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So, far we have looked at mobility of an isolated ion in an applied electric field. So, what we 

will do now is, we will extend this concept to understand what is the mobility of isolated 

colloidal particle in an electric field? 

 (Refer Slide Time: 00:30) 

 
So, mobility of the isolated ion is given by u which is the velocity with which the ion is 

moving per unit field it depends on the charge of the isolated ion, eta is the viscosity of the 

fluid and RS is the dimension of isolate ion that we are considering. If, we want to estimate q 

from this expression, that is the charge of the isolated ion which you can relate again to zeta 

potential of in the case of a charged colloidal particle. 

 

What we should know is we should know what is the velocity, but however, because the ions 

are very, very small in dimension v cannot be measured. Therefore, what one does is you can 

actually measure the conductance which is the reciprocal of the resistance and if you know 

the conductance and from Faradays constant you can actually calculate what is u. Therefore, 

from the calculated value of u I can actually calculate what is the charge of the isolated ion? 

That is under consideration. 

 



So, we can extend the same concept to essentially obtain the mobility of an isolated particle 

in an applied electric field. However by treating that the charged colloidal particles are what 

are called as larger ions or the macro ions. Instead of so, if you look at isolated ion so, you 

could have ions of different valency they could have z times e, where z is a valency of the 

ions multiplied by the charge of the electron is what gives the total charge of the isolated ion. 

 

However, so, we know that z = + 1 or + 2 or + 3 depending upon whether we are considering 

a monovalent, divalent or trivalent ions. However, so if we can assume that when you have a 

charged particle that is, which has a large number of surface groups on the surface of the 

particle, so you can say that, we can still say that q is z times e however, we do not know 

what is z, because it depends on the total number of dissociable groups on the surface or the 

total number of adsorbed ions on the surface of the particle. 

(Refer Slide Time: 03:17) 

 
So, however, when one is dealing with the mobility of isolated particles, the studying 

mobility of colloids is much simpler than small ions, because the velocity with which the 

particles are moving in a given under the influence of a given external field can be 

experimentally measured by direct visualization. So, what I can do is you could have you 

know, two electrodes there could be particles in a fluid and I can look at video of the 

migration of particles. 

 

Then, you could track these particles in different frames for example, if this is a time t1, these 

are the position of the particle, I can say that this would have moved some further location 

under the influence of the field. So, therefore, I can calculate what is the displacement of the 



particle and if I know what is the displacement and the time that the particle has taken for the 

movement I can actually calculate velocity directly from simple experiments. 

 

This can be either done by using microscope or one could use light scattering techniques to 

detect the position of the particle. So, therefore, once the velocity and the field that is 

responsible for the motion of the particles are known, one could actually calculate what is the 

mobility directly from experiments? Therefore, studying electrophoteric mobility of particles 

is much, much simpler than studying the mobility of ions because we have a chance of 

directly visualizing the motion of the particle in the presence of an electric field. 

 

So, for colloidal particles the mobility is known as what is called electrophoteric mobility. 

And the phenomena, that is associated with this is what is called the electrophoresis. And one 

often combines a microscopy experiment with electrophoresis. Therefore the technique by 

which the mobility can be measured when an isolated colloidal particle moves in a field is 

what is called as a micro electrophoresis. 

(Refer Slide Time: 05:38) 

 

So, now, if you want to calculate, so while u can be readily measured for colloids by doing 

simple experiments as we discussed its interpretation is a little bit more difficult than for 

simpler ions, because, once you calculate q for an isolated ion, we know that you know it 

could, the charge could be either e or 2 times e or 3 times e, depending upon what kind of 

ion, one is dealing with. 

 



However, the charge carried by colloidal particles is not a known quantity therefore, and of 

course, it could vary depending upon the number of charges on the surface and other factors 

such as presence of electrolyte in the solution. So, therefore, and moreover if you want to 

estimate what is q that is the charge of the, charge carried by the colloidal particle in this 

expression RS is again an unknown quantity. 

