stress at a given instant of time 

is directly related to the strain rate at that instant of time. So, the example of this of course is 

in terms of most commonly known Newtonian fluid where it’,s a linear model between stress 

and strain rate and the proportionality constant is viscosity. When we look at non-Newtonian 

fluids, one of the implications is that stress is no longer proportional to strain rate.  

 

So in this case, still stress is a function of strain rate at that instant of time, but it is not a 

proportional function. So, therefore stress is related to strain rate but the proportionality 

constant itself is related to the strain rate and therefore we choose to call this viscosity now 

apparent viscosity, because it’s no longer a material constant, but it is a material function and 

the material function varies as a function of strain rate. Shear thinning, shear thickening, 

pseudoplastic or dilatant these are examples of these non-linear viscous fluids or generalized 

Newtonian fluids. We call them generalized Newtonian because if you look at the structure of 

the equation, it still remains the same. It is still stress proportional to strain rate. 

 

So, that general structure still remains the same. As we have seen in case of Voigt model or 



Maxwell model or standard linear solid model, it’s not only stress, strain and strain rate are 

related to each other, stress rate and so variety of quantities are involved in terms of relating 

stress and strain to each other, while in case of viscous fluid the instantaneous value of strain 

rate defines stress or vice versa. Instantaneous value of stress defines strain rate in the material. 

So the general viscoelastic fluid could be thought of as a material where state of stress is a 

function of strain, strain rate, stress rate and variety of other derivatives and the most general 

way we can write this is to say that stress is related to stress rate is related to rate of change of 

stress rate and related to strain, rate of change of strain and this is rate of change of strain rate 

and even higher order derivatives. So, this is the most general statement possible for a linear 

viscoelastic fluid that we can think of. Of course, if you put selective constants to 0, you can 

get Maxwell model or Voigt model or any such model. So, I don’t know if you can spot 

Maxwell model in this, so for example if all the coefficients which are Cs2 and Cs3 and all of 

that, if they are all equal to 0 and similarly if C is 0 and Ce2, Ce3 these are all equal to 0, then 

I hope you can recognize by that what is Cs0 for Maxwell model, what is Cs1 for Maxwell 

model and what is Ce1 for Maxwell model. So do that exercise, you can see that all the 

viscoelastic models that we have discussed belong to this class of models. 
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So let’s look at a little bit more closely at some of the viscous models. Carreau-Yasuda model 

is one of the most commonly used model for describing the non-Newtonian nature of viscosity. 

It’s a model which can describe shear thinning very well. So, the general response of the model 

is as follows that at so if we look at let’s say stress as a function of strain rate, so we can look 

at stress as a function of strain rate, we can see that if strain rate is low, then viscosity is 



constant. So this is called the Newtonian plateau, so where viscosity is constant and so if we 

subject a polymeric melt to very low strain rates, it behaves like a Newtonian fluid where 

viscosity is constant. This is also called the zero shear viscosity. The zero shear viscosity is a 

very important determinant in terms of what is the entanglement in the material, what is the 

molar mass of the material, what temperature we are.  

 

So looking at zero shear viscosity does give us some important clues about the structure of 

polymer. From polymer processing point of view, of course we need to know the viscosity at 

all different strain rates and so when strain rate is increased, then the shear thinning nature is 

obvious in case of polymer melts in solution and so shear thinning at moderate and high shear 

rates.  

Carreau-Yasuda model also shows that at very high shear rates viscosity again becomes 

constant. So therefore, this is something which is observed in case of let’s say a solvent. So  

is related to the solvent viscosity, so at very high strain rates, we observe the behavior where 

all the chains are aligned in the flow field direction and therefore viscosity modification due to 

polymer addition is much less and so  is closer to the solvent viscosity. Of course, in case of 

polymer melts, what you often most of the time is some behavior like this.  

 

𝜂 − 𝜂∞

𝜂0 − 𝜂∞
= [1 + (𝜆𝛾̇𝑦𝑥)

𝑎
]

𝑛−1
𝑎  

 

So there is only polymer melt and no solvent present, so there is only shear thinning observed, 

but there is a Newtonian plateau at lower shear rates. So for polymer melts, we can generally 

modify this model by setting  to 0 and then we get the simpler version of the Carreau-Yasuda 

model which also goes by the name of Cross model at times. 

