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Now, I would like to solve this. So, what I have is this now I would like to solve this. So, we 

can either obtain a solution of this equation it depends on at what level you want to, you 

know, solve the problem, Either I can simplify and I can take some specific cases, or I can 

solve it for a very general case, you know, what I am trying to say is that, I can solve this I 

can simplify this equation and obtain a much simpler.  

 

You know differential equation, which I can solve if I assume that I am working with low 

potentials or, I can take a case where I am working with z is to z electrolyte, that means I am 

working with symmetric electrolyte z is to z for example, NaCl is an example of a symmetric 

electrolyte, you know, that is  z is to z, 1 is to 1 electrolyte. So, for cases like that, I think you 

can solve this, you know, expression fairly simply, but if you look at very complicated cases, 

where the potential is very high, you know, or when you are working with non-symmetric 

electrolyte this is know the solution is much more involved. 
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So, we will take a simple case of low potential. We will come back a little bit and then tell 

you what that low potential is. But for the sake of simple, you know, what we will do is. So, I 

have this expression, let me write that up. So, this is d square psi / dx square = – e by epsilon 

sigma n i infinity into z i exponent – z i, e psi divided by k B T. That is what we derived. So, 

now, so, when I say if you look at the right hand side, when I say it is a low potential, this rho 

star we were expressing it as sigma summation of I you know. 

 

For all the species z i times e n i, and n i infinity I we used to represent it in the form of 

Boltzmann factor and Boltzmann factor had this exponent – z i e psi / k B T term. So, the 

moment I say low potential, I can take an exponential term. For a low potential I can write 

this as 1 – z i e psi / k B T. So, it means you have a e power – 6 for example, we know that I 

can write it as 1 – x + x square by you know, that is a series. 

 

I can you know, kind of omit all the higher order terms, I can restrict only to the, the first 

term, therefore, I can actually write e power – x as 1 – x. Therefore, this exponent – of z i e 

psi / k B T. I am writing it as 1 – z i e psi / k B T. No. So if you look at this, so I am only talk 

about this term. I am only talking about that rho star. I have only rho star, rho star, we wrote 

it as sigma i z i, e, n i, n i infinity, I am supposed to write in terms of the Boltzmann factor. 

And there is an exponent – z i e psi by kBT term.  

 

I am going to write that as 1 – that I E, psi / kBT. That is all we have done. So therefore, I can 

simplify this as sigma z i e n i infinity times 1, this term, multiply by – sigma z i e n i infinity 

at the next term, z i e, psi divided by kBT. Now, if you look at this term, what can you say 



about this term? So anyway it is rho star infinity, Anyway rho star infinity, and rho star 

infinity is actually 0, because if I look at. 
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So what you should imagine is this right? Whenever I talk about a distribution of ions in 

solution, so imagine that I have an electrolyte solution, Na + and Cl –. So we know that at 

equilibrium, there will be some distribution of ions in solution. And there is a, because it is a 

symmetric electrolyte, there is an equal probability of finding an Na + and Cl – everywhere in 

the solution. If you have a homogeneous solution, now, what I do is I bring in a charged 

species now.  

 

Whatever distribution that I had earlier, is going to be disturbed, there is going to be a lot of 

restructuring of ions and the leaps restructuring of ions will essentially lead to a electrical 

double layer formation. That means the concentration of counter ions close to the charge 

surface is going to be higher, but if I go to a sufficiently far away distance, then you will have 

again the distribution of ions it is going to be very similar. I am talking about one plate for 

example. 

 

I am talking about when I say infinite distance that means it is sufficiently far away from the 

charged surface. And you will learn a little bit later, when I say sufficiently far away distance. 

We are talking about a distance called the thickness of the double layer. That means if you go 

to a distance which is farther than the double layer thickness, you know, there will be equal 

probability of finding the positive ions and negative ions in solution. 

 



In such a case, this rho star infinity is going to be 0 because if I am working with like a 

simple case of, you know, Na + and Cl – this term is going to be + 1, e n i infinity – 1. 

Because of the Cl – E, n i, infinity, because if I add one milli molar NaCl solution, I am 

actually adding the same concentration of Na + and same concentration of Cl – ions. 

Therefore, it was even otherwise. 

 

No, I am only talking about the only thing is if I take for example, CaCl 2, is going to be + 2 

times whether there will be 2 times – . So, essentially, this is applicable irrespective of, you 

know on an average, the total charge there is 0. Therefore, the total potential will be 0. 
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So therefore, the first term becomes 0, therefore, this term becomes 0, I am only left with the 

second term, therefore, I have z i here another z i there, therefore, there is a z i square that 

comes in. And you have e e therefore, you have e square and there is psi divided by kBT. So, 

which I can express it as. So, there is a minus there. So because I had, so there is a rho star. 

So this is rho star and because I had d square psi / d x square = – rho star / epsilon, there is a 

minus, minus gets cancelled. 

 

Therefore, I am left with and of course, another epsilon comes in because I had epsilon in the 

denominator. So therefore, d square psi / dx square = e square / kBT and epsilon and 

summation of all the ions in the solution sigma i n i infinity into z i square, multiply by psi. 
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Now, let’s think a little bit about what is this you know, we said that, so this expression, I 

said this is a Poisson Boltzmann equation, now this expression is what is called a linearized 

Poisson Boltzmann equation, which is applicable only for the case of low potential, what do I 

mean by low potential is z i e, time psi must be much less than kBT. So now you can put in 

some appropriate numbers.  