 

Because RS which is the size of the colloidal particle or the radius of the colloidal particle that 

is being investigated is an unknown quantity. So therefore, what one could do is instead of 

having an unknown quantity, you could use Stokes Einstein relation and substitute for RS that 

is the radius of the particle under consideration in this case, we are specifically considering a 

spherical particle. Because the Stokes Einstein equation that has been written up here is valid 

for a spherical particle moving in a fluid. 

 

So, therefore, u which is q / 6 pi eta into RS, instead of RS, so what we will do is we will 

substitute kBT / 6 pi eta into D. Therefore, so we have 6 pi eta and 6 pi eta get cancelled. 

Therefore, the electrophoteric mobility goes as q times D / kB T where D is the diffusivity of 

the particle. 

(Refer Slide Time: 07:46) 

 
So, therefore, a combination of diffusion experiments which will help us to find what is the 

diffusion coefficient of the particle and if you combine that with electrophoresis experiment, 

which give us what is the value of the electrophoteric mobility. Therefore a, combination of 

these two experiments are necessary to evaluate the charge of the colloidal particle. And of 

course, the equation that has been developed here it is valid for situations when the charged 



particle is considered in isolation from other ions which is of course, which is not the true 

case.  

 

Because we know that there are going to be counter ions and there is going to be an electrical 

double layer as well. So, all these are going to complicate you know the issues. However, this 

expression can be used when we assume that the charged particle under consideration is in 

isolation compared to other ions, which is an assumption in developing this expression. And 

because of the fact that the charged particles would always have an electrical double layer.  

 

Therefore, the migrating unit that in the electric field is not only the particle plus the 

associated electrical double layer along with the particle is what is a migrating unit. 

Therefore, one has to exercise caution when one is using these expressions. 

(Refer Slide Time: 09:20) 

 
So, now that we know about the mobility of the isolated ions and electrophoteric mobility of 

charged particle, what we will do is we will develop expressions for relating electrophoteric 

mobility to the zeta potential. 

(Refer Slide Time: 09:40) 



 
And so, for that what we will do is, we will go back and look at module 4, in which we 

looked at potential distribution around charged surfaces. And because we are dealing with 

mobility of a charged particle of radius RS, we will consider a case where there is a spherical 

particle of radius R and that is being set into motion because of the applied electric field. 

Therefore, what we will do is, we will consider a case where we would like to obtain the 

potential distribution around a spherical surface. 

 

How does the potential psi varies with distance or from the surface of the spherical particle? 

And in specific we will consider the Debye Huckel approximation, which is valid for the low 

potential cases. The starting point that we had considered is a linearized Poisson Boltzmann 

equation, which is 1 over r square into d / dr of r square d psi / dr = e square / epsilon kBT 

sigma i ni infinity zi square times psi, this is kappa square. 

 

So, in order to solve this equation, which is the 1 dimensional Poisson Boltzmann, linearized 

Poisson Boltzmann equation in the spherical coordinates, we will introduce a variable x such 

that x = r times psi, therefore, I can rearrange this expression as d / dr of r square into d psi / 

dr is equal to instead of this term there psi here, instead of so what we will do is, I have taken 

there was 1 over r square here, I have taken r to the right hand side. 

 

Therefore, I have r square into kappa square in the right hand side times d psi. I can write this 

as d / dr of r square into d psi / dr. Because we have introduced x = r times psi, therefore, 

what I can do is, we will rearrange this. I can write this as r times kappa square times r times 



psi, that is what I have here. So this term, I can write this as r times kappa square into r times 

psi, therefore I have r times kappa square times. 

 

Instead of r time psi I have replaced it with x because we have used a new variable x. But, if 

you look at the left hand side d / dr of r square into d psi / dr, I can write this as d / dr of r 

square into d / dr of x / r, because I am going to replace instead of psi I have x / r now. So 

therefore, if I differentiate the term in the bracket, so I what I will get is d / dr = r square into 

d / dr of x / r. This term essentially is 1 over r dx / dr - x / r square. 

(Refer Slide Time: 13:45) 

 
So, therefore, the left hand side term that is d / dr of r square d psi / dr can be written as d / dr 

of r square into 1 over r dx / dr - x / r square. I can take r square, inside the bracket. So 

therefore, this essentially becomes d / dr of there is one r and one r gets cancelled. Therefore, 

I have only one r there, minus times dx / dr - x. Therefore, d / dr of r square d psi / dr 

essentially becomes d / dr of r dx / dr - x which is equal to r into d square x / dr.  