𝜂

𝜂0
= [1 + (𝜆𝛾̇)]𝑛−1 

 

As an exercise, what you could do is try to see if you can set  to be a large value or  to be a 

small value or n to be equal to 1 what happens to it, this Carreau-Yasuda model. And I am sure 

you would be able to show that Carreau-Yasuda model will reduce to power law or Newtonian 

fluid model. Remember power law historically has been one of the most commonly used model 

for describing the shear thinning nature. All of these plots by the way are usually on a log-log 

scale. So many of the properties whether it is G, G or stress-strain curves because we are 



looking at decades in terms of time scales. So we go for strain rate 10-3 to 104, frequencies we 

go from 10-4 to 103. So therefore, there are decades of time scales involved and generally these 

plots are always on a log-log scale. So if you have a power law which implies that  is related 

to strain rate, 𝛾 ̇ to the power n-1. So this particular slope will be exhibited. So this particular 

behavior would be exhibited just as a straight line, because it’s a power law. So Carreau-Yasuda 

model can show all these different behaviors. 
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So, the other model which is very commonly used is called Herschel Bulkley model. This is a 

set of models which are useful for polymeric systems if there are fillers in it, because what 

happens is if you have the polymers with all their entanglements, if we allow shearing to happen 

at a very slow rate, then entanglements can slip past each other and therefore we get perfectly 

viscous behavior and therefore zero shear viscosity as constant viscosity. 

 

But what if we now in this polymeric system put a set of fillers, let’s say we put nanotubes or 

we put glass fibers. Then these glass fibers can start interacting with each other and they can 

act like network points, they can bridge the macromolecules with each other. So therefore, 

through interactions between glass fiber and glass fiber or through interaction between glass 

fiber and the macromolecule, this overall system ends up behaving like a system which is 

networked. 

 

And what this implies is whenever the network points are strong, then we will not observe the 

viscous behavior, the fluid-like behavior, but this would start behaving like more solid like, 



like a crosslinked rubber kind of a system. So therefore, if you look at viscosity as a function 

of strain rate for these kind of systems, shear thinning is observed at higher strain rate, but 

when you go to lower frequencies or lower strain rates what happens is again viscosity becomes 

very high because this crosslink point makes the material respond like almost a solid and 

therefore there is an yield stress in the material.  

So generally, up to certain strain rate there is no flow at all and beyond a certain strain rate 

because stress has exceeded the yield stress value, flow starts happening in the material and 

therefore these materials are called yield stress fluids. In fact, you can see that Herschel Bulkley 

model if I set yield to be 0, then it becomes a power law kind of a shear thinning material.  

 

So Herschel Bulkley model is a yield stress model plus shear thinning model and so for values 

of stress up to yield there is no flow in the material and when the stress is greater than yield, 

there is a constant value of strain rate which is reached and the material behaves like a shear 

thinning viscous fluid. So, this Herschel Bulkley model also you can do an exercise and show 

that it reduces to variety of simpler models. So, this is an overview related to the viscous model. 
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Now let’s finish this lecture by looking at a non-linear viscoelastic model. Since this is an 

introductory course on polymer, we will not spend a whole lot of time because there is a course 

you can do on non-linear viscoelasticity of polymeric systems. But let’s spend some time to 

understand how the non-linear models are not very different conceptually compared to some 

of the things that we have already discussed in such an introductory course.  



So this is Phan-Thien-Tanner model which is one of the most commonly used model for 

polymer processing and any computational package that you get these days, you will see that 

this model is available as one of the menu for us to choose. Now, the linear viscoelastic model 

that we wrote where stress, stress rate, rate of change of stress rate, strain, strain rate so the 

same thing is valid for all large deformations or non-linear viscoelastic model also.  

 

So if I were to write a very general mathematical relation describing a viscoelastic fluid for 

very large deformations and for non-linear deformation, then all I have to say is stress, stress 

rate, rate of change of stress, strain, strain rate, rate of change of strain rate and so on. Also, we 

may have stress multiplied by stress, so non-linear terms again. So, stress and stress square are 

related to strain or stress is related to strain and strain squared. So, this is an example of a non-

linear model. Instead of using infinitesimal strain tensor or strain tensor which is valid only for 

small deformation we use these strains which we have discussed already when we discussed 

rubber and non-linear elasticity. These are called either finger strain tensor or green strain 

tensor and the rates that are evaluated are indicated using this symbol which is probably not 

familiar to most of you, so you do not have to worry about for this course purpose, but these 

are called convected derivatives.  

