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Relationship between Electrophoretic Mobility and Zeta Potential - II 

 

So far we have developed what are called as Huckel equation and Helmholtz-Smoluchowski 

equation for relating electrophoretic mobility to zeta potential. Now, we will look at what is 

called as a Henry's solution for the same before we do that a quick recap of the 2 equations.  
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So, one is what is called the Huckel equation, and other one is Helmholtz-Smoluchowski. So, 

that is a general expression with C taking a value of 2/3, for Huckel’s limit and C taking a value 

of 1 for Helmholtz-Smoluchowski equation. So, and as we have discussed, so, these solutions are 

applicable only for certain condition that is when k times R is less than 0.1 or k times R is greater 

than 100.  
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So, just to talk about the need for developing Henry's equation, what you have is a plot of Rs that 

is the radius of the spherical particle. And on the x axis you have the concentration of the particle 

expressed in moles per liter. And for the concentration that I know, that are given, I can calculate 

what is kappa because we know that there is an expression that relates kappa to the concentration 

of colloids. So, therefore, I could calculate what is kappa times Rs value?  

 

So, let us take, so, what you see is there are 2 lines, this line is what is called as a that is the 

Huckel limit, and this line is what is called as represents the Helmholts-Smoluchowski limit. So, 

what I mean by that is, let us take some particular value of kappa. So, if I take kappa value of 10 

power 10 and if I take some dimension of the particle to be 10 power - 5 that means, if I go to a 

region there, so, therefore, kappa times Rs is going to be 10 power - 6 times 10 power 10 

therefore, you are going to have 10 power 4.  

 

So, therefore, kappa times Rs in this case is larger than 100 therefore, one could use the 

Smoluchowski limit for you know converting the mobility value that have been measured to 

obtain the zeta potential. However, if I take like say a typical value for example, 10 power - 9 is 

the particle dimension that is, now we are talking about in this case we are talking about 10 

power - 9 meter is the dimension that means, we are talking about nanoparticles the particles are 

1 nanometer in size.  

 



So, therefore, and if I take a corresponding kappa value to be 10 power 7 therefore, kappa times 

Rs takes the value of 10 power - 9 times 10 power 7, so, which is 10 power 0.01. So, therefore, 

or 10 power - 2. So, therefore, again what we have considered now, it again falls into the regime 

of k times Rs less than 0.1 because, the value of k times R is that we got is 0.01. So, therefore, 

so, if I take for any value of Rs and kappa in this range, so, we can use the Huckel limit and for 

when you value of R and kappa, which fall into this regime. 

 

So, we could use Helmholtz-Smoluchowski limit and then we can convert the mobility values to 

zeta potential. However, there is a large region of particle sizes and the concentration of 

electrolyte range where there is a lot of work that occurs both in terms of formulations both in 

terms of you know, tuning the stability and causing the destabilization of colloids. So, it so 

happens that in the colloidal in the domain of colloidal science, which is of practical relevance. 

 

You will have always have a range of kappa times Rs which is more than 0.1 and less than 100. 

So therefore, so we do not have any expression that relates mobility to zeta potential in that 

range, and to this end, Henry's solution would develop. So, Henry solution is a general solution 

that is, that relates mobility to zeta potential for any value of kappa Rs that is both, it combines 

the Huckel limit at one end, and Helmholtz-Solumochowski limit at the other end. And, of 

course, it is also applicable for any range of kappa times Rs between 0.1 and 100 as well.  
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So, the general expression that Henry's developed for the mobility is given by this. And so if you 

want to obtain mobility, all you need to know is how does the potential psi varies as a function of 

R. And so therefore, this R in this case is the radial distance from the center the particle. And so, 

one could simplify this expression to obtain the expression for mobility, if we know how the 

potential varies with R, so what we will do is we will take a simple case of Poisson Boltzmann 

equation. 

 

And that for a spherical particle, we have derived that psi goes as A times exponent of minus 

kappa r divided by r, therefore, now, if I substitute for the fact that the potential becomes zeta 

potential add r going to Rs, therefore, I would have there is a mistake here, so, this A should not 

be there. Therefore, this A becomes zeta potential, that is here times Rs, that is here multiplied 

by exponent of minus is going to be divided by exponent of minus kr or exponent of plus k times 

Rs.  