(Refer Slide Time: 14:45) 



 
So, therefore, what we have done is we have been able to, the left hand side has been 

simplified to r into d square x / dr square, that is what we have done here. And the right hand 

side is kappa square into x, where x is r times psi. And the general solution of an equation of 

this sort is given by x = A times exponent - kappa r + B times exponent kappa r. We can 

substitute back for the value of r here. So, therefore instead of, so because we have x here, so 

I can replace this with x is r times psi, and I can take r onto the right hand side essentially I 

end up with psi = A / r times exponent of - k times r + B / r exponent of k r. 

(Refer Slide Time: 15:57) 

 
Of course, we can invoke the condition that the potential psi should go to 0 when x tends to 

infinity because if you have any charged surface whether it is positively charged or 

negatively charged, we know that if you go to a distance sufficiently far away from the 

surface of the particle, so essentially the total potential at a very large distance is going to be 



0. Because of the fact that the total number of positive co-ions and counter ions in a solution 

is going to be essentially same. 

 

Therefore, it turns out that this is true only when B is going to be 0. Therefore, the condition 

that psi tends to 0 as extends to infinity gives us a condition that B = 0 that is one of the 

integration constant can be left out. Therefore, psi essentially becomes A times exponent of 

minus k times r / r. Now, if we consider the limit of infinite dilution, that means we have 

added a really large number of salt. In such a case, we know that a potential psi. 

 

So, electric field E is minus d psi by electric field E is q times E is force and therefore, and 

because of the fact that E goes as - d psi / dx, d psi / dr in this case, we know that the potential 

should be 1 over 4 pi epsilon into q / r this comes from the basic physics. So therefore, as k 

tends to 0 that is infinite dilution case equation 1, that we have developed and this expression 

should converge. 

 

And that can only happen if, A takes a value of q / 4 pi epsilon. Therefore, the expression for 

the potential essentially goes as psi = 1 over 4 pi epsilon into q / r that is the constant that is 

derived, that is the constant that is A. So, therefore, psi goes as q / 4 pi epsilon into 1 over r 

exponent of minus kappa times r. 

(Refer Slide Time: 19:12) 

 
So, therefore, and we know that zeta potential is defined as the potential at the plane of shear. 

Therefore, the potential psi tends to zeta when r goes to RS, where RS is the radius of the 

spherical particle that we are considering. So, therefore, I can use this condition and write this 



expression as zeta = 1 / 4 pi epsilon q divided by instead of r, I have RS here, exponent of 

minus kappa times RS. 

 

Now, if we invoke the condition of small k times RS. We will talk a little bit about what this 

condition essentially means zeta goes as 1 over 4 pi epsilon q divided by RS. So, I can take 

this to the denominator, I can write it as 1 over exponent kappa times RS .So therefore, and I 

can use a series expansion for exponent k times RS. So, I can write it as 1 + k times RS + k 

kappa square RS square / 2 factorial and higher order terms. 

 

And because we are considering a case of small k times RS, we can neglect the higher order 

terms, therefore zeta becomes 1/4 pi epsilon into q/RS times 1 / 1 + k times RS and because k 

times RS is small, I can write zeta as q / 4 pi epsilon into RS. 

(Refer Slide Time: 21:00) 

 
So, therefore, for small k times RS by using linearized Poisson Boltzmann equation for the 

spherical particle system, we have been able to show that the zeta potential is given by 1/ 4 pi 

epsilon into q / RS. However, we have for the case of an isolated particle moving in a electric 

field, we have derived that u goes as q / 6 pi eta into RS. So, I can replace for q from this 

expression. 

