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So, we will continue with the models for electrical double layers. So, what we were trying to 

do in the previous lecture was looking at potential distribution near a planar surface. We took 

a 1 dimensional case that means we are trying to solve 1 dimensional Poisson equation and 

this is what the expression is, and we would like to solve this at the boundary conditions that 

at x = 0 potential at the surface itself.  



And x is equal to infinity, the potential is going to be 0. The potential would be 0 to infinity 

because either the concentration of ions at infinity is 0 or it is such that the concentration of 

positive ions and negative ions is equal such that the overall potential gets canceled. That is 

the reason why at x is equal to infinity, psi going to be 0. And we said that if you really want 

to solve this, I would somehow want to express rho star in terms of psi. 

 

So, the way to do this would be, we know that the rho star which is the charge density, the 

charge density would be related to again the concentration of ions that you have the solution. 

And we had said that this n i is related to n i infinity that is the concentration of i th type of 

ions in solution. It depends on what is the concentration of the same species at infinity 

multiplied by a factor, which is exponent of – z i e times psi divided by kBT. That is what we 

mentioned. And if I know n i star, I can get rho star because you know, n i is related to psi 

therefore, I am able to express rho star in terms of psi that is what we are trying to do. 
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So, in this Boltzmann factor, this quantity z i e psi tells you something about what is the work 

that has to be done to bring any specific ion. In this case, we are considering n i to bring it 

from infinity to a position where the potential is psi. 
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And that work that has to be done is given by z i times e times psi. rho star is also a function 

of x. So, when I said this psi is actually also a function of x. We defined rho star. Let us go 

back. The way the rho star was defined here. We defined it as a charge density. So, basically 

it depends on the distribution of ions in the solution. 
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If you look at a charge surface, we know that the concentration of counter ions in solution, if 

you look at the concentration, let us go back to this model, If we look at this model, let us 

take you know, finite volume here and finite volume somewhere there and find out what the 

distance, very far away distance. Now, if you look at, you know, the fact that you know, the, 

the concentration of counter ions is going to be higher here.  

 

And, if you go to account for the polarity, everything. There will be some, you know, rho star 

that you can calculate, which basically is the number of ions that you have per unit volume 



that I am taking. If I take a finite volume. However, if I go to a very far, if I look at, you 

know, I mean let us say, I am taking a similar volume here. The fact that you know, I have, 

you know, both positive and negative and if there an equal number your rho star is going to 

be 0. 

 

Because you know, there is a contribution that comes from the positive ion and there is also a 

contribution that comes from negative ion, so if you can say that overall charge density, even 

though it is number. I mean, this is the total charge per unit volume. The total this is not the 

number. It is not the number density it is the charge density that means if I have ion whose 

valence is i multiplied by e, multiplied by the total is a number as well.  

 

The total charge divided by the unit volume. So, if I go to a very far away distance, the fact 

that you know you will have a equal probability of finding both positive and negative ions, so 

I am going to have charge density which could be – z i times e divided by volume times the 

number. For example and + z i times e multiply by number by volume. Therefore, that 

becomes essentially 0. So, this is actually rho star is actually spatially varying when you think 

about, the total charge in the whole system is going to be electrically neutral. 
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So, we were talking about the Boltzmann factor. So, this essentially tells you what is the 

work that is required to bring an ion of a specific type from infinity to. So, now, if you look at 

this expression. So, the work that one has to do depends on what is a local psi? That means, 

we know that you know psi varies in a particular way, if I look at some position here and 

some position here or some position very very far away for example.  



So, that means I would have to spend less work to bring an ion to this location, but however, 

if I want to go closer to this, you know, to the charge surface, because of the fact that psi is 

going to be higher psi is going to be highest at the surface that is psi not. Therefore, if I want 

to move any ion to a location much closer to the charge surface, I would have to do more 

work.  

 

And so, this quantity is esentially telling you what is the probability of finding an ion at this 

position, at any location that I am looking at, what is the probability of finding an ion of that 

type at a particular location is what this quantity essentially gives you. Where n i is the 

number of ions per unit volume, at any location. Need not been near the surface if at any 

location in the vicinity of the charged surface, and n i infinity is the concentration of ions far 

away from the surface.  