 

So, therefore, if I substitute the value of A back into this expression, we will end up with psi = 

Rs into zeta divided by r exponent of - k times r - Rs. So, therefore, now, I know that how the 

potential varies with R, therefore, one could substitute the equation back here. 
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And then if you do a simple integration, so, you will end up with Henry’s expression for 

mobility, which is given by u times 2/3 epsilon zeta divided by n, where eta is the viscosity of 

the fluid in which the particles are dispersed and a term f of alpha and f of alpha depends on what 



is the kappa times Rs value. So, if for kappa times Rs less than 1, it takes this functional form 

and for alpha greater than 1, it takes this function form. So, we could quickly cross check that if I 

take alpha = k times Rs of the order of 100, that is much larger than 1.  

 

So, therefore, f of alpha becomes 3/2 minus and because we are talking about alpha to be 100, 

therefore, you have 9/2 times 1 over 100 time and so, therefore, the all the terms can be 

neglected. So, you will end up with f of alpha = 3/2. Therefore, expression u = 2/3 epsilon zeta 

divided by eta times 3/2 for kappa times r about 100. Therefore, u becomes epsilon into zeta by 

eta. Therefore, we essentially recover the Helmholtz-Smoluchowski limit. 

 

And similarly, if you take the expression that corresponds to alpha less than 1 therefore, if I take 

alpha to be very small for example, k times Rs is of the order of say 0.1 then again what will 

have is f of alpha will become 1 plus again I can neglect the higher order term. Therefore, in 

such a case u becomes 2/3 into epsilon zeta by eta times 1 again we recover back the Huckel 

limit. So, therefore, the Henry's expression for mobility is a general solution that is applicable for 

obtaining you know, the zeta potential measurements zeta potential values from the mobility 

measurements for any given value of kappa times Rs. 

(Refer Slide Time: 10:09) 

 
And Henry's expression for mobility is derived by assuming that and as I said that so, it is 

applicable for Henry's in a solution is applicable for the entire range of the Rs times kappa value 

Rs and values of Rs and kappa that are important from a practical point of view and Henry's 



expression from mobility is derived by assuming that the external field we know that the external 

field that is applied to the colloidal particle in a fluid. 

 

It will also be disturbed by the presence of the particle and of course, this field is also going to 

influence the electrical double layer as well and Henry solution is derived by assuming that the 

external field is and the field that is developed because of the electrical double layer are additive 

and it is applicable for a non conducting particles therefore, if one for inert particles like such as 

polystyrene or PMMA or you know particles of that sort in once you know there are particles 

that are conducting like gold or any metallic particle. 

 

One has to be careful in using these equations and it is also applicable to cases where the colloids 

are present in small concentration that is, so, that the colloid-colloid interactions can be ignored 

and in obtaining Henry's solution the diffuse double layer is described by the Gouy Chapman 

theory therefore, it is that means, the Henry solution is applicable for symmetric electrolyte. So, 

therefore, one has to make sure that appropriate expression for the mobility and appropriate 

mobility zeta potential relation is used in order to obtain the correct values of zeta potential.  
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And so, what you seeing is a plot where the constant C that is, so, we wrote that mobility u goes 

as some constant C times zeta epsilon divided by eta that is what we had developed that is 

somewhere here. So, therefore, and we know that C takes a value of 2/3 for the Huckel limit and 



it plateaus and then takes a value is equal to 1 when the k times Rs values are large. And 

however, if you take you can already see that when the k times Rs becomes of the order of 1. 

 

That somewhere here you already see that you know the constant C deviates from this terminal 

values. Therefore, that means, the value of constant in the intermediate range deviates from the 

values that correspond to the terminal state that is you know of the order of 0.1 and more than 

100 and it varies the nature of variation is actually captured by Henry's equation and you will see 

that so, what you see in the plot is that the variation of the constant C is plotted for different zeta 

potentials.  

 

That is going from very low potential to of the order of 100 millivolts which is a case of a highly 

charged particle and this is plotted for 1 is to 1 type of electrolyte and you will see that when the 

charge of the particle becomes really large that is when the zeta potential becomes considerably 

large you will see that the value of the C that is obtained it deviates significantly from what is 

predicted by Henry's equations.  

 

So, therefore, one has to exercise caution as to what is the typical value of the constant that one 

should use and that depends on several factors including the zeta potential of the particle or the 

surface charge in the particle and the electrolyte that we are considering and other factors as 

well. 
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With that in mind, so, now, we would like to develop an expression for relating the surface 

charge q and the zeta potential and, the reason why an expression for q could be useful is that 

there are several techniques which are available, where the charge of the particle can be 

measured directly by certain technique such example or a couple of example could be 

conductometric methods and potentiometric methods and these are titration based method in 

which what you do is you consider a colloidal dispersion containing particles. 