 

So, I have q, I can write q as zeta times 4 pi epsilon into RS that comes from this expression / 

6 pi eta into RS. So, this, this gets cancelled. So I have pi and pi also gets cancelled and 

therefore, you end up with 2 / 3 factor multiplied by zeta epsilon / n. Which is what is called 



as a Huckel equation, which is valid when k times RS is small more specifically, when k 

times RS is less than 0.1. 
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So, the case that we have considered here is valid for a situation which is what is called as a 

thick double layer, because of the fact that you know the k times RS, this expression is valid 

for k times RS is less than 0.1. I can rearrange this and I can write this as RS / k inverse, where 

k inverse is the thickness of the electrical double layer. Therefore, this condition is met when 

k inverse that is the thickness of the double layer is much, much larger compared to the 

dimension of the particle. 

 

So, therefore, this Huckel equation can be used to obtain zeta potential from the mobility 

measurements when we consider a case where the electrical double layer is thick that will 

occur when the concentration of electrolyte in the system is very, very low, that is in the case 

of dilute electrolyte conditions. 

(Refer Slide Time: 23:30) 



 
Now, we would like to look at a case where the other limit that is when k inverse that is the 

thickness of the double layer is very, very small that is that will occur when this k times 

kappa inverse is very, very small. So, this kappa times RS would be very large, that is larger 

than about 100. 

(Refer Slide Time: 24:03) 

  
So, for this, what we are going to do is, so we will consider a situation where the thickness of 

the electrical double layer is negligible compared to the radius of curvature R of the particle 

or any surface that we are considering. And there, so essentially we are considering the thin 

electrical double layer limit. So, this derivation that we are going to do, it is applicable for 

any geometry as long as the radius of the curvature is large compared to a kappa inverse 

which this condition is of course met.  

 



When we consider flat place for which the radius of curvature is infinity. So, therefore, that is 

very large compared to kappa inverse. And so, this k times RS being large is met when the 

concentration of electrolyte is relatively high. That means we have added a very large 

concentration of electrolyte in the solution. So, that the electrical double layer is compressed 

that means, the dimension of the electrical double layer is very, very small. 

 

Or for case where R that is a RS that is a radius of the particle is much, much larger compared 

to much, much larger that will of course, occur if you consider flat particles or when you 

have cases where the we are considering slightly curved surfaces. So, therefore, both these 

conditions lead to k times RS being very, very large. 
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So, whenever a colloidal particle is set into motion in the presence of an electric field, the 

fluid element around the particle is also going to move. So, therefore, what we got to do is to 

consider a fluid element, which is in the immediate vicinity of the charge surface. And we are 

going to do a force balance that we did when we looked at motion of a particle in the fluid. 

So, for that what we will do is we will consider a volume element of area A. 

 

And the thickness of the volume element is dx that is what is represented here. That is the 

thickness of the volume element and the area is given by A and there is an electric field and 

that is applied and because of the electric field that is applied, the particle is going to move in 

a particular direction, and it is going to drag the fluid in the immediate vicinity also along 

with it. 

 



So, what we could do is, we could write an expression for the viscous force that is acting on 

the face nearest to the surface of the particle. So, if you consider that the particle is here, so 

we can say that at distance x, the viscous force that is acting on the fluid element that we are 

considering, is given by eta times A / dv / dx, that comes from the Newton’s law of viscosity 

and at a distance x + dx, the force exerted is given by F = eta times A dv dx at x + dx. 
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Therefore, the net force that is acting on the volume element is given by which is F viscous is 

F at x + dx - F at x, therefore, F viscous becomes eta times A d square v / dx square into dx. 

This essentially comes from the definition of the double derivative. And however, we know 

that, although the particle will accelerate initially, at some time, there is going to be a 

stationary state or a steady state that is going to be achieved. 

 

And that occurs because there is an equal and opposite force that is also exerted on the 

volume element. And considering that the volume element in the immediate vicinity of the 

charged particle will have ions in the volume element that means we are going to have co-

ions and counter ions present in this volume element. So, there is going to be an electrical 

force that will come into picture which is given by q times E. 

 

Now in this case, in the earlier case we looked at q is the charge of the particle. However, 

when we are considering a volume element, we are going to write q as the charge density that 

is rho star, which is the total charge per unit volume that multiplied by the volume of the fluid 

element that we have considered. That will give me what is the total that it gives me the 

charge contribution and that times the applied electric field is what gives Fel. 