 

So let us say that you know, so let us look at the limiting case. So z i e psi must be less than 

kB T for me to assume for me to say that I am working with the low potential case, So, if I 

take e psi = kB T, that means, you know, I am talking about again, you know, if z i = 1, 

therefore, e time psi = kB T. I know what is kB T the thermal energy so 1.3 10 power – 23 

joules per Kelvin multiply we are working with you know 298 Kelvin and e is the charged 

electron the psi you know.  



 

Comes out to be something like 25.7 milli volts, so you can say that if you are working with 

charged particles you know at 298 Kelvin at room temperature, if the potential if the zeta 

potential of the particle that you are measured. If that potential is 25.7 or lower, I can assume 

that the particle charges low. So, that is so, you can kind of get an estimate as to what do I 

mean by a low potential or high potential by this simple approximation.  

 

So, this psi if you work with you know, if I work at 25 degrees centigrade, if you have 

potential can be regarded as either low or high depending upon, whether the charge surface 

that you are working with has a potential that is less than 25 millivolts are more than you 

know 25 millivolts. This number is important, because you know, sometimes you may be 

working with like say a charge stabilize dispersions say that it is charged positively charged 

particles.  

 

You and somebody measures the charge on the particles and they say that it is 15 millivolts 

or you know, somebody works with the case where the charge is say – 100 millivolts. So, we 

know that definitely a higher charge means you know, it is more stable. But however, if you 

look at you know, this the case in even the case where the charges 15 milli volts or the 

surface potential is 15 milli volts there would still be electrostatic repulsion, however, it may 

not be sufficient right to know for the particles to be stable.  

 

So, of course, the more closer to 0 it is that means you know, your charge interactions may 

not be very important at all. So, therefore, you can keep this 25 millivolts in mind that if the 

surface charge is such that the surface potential is 25 millivolts or lower you know, such 

systems exhibit very limited stability because of the electrostatic effects. 
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So, now you have this linearized Poisson Boltzmann equation and of course, if I so, this is a 

quantity of which you have control over that means, you know some of them are constants in 

the equation, so, is e square is constant epsilon you know is related to the medium in which 

the particles are dispersed. So, you will typically know those values and of course, kB T is the 

thermal energy and if you work with finite temperature.  

 

And of course, you have control over the concentration of the ions are in solution and also 

you will know their valence everything therefore, I can plug all these constant together into 

and say it is kappa square, it is kappa square times psi, therefore, d square psi / dx square 

becomes kappa square into psi. That is your linearized Poisson Boltzmann equation and of 

course I can solve this so you have if I use a boundary conditions that at for x tends to 0, psi 

becomes psi not.  

 

And as x tends to infinity, psi becomes 0, if I use these boundary conditions, so it turns out 

that psi becomes psi goes as psi not into exponent – k times x. you know how to do this. So, 

you will have psi, you can dial it as A times e exponent of – k x + B times exponent + k x. 

That is the solution and if I substitute the boundary conditions, you will essentially get this. 

So that is the solution for Poisson equation, in 1 dimension.  

 

So, essentially, what this tells you is that if I have a charge surface with you know, some 

counter ions in solution. So, this potential essentially decays as an exponential function. So, 

now I with this given if I know what is kappa. I will be able to calculate what is the potential 

at every location, how does that vary as a function of separation distance and I should be able 



to calculate that given that I know what a sign not and what is kappa if I know that I can 

know what is the variation of potential with distance.  

 

That is what we were after, no, it is kappa. So, psi = psi not exponent – k times X, you can 

work it out. So, you can write this as d square psi = kappa square psi d square – k square you 

know is equal to psi = 0. So, you can do that. So, what we have done is a case where we are 

trying to think about a potential distribution near a planar surface. 

 

You can and this particular assumption that low potential it is what is called as a Debye 

Huckel approximation. So, what is called as a Debye Huckel approximation and Debye 

Huckel the 2 people who developed solution you know for the Poisson linearized Poisson 

Boltzmann equation which is applicable for low potential cases, that is why this particular 

solution that we are looking at is what is called Debye Huckel, you know, approximation. 
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You can do a similar calculation for planar you know, other kind of geometries as well, 

instead of spherical, instead of planar surface, if I am working with spherical surfaces, I can, 

again do a similar kind of formulation and only thing at do is I am going to consider, again if 

you look at, you know, the spherical coordinate system, Again, going to assume that psi is a 

function of only r, it only varies as a function of r is only a function of r.  

 

Therefore, I will take the only the first term that is 1 over r square d / d r of r square into d psi 

/ r. That is the the first term in the general expression in the general poisson equation. 

Because I am only worried about how does psi vary with r that is the first term. And again, I 

can the right hand side again, I am going to linearize it. Therefore, I essentially end up with, 



again the linearized Poisson Boltzmann equation in the cylindrical in the spherical coordinate 

system. So that is going to be the starting point. And I can of course, solve this as well. 

 

It is a fairly simple derivation, so you should be able to work it out. So what we will do is 

into in the next lecture, we will try and solve Poisson Boltzmann equation for the spherical 

surfaces case. And then we will talk a little bit about you know, what is the importance of this 

kappa square, You know, because this quantity is very, very important because in any 

calculations where you want to extract the electrical double layer interactions, you should 

know how to calculate that. 

 

And we will talk a little bit about what is the importance of and how does it depend on the 

salt concentration how does it vary; we will discuss some of those things in the next lecture. 

Thanks. 