 

And you add some additive and monitor, for example, the change in the conductivity and at 

certain condition there is there will be an abrupt change in the conductivity and from that you 

can back calculate what is the charge. So, now, if there are techniques that are available, which 

enable us to get the charge directly, and if there are technicals, there are techniques where zeta 

potential can be measured, in order to compare the 2 different techniques you know the 

applicability of different techniques. 

 

There should be a relation which will from which I should be able to back calculate one from 

other. So, in that context, so, what we will do is, we will try and develop an expression for our 

relation between the surface charge q and the zeta potential and for that we will consider the case 

of a charged particle charged spherical particle to be more precise, and what we are going to do 

is we are going to invoke the condition that the net charge that the particle carries is equal and 

opposite to the total charge in the electrical double layer.  

 

And this condition is kind of met when in one works with particles dispersed in like say salt free 

solutions, for example. And what we will do is we will consider a thin shell of dimension dr 

which is located in distance r. And so, the total charge q or the charge in this thin strip is given 

by the charge density that is the number of charges per unit volume multiplied by the volume of 

this you know thin shell.  

 

And if you want to calculate the total charge q, you can integrate this expression or the whole 

double layer that means, q is given by and you have a negative sign, because the charge on the 

particle and the charge in the double layer they are equal and opposite in sign. And therefore, q 

can be obtained by integrating this expression for the limits going from Rs to infinity wherein Rs 



corresponds to the surface of the charged particle and we are accounting for all the ions all the 

way up to infinity. So, infinity what we essentially mean is that, we are considering distances 

which are larger than double layer thickness. 
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So therefore, one could obtain q from this and if I want to integrate this, I should know what is 

rho star that is the charge density. And for that we are going to again invoke the Poisson 

Boltzmann equation. And we know that for a spherical coordinate system, and if you are 

considering the variation of the potential only in the r direction, 1 over r square into d/dr of r 

square d psi / dr should be equal to minus rho star times epsilon, I can replace for rho star from 

this expression.  

 

Therefore, I have minus epsilon times 1 over r square into d/dr of r square d psi by dr times, this 

is the volume term. And with that, this and this get cancelled. So, therefore, I have 4 pi epsilon, 

that is the, the constant. And because of the fact that I have one negative sign that was coming 

from the, fact that the charges are in the solution are opposite to that of the particles that have 

one negative sign there, and there is one negative sign comes from the Poisson Boltzmann 

equation therefore, they both get cancelled. So, therefore, I have a positive sign here and times 

d/dr of r square d psi by dr at times dr.  
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So, therefore, now, to obtain the total charge q, I can integrate the expression therefore, q would 

be minus I have again so, there is a negative sign here. That is positive. And so, we will just 

come back to that. So q essentially goes as 4 pi epsilon r square into d psi / dr at and of course, I 

have these 2 limits, therefore, q becomes the constant term multiplied by this term at infinity and 

this term at 0 and we know that the potential is 0 at a distance much larger than kappa inverse 

that is at infinity. Therefore, this term becomes 0. Therefore, q becomes 4 pi epsilon into r square 

d psi / dr at Rs.  
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And we know how the potential varies with R for a spherical particle system. So, therefore, I 

know that psi is equal to psi naught Rs divided by r exponent of minus kappa times r minus Rs, I 

can differentiate this with respect to dr. Therefore, I have the constant term the first term 



multiplied by the differential of the second term plus the second term multiplied by the 

differentiated the first term. So, therefore, d psi / dr at Rs essentially becomes minus zeta that is 

because at r is equal to Rs psi becomes zeta.  

 

Therefore, I have a zeta there and times a kappa r + 1 divided by Rs and I can take Rs common 

essentially if I take one over Rs common therefore, I end up with my d psi / dr at Rs = minus zeta 

divided by Rs times kappa times Rs + 1. So therefore, q becomes 4 pi eta times Rs d psi / dr I can 

substitute for r square into d psi / dr. Now, therefore, this is so, d psi / dr you know at Rs so, 

therefore, Rs r square at Rs is Rs square capital Rs square and instead of d psi / dr at Rs I have 

minus zeta divided by Rs into k kappa times Rs + 1 this and one term gets cancelled.  
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So, therefore, what we have is this and this gets cancelled therefore, there is 4 pi epsilon into zeta 

times Rs times 1 plus kappa times Rs therefore, so there this is the relation between the charge q 

on the particle surface and the zeta potential the size of the particle and the concentration of the 

electrolyte that you have in the solution which is which determines what does the kappa values. 

So now, once we have a way to relate zeta potential to q one can compare the q that is obtained 

by other methods. 