 

So, however, we know that rho star, that is the charge density, it is I can invoke the Poisson 

equation again for the variation of potential in 1 direction and the velocity with which the 

particles that we are, that is the fluid element that we are considering. So, we are looking at a 

plane which is perpendicular to the surface of the particle, therefore the movement of the 

particle is only in x direction. 

 

That is perpendicular to the surface so, therefore, because of, I can use the Poisson equation 

and write Fel as there is A times dx that is the volume that we had here. And instead of rho 

star, I am going to substitute this with E times d square psi / dx square. Of course this is going 

to be a negative sign. So, this particular equation that we have written up, this equation 

applies to the region very next to the charge surface. 

 

Because we know that if you go to sufficiently far away distance the potential is going to 

become 0, therefore this force is not going to be existent at all. So, therefore, F electrical is 

equal to - A times epsilon E, d square psi / dy / dx square times dx, is applicable to a fluid 

element, which is in the immediate vicinity of the charged surface. 
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So, therefore, we will again go back to the force balance, so we had written that F viscous 

should be equal to F, electrical when the stationary state is reached. So, that is the expression 

for the viscous force that we have developed, and that is the expression for the electrical 

force. So, the A on both sides gets cancelled, I can write this as d / dx of eta times dv / dx 

times dx = - E times d / dx of epsilon times d psi / dx. 



 

If I integrate this, so I will get this term is equal to this term plus an, integration constant. And 

because of the fact that if you look at a fluid element that is at a very large distance from the 

charge surface, the velocity is going to be 0, because the only the fluid that is in the 

immediate vicinity of the particle moves along with the particle. So therefore, v = 0 that 

therefore, dv / dx = 0 and of course, the potential is also is 0. Therefore, d psi / dx is also 

equal to 0. Therefore, we can invoke these conditions and set C1 = 0. 
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So, now that the force balance is given us this expressions I can integrate this expression 

further integrating dv eta times integration of dv = - E times epsilon integration of d psi. If 

you look at the limits here, so we have used the limits for velocity from v to 0 and when the, 

so, if you look at, so the v is the velocity with which the particle is moving and therefore, the 

velocity with which the fluid is also moving is also the same. 

 

And if I substitute these integration limits, eta times v becomes minus E times psi times zeta. 

Therefore, the electrophotereic mobility u which is given as v divided by the strength of the 

applied electric field is equal to epsilon times zeta / eta. So, this expression is what is called 

as a Helmholtz Smoluchowski equation for the mobility. We will just look at these limits. 

 

So, we know that, so when, if we assume that this is the fluid element that is very next to the 

particle surface. We know that when at the surface of the particle, the velocity of the fluid 

and the velocity of the particle have to be same, and that is the velocity v, with which the 

particles are moving, at that location the potential is given by zeta. And however, if you look 



at a very far away distance from the surface that is when the velocity becomes 0 that is the 

potential is also 0. 

 

Therefore we have used the condition that when velocity is v the potential is going to be zeta 

and when the velocity is 0, the potential essentially is 0. So, therefore, the electrophoteric 

mobility which is v / E goes as epsilon times zeta / eta for the case of thin double layers. 
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So, therefore, we can both, so we have developed two expressions one which is valid for 

kappa times RS less than 0.1 other for kappa times RS greater than 100. So you can write the 

expression for the relation between u and zeta in a, as a single expression where u is given by 

C times epsilon times zeta / eta and the constant C takes a value 2 / 3 when kappa times RS is 

less than 0.1. 

 

And the constant C takes a value of 1 when the kappa times RS is greater than 100. So, this is 

the case of thick double layers and this is the case of thin double layers. And the fact that the 

coefficient is 2/3 in this case and 1 in this case, you can say that the mobility in the thick 

double layer case is smaller than the mobility in the case of thin double layer and that makes 

sense. 

 

Because of the fact that whenever you have a thick double layer, there is going to be an 

additional drag that will come into picture because of the electrical double layer, thick 

electrical double layer around the charged particle and that is going to slow down the motion 

of the particle. Therefore, the mobility that is measured is smaller than the case when the 



mobility is going to be measured when the kappa inverse is very, very small. That is the case 

of very thin double layers. 