 

Some of you might know that there is partial derivative, then there is total derivative, then there 

is material or substantial derivative. So, substantial derivative is evaluated by moving along 

with the material or it‘s also called we evaluate it in Lagrangian frame. So similarly, if we have 

to calculate stress rate, we must evaluate the derivative in what is called a convected frame, so, 

we get convicted along with the material, we get deformed along with the material. 

 

So mathematically to be consistent in terms of getting a response where the material response 

doesn’t depend on how we define it or it’s also called frame indifference. So those of you who 

are interested could read more about what is meant by frame indifference, it is also called 

material objectivity. You can see the words objectivity and indifference. So basically, material 

response should not depend on how we describe it. So if we use this very simple physical notion 

and try to implement it in a mathematical sense where stress and strain and strain rate are all 

quantities which have 9 components, they are all tensors, then the convected rate definition 

automatically becomes one of the useful tools. 

 

So therefore, non-linear viscoelastic models are described in terms of these convective 



derivatives. So let’s stop here from the point of view of our course right now in terms of this 

discussion related to nonlinear viscoelastic model, but look at how the governing equation 

looks like for this PTT model for a simple shear flow. In terms of what we will look at is a 

situation where we let’s say take the material between two parallel plates and therefore we have 

this rectangular coordinate system x and y and if we take this polymer melt which is a 

complicated material and shear it between parallel plates, then what we will have is 𝛾̇𝑦𝑥 and 

𝜏𝑦𝑥 will be the stress components which are important.  

 

So therefore, this is the yx component of stress for PTT model. I have said that you know 

because it is a tensor model, there are 9 components, but we will not worry about it but let’s 

stare at this model and try to see how much more complicated non-linear viscoelastic model 

can get compared to models like Maxwell and other models. Now if you look at this model and 

I am just going to use some terms to indicate that you know if you drop these terms, then you 

will get back Maxwell model. So for example if this term is dropped out, this term is dropped 

out, and this term is dropped out and C =1, I hope you can spot that it is nothing but the Maxwell 

model. So any nonlinear viscoelastic model quite generally is an extension or more complicated 

terms compared to Maxwell model. But from our point of view other thing to notice is even 

though this is a yx component of stress, look at some of the other terms which are involved. So 

there is 𝜏𝑦𝑦. So the normal stress in y direction is also involved, normal stress in x direction is 

also involved, and there is a derivative of strain rate itself involved, there is also multiplication 

between stress and strain rate. So you can see that this is a much more complicated model and 

as this equation generally says that you know stress, strain rate and then multiplication of stress 

with stress, multiplication of strain with strain, multiplication of stress and strain rate, all of 

them are dependent, in fact PTT model which is one of the better known models of polymer 

processing has many of these terms.  

 

Additionally, look at what the C is, C in fact involves 𝜏_𝑥𝑥, 𝜏𝑦𝑦 and 𝜏𝑧𝑧 and it’s a non-linear 

term again where it’s an exponential to the power stress itself. Of course, the original arguments 

for developing a model such as PTT are due to the fact that polymers are heavily entangled 

system, there is only reptation motion possible when polymer molecules have to move and 

when we are trying to make them flow in polymer processing operations, chains get stretched 

but at the same time because of all these entanglements, there are only a number of ways in 

which the junction points which are the entanglement points can break and reform. So all of 



that is captured first using hypothesis and then a mathematical model is developed around it.  

 

So PTT model is one of the successful models which is used for polymer processing. From the 

point of view of our seeking solutions if we are serious students of non-linear viscoelasticity, 

we have to understand these models, but at times if we are practitioners of polymer processing 

industry, we could use computational package, but it still is important for us to understand the 

models and various terms that are associated with such models.  
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So with this, we will close this discussion related to rheological models. We have seen very 

simple models of viscous or some very complicated model of non-linear viscoelastic response 

and for those of you who are interested can take a look of a course which is by me also on 

rheology of complex materials and on YouTube, you will find various discussion related to 

nonlinear viscoelastic models also. 

Thank you. 

 