 

And see what is the one to one correlation is it a one to one correlation or other effects that are 

neglected in one method or the other, you know can be inferred from such a treatment.  
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So I would like to talk a little bit about zeta potential measurements and some important 

considerations that one should worry about what we should always do zeta potential 

measurements under a known salt conditions that is because, you can prepare a colloidal 

dispersion and then you know just plug the sample into one of the instrument that measures that 

are used for measuring mobility.  

 

So, you may be able to get the value of mobility from the instrument however, to choose an 

appropriate method to convert the electrophoretic mobility to zeta potential, we know that kappa 

times Rs is a important factor. So, whether you use a Huckel limit or Helmholtz-Smoluchowski 

or Henry solution or we are working with 1 is to 1 electrolyte or symmetric electrolyte in general 

or asymmetrical electrolyte.  

 

So, depending upon you know the conditions that are being used or the solution conditions under 

which the mobility measurements have been made, one should be able to choose an appropriate 

relation between the mobility and zeta potential. So, therefore, knowing the salt concentration is 

of utmost importance, because, once you know that I can get kappa and of course, I should have 

an idea about what is the size of the dimension of the particle. 

 

And therefore, a combination of that is what should be used or what should be calculated in order 

to use an appropriate expression for converting mobility to zeta potential. Suppose, if there are if 

you do not know the salt concentration, so, one of the method could be that you could measure 



the conductivity of the dispersion and, because we know that the conductivity can be related to 

the ionic concentration of the particle and again from the ionic concentration I can calculate what 

is kappa.  

 

So, therefore, if the salt concentrations are not known, one of the nice method could be you 

measure the conductivity of the solution and then appropriately convert the conductivity data to 

any concentration and then use ionic concentration data to back calculate what is the inverse 

Debye screening length that has kappa value and the third consideration is that always use a 

dilute concentration of colloids and rule of thumb would be that if you take the dispersion of 

particles in a fluid. 

 

For example, if one is working with say latex particles that is say polystyrene particles we know 

that they these dispersions appear turbid so, therefore, you use such a low concentration that if 

you put a finger on the other side of the turbid that contains the solutions, you know your finger 

should be you know visible clearly. So, typical concentration that one uses would be of the order 

of you know 0.001 volume percentage or some concentration of that order.  

 

So, therefore, and the reason why this is important is because at higher concentration, the 

collateral interactions would become important. So, because whatever theories that have been 

developed, they are applicable for conditions where the colloidal particle is assumed to move in 

isolation. Therefore, the presence of any other particle in the vicinity is going to affect the 

measurements therefore, carry out measurements at as dilute a concentration as possible.  

 

And the last point is the theory that have been discussed how are applicable for spherical 

particles so far whatever we discussed and they are also applicable under certain limiting 

conditions. So, therefore, if one is interested look at particles of other shapes such as like say rod 

like particles or disk shaped particles or elliptical particles one has to look for appropriate theory 

there are there have been some developments in the field.  

 

So, one should refer to the latest literature and then use an appropriate solution to calculate zeta 

potential from these measurements on also there are several issues that have been omitted in the 



development that we have discussed one is what is called as a retardation effect. So, what 

happens is that, when you have a charged particle that is set into motion by an electric field and 

we know that depending upon the charge of the particle is either going to move towards a 

negatively charged electrode or a positively charged electrode.  

 

So, however, we should also know that there is going to be the counter ions in solution. So, when 

the particle moves in a particular direction, the ions that are present in the electrical double layer 

and therefore, the fluid around it will try and move in a opposite direction therefore, the motion 

of the particle is hindered that is, there is a retardation force that comes into picture because of 

these effects. And one has to be careful about incorporating those things, which have not been 

done in the present developments.  

 

So, there are also what are called as relaxation effects and also the surface conductance effects 

which also become important under certain conditions. So, therefore, general theory that should 

be used should consist should contain all these important features inbuilt in those models 

however, for under specific conditions, so, whatever theory that we have developed, it can still 

be used to for a meaningful in a measurement of zeta potentials.  

 

So just to conclude, so, what we have done in this particular module is that, we defined zeta 

potential and we talked about the important implications of zeta potential in different 

applications. Then, we discussed electro kinetic methods and more discussions have been 

centered around electrophoresis because it is one of the widely used technique for measuring zeta 

potential, then, we discussed the relationship between the mobility and zeta potential.  

 

So, we started with talking about mobility of an isolated ion followed by the mobility of charged 

particles assuming that the charged particles can be treated as macro ions. And then, we 

developed a relation between the electrophoretic mobility and zeta potential in several cases, 

Huckel limit and Helmholtz-Smoluchowski limit as well as Henry's equation which is valid for 

the entire range of kappa times Rs value. And, we finally discussed about what are the important 

considerations one should think about when measuring zeta potential from any given technique. 