 

That is, you can think about if I have added if I have taken a charge surface, and say it is 

positive or negatively charged, if I have added say 1 milli molar salt concentration to the 

solution, this n i you know n I infinity can be considered as the bulk concentration, it can be 

considered as the concentration of the electrolyte that I have added. And z i of course is the 

valency of the ions. So, depending upon whether you are talking about you know, 

monovalent ions or divalent ions and you know z i can be, + 1 or – 1 or + 2 or – 2 depending 

upon you know, what kind of ions that you are working with. 
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So, you can actually think about this Boltzmann factor, you can actually derive an expression 

from Boltzmann factor if you know a little bit about you know, chemical equilibria of 



electrolyte solutions. So, we know that in solution thermodynamics, we talk about chemical 

equilibrium mu i which is the chemical potential is equal to mu i 0, which is the chemical 

potential of any species or any chemical in the standard state. 

 

+ RT ln a i, where a i is what is called as activity coefficient. Now, when you are working 

with ideal solution, you can replace activity coefficient with you know, mole fraction or 

molar concentration of you know, ions in solution therefore, mu i becomes mu i not + RT ln 

x i. Now, the condition for you know, a solution to be in a thermodynamic equilibrium is that 

d mu i is going to be 0. 

 

Therefore, so a d mu i is going to be df mu i 0 + dF RT ln x i. And because d mu i 0 is the 

chemical potential in the standard state, that is going to be 0 therefore d mu i becomes RT 

into d because you know, if I am working with the constant temperature I can take RT out. 

So, d mu i essentially becomes RT d ln x i. So, which essentially tells you that and because of 

the fact that you know this chemical potential is 0. 

 

Therefore RT d ln x i = 0 or d ln x i = 0 which tells you that you know this ln of xi should be 

constant which gives you that x i = x i infinity that means, if for any solution to be in 

chemical equilibrium, the concentration of species at any location is same everywhere. That 

means if I have a container and like say for example, I have NaCl for example, of course this 

is an ionic state but I know I can take a mixture of 2 species for example. 

 

That means, if I go to some location I look at the concentration of say species A and B in 1 

location and if I look at the concentration of A and B in another location, the concentration 

here and here is going to be exactly same. That is what this expression essentially tells you. 

That is when you talk about chemical equilibrium.  
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However what we are looking at is a case where you have charged species, when we talk 

about charged species I have an electrolyte solution, similar to chemical potential, you can 

define something called as a electrochemical potential. Which is mu E, that is the 

electrochemical potential, which is summation of the contribution that comes from the 

chemical potential plus an additional term. 

 

In this additional term again z i is the valency of the ions, F is what is called as the Faraday 

constant and psi is what is called as a local electrostatic potential. And this Faraday constant 

is equal to the charge of the electron multiplied by NAV, that NAV is the Avogadro number. 

So, therefore, when you talk about electrochemical potential you can say that there is for each 

ionic species in solution, there is a electrochemical potential at any given location. 

 

It depends on you know the constituents of the electrolytes at any given location in the 

solution there is a electrostatic potential which tells you something about how easy or how 

difficult it is to add more of that species into the solution at that location. Or the other way of 

thinking about this would be that if I want to add a particular species into a particular 

location, in this in the electrolyte solution, I would have to do some mechanical work. 

 

And that mechanical work which is required to bring 1 mole of an ion from a standard state to 

a specified concentration and a chemical potential. That means if I have a solution, and if I 

want to add some species at that location. So, the amount of work that I have to do depends 

on what is the local concentration of ions at that location and what is the electrochemical 

potential because of the charge species of a particular ion that is present at that location. 



So, again, of course at a chemical you know, if you say that there is something if the solution 

as a whole is in electrochemical equilibrium, again d mu i should be equal to 0 that means, I 

mix some electrolyte in solution and waited for enough time, let the system equilibrate at 

equilibrium, d mu E is going to be 0 therefore, d mu i + z i into F into d psi is going to be 0. 

This d mu i we have already shown that it is RT d ln x i. 

 

From the previous case, + z i F d psi = 0. Therefore, I can write d ln x i. If I take this term to 

the hand side, so, – z i F divided by RT, RT times d psi. Therefore, I can just say If I integrate 

this out I get ln of x i = – z i F by RT into psi plus constant. 

 

 

 

 

 

 

 

 

 

(Refer Slide Time: 15:14) 



 
That is what you get and of course, if I substitute the limits that you know at psi is going to be 

0 at x i = x i infinity you know if I do all of that, so, therefore, I get an expression which lets 

x i which is the concentration of a particular ionic species, at any given location, you know is 

equal to x i infinity, which is the concentration of the same species at infinity times exponent 

of – z i, F by RT into psi. 

 

And, and we know that F is e times NAV. We are substituting for F as e times NAV and RT is 

related to the Boltzmann constant as R = kB times NAV. So, if I replace instead of R, if I put 

NAV times kB, this NAV gets cancelled. Therefore, I have kBT in the denominator and z i into e 

is in the numerator. Therefore, x i essentially is equal to x i infinity into exponent – z i e 

divided by kBT times psi. 

 

So, this essentially is the Boltzmann factor. So, either you can define it or you can actually go 

through this route of electrochemical potential and invoke the fact that when you have an 

electrolyte solution in equilibrium, the electrochemical potential is 0 and you can actually 

essentially derive the Boltzmann factor. 
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So, that is what we have. So, we would like to solve this 1 D Poisson equation you would like 

to solve that. This rho star is summation of summation z i e n i because, you know, I would 

have to you know, I could have a you know case where I have a charged species, you know, 

it is not necessary that if I have a charge species I said that, you should always think about 

counter ions being in solution. 

 

This is the most ideal case. I only have the charge surface and the counters which come only 

because of dissociation of charges on the particle surface. However, in general, so, if I have a 

case like this, my rho star is only going to be just z i e n i, that is it. In this case, the counter 

ions being negative, so it is going to be – 1 times e and n i is going to be the concentration of 

ions in solution. 

 

If I say that there are 100 you know ions for example, is going to be multiplied by 100 

multiplied by 1.6 into 10 to power –19 coulomb divided by the volume of the solution that 

gives me what is rho star. This is the charge density, the charge per unit volume, that is how 

you get rho star but however, in several cases, what you will do is you will have counter ions 

because of the dissociation plus additionally we will also add a lot of salt.  

 

You always hear terms like you know, I have a choice stabilized dispersion I have added 1 

milli molar salt to the dispersion or I have added 10 milli molar salt to dispersion. When you 

have a case like this, I would have both co-ions as well as counter-ions in solution. Therefore, 

if you want to calculate rho star, I would have to sum up all the ions present. That is 

summation of z, for example, if I have NaCl for example, only NaCl. 



 

Then what are we going to have is for Na is going to be + 1 times e, again the concentration 

of the concentration is say 1 milli molar. For example 1 milli molar divided by, of course you 

to convert a number by using, you know, have a Avogadro number all that. But anyway plus, 

I would have – 1 that is because of Cl –, plus multiply by e n i. So therefore, this rho star, you 

would have sum up all the ions present in the solution both co ions, counter ions. 

 

You could have case where there could be multiple, you know, ions present to the solution. I 

would have to sum all of them up. This rho star has given as sigma i z i times e times n i. 

Now, z i e I am going to keep it the way it is and the for n i, I am going to substitute for the 

Boltzmann factor. And because e and epsilon, if I am working with a particular solution I 

mean, if the dielectric constant the medium that I am using is like say for example water you 

know to particular conditions. 

 

I can you know, your epsilon is essentially going to be constant. So, I can take – e divided by 

epsilon out sigma I have z i, I have n i infinity exponent – z i e psi divided by kBT. This 

expression is what is called as a Poisson Boltzmann equation. Because we started with the 

Poisson equation and then we use a Boltzmann factor. You know, and then we obtain an 

expression for how does the potential vary as a function of you know, a differential equation. 

That counts the variation of the potential as a function of separation distance. That is what is 

called the Poisson Boltzmann equation. 


