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Now what we do is, we say that, I am going to say that this molecule O, it is now embedded 

in block 2 okay. And again, it is made up with the same material right. And we say if this is 

your molecule O and we are going to embed that in a small block of thickness dz okay. And 

that is located at a distance z from the surface of another block right. Now, again I can write 

up an expression for the increment in interaction okay. Exactly the way we wrote up okay. 
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Let us go back and look at the expression right okay, it is I know that this is the interaction 

between every molecule that is in this small element and the entire block right. Now my 

interaction per. So, I will again, the same concept right. The number of pairs multiplied by 

interaction per pair. Now, the interaction per pair now is actually it is - rho NA by M into 

beta into 2 pi, right into 1 over 12 z cube, you guys agree, right. 

 

There is the interaction per pair, now multiply by the number of, you know, pairs. So, I am 

going to multiply this only by dz okay. And I am going to say that the interaction that I am 

going to calculate is interaction per unit area okay, ideally, I should multiply this by the 

number of molecules in this small strip, dz, okay, which is dz times rho NA by M, into some 

area, right. 

 

Because that is the volume. So, this will give me the number of atoms or molecules in their 

small thin section, dz right. That is area times dz will be the volume that multiplied by 

number per unit volume. But I am going to say that the d phi, or the phi that I am going to 

calculate, it is actually energy per unit area. And then I am going to multiply this interaction 

pair only by rho NA by M multiplied by the dz okay. 
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Therefore, I have rho NA by M whole square, I had 2 beta and there was 12 there. So, there is 

a you know factor of 2 I have removed. So, beta pi into dz divided by 6 z cube is what you 

get. Yeah, so this is yeah, yeah. I mean, this is the area of the surface area of the block if you 

want to consider yeah okay. So, now, what I can I want to do is if I want to now get the 

overall interaction between block 2 and block 1. 

 

What do I do, I again have to do an integration and this integration is going to be from d 

which is the distance of closest separation to again, infinity right, I could have them really far 

apart, the separation distance is going to be infinite. And then I can bring them to any 

distance d, okay. So, if you do that, your phi is going to be rho NA divided by M whole 

square beta pi divided by 6 okay, again, z power - 3 + 1 divide by - 3 + 1 okay, 0 d 2 infinite 

okay. 

 

I have a negative sign here, right okay. So, therefore, this becomes - rho NA by M whole 

square into beta pi by 6 into 1 over d square okay and there was 2 there right, there was a 2 

here this becomes well right, because the - 2 right - 3 + 1 is 2. Therefore, 6 2 is 12 okay. 
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So, therefore, what you actually end up is the overall interaction phi A okay is going to be 

row NA by M whole square beta times pi divided by 12 into 1 over d square, there are a 

cluster of constants, this rho NA by M is a constant for a given material that you consider and 

you have B okay, that is again beta, again constant for a given material okay, you can 

multiply this by pi and divide by pi you know to get a particular form okay. 

 

And then you know your phi A essentially goes as - A divided by 12 pi into 1 over d square 

and this A actually is a cluster of constants which is what is called Hamaker constant okay, 

which has all the material properties, right. It has what is beta, the density of the material that 

you are considering Avogadro number and this is the molar mass right. 
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So, now, that is the interaction between 2 you know blocks right. Now, in fact, that is what 

we derived here, okay, - A divided by 12 pi into 1 over distance square okay, that is for 2 flat 

surfaces. And that is what I mentioned right, this interaction if you calculate I will come back 

to this point little later, okay. Now, if you had 2 atoms or small molecules, you know your 

energy of interaction goes as 1 over distance power 6. 

 

Now, if you have 2 flat plates, the energy of interaction goes is 1 over distance square okay. 

Similarly, you have expression for different you know, types of particles that you are going to 

deal with okay, if you have 2 spherical particles of you know different radii R 1 and R 2 and 

if they are again this you know separated by a distance d, then the energy of interaction goes 

as - A divided by 60 times R 1 R 2 divided by R 1 + R 2. 

 

If the particles are of same size this becomes R square divided by 2 times R right, if you have 

particles of same size, then this gets cancelled. Therefore, regimentation will be - A divided 

by 12 times my AR divided by 12 times d right, that is if you are working with 2 spherical 

particles and if you would like to calculate what is the van der Waals force of interaction 

between 2 identical spheres of same radius. 

 

Then the energy of interaction is going to be - AR divided by 12 d okay. So, therefore and 

this is the interaction between 12 a spherical particle under a flat surface the energy of 

interaction goes as - AR divided by 6 times d. 
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So, there are expressions like this which are available in the literature, which you could use, 

okay. So, this is, so this column is for the energy of interaction. And of course, as I said, if 

you know the energy of interaction, I can also calculate what is the force of interaction just by 

- dW by you know if you differentiate this with respect to distance, okay, that is when you get 

the force of interaction right. 
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Now, before I would like to make a point, but before that, I would think about what is the 

units of Hamaker constant, right. Let us, so this is the expression for Hamaker constant, right, 

that is what we derived. So, rho has units of kg per metre cube, right. That is your density. NA 

is number per mole right divided by and you have M is a molecular weight that is, you know 

grams per mole right or kg per mole or grams per mole, right. 

 

What is that, Yeah, yeah so that is finite. So, right, everything is cancel. So a beta was in your 

beta. 
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I do not know if you pay attention beta actually has units of joules metre per 6 okay, it has 

units of okay joules, okay metre per 6 right, this unit is joules metre per 6 and you have 1 

over metre cube okay again whole square. So, therefore this metre power 6 metre power 6 

gets canceled. Therefore, Hamaker constant will have a unit of joules right. Then let us think 

about typical values for Hamaker constant okay. 

 

I know the magnitude of beta for several materials, let us take a simple case of water, beta is 

okay 2.10 into 10 power - 77 joules metre per 6 right this beta okay multiply that by density 

of water is 1000 okay let us say some number typical number kg per metre cube Avogadro 

number is 6.023 10 power 23, you have pi divided by molecular weight of water it is 18 

grams per mole okay. 

 

That is 18 divided by 1000 okay, that is kg per metre cube whole square right, if you put in 

all the number that I get is about 2.32 okay that is A is going to be 2.32 into 10 power - 19 

joules is what you get okay. If you put in the typical values you know for the constants right. 

So, this for water or typical number that you get is 2.3 to 10 power - 19. So, typical range of 

Hamaker constant for any material is in the range from 10 power - 20 to 10 power - 19 joules 

okay. 
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Now, this is a list of Hamaker constant for different materials taken from different sources , 

what is interesting to note would be that this is water if you look at this number right 4.35 is 

very close to what we calculated right of course, this is an approximation right, it is very 

close to what we calculated. Now, if you look at metals okay, the numbers are I know about 

16 to 45 you know 10 per - 20 okay. 

 

This is 10 power - 20. This is when you say is 10 power 20 there is going to be - 20 right. 

Now, and if you look at gold. So, what it means is that if I have a polystyrene particles okay 

of some size say 10 nanometer for example, okay whose Hamaker constant is about say 10 

okay 10 power - 20 joules or if I take gold particles of again exactly the same size whose 

Hamaker constant is about 45 okay into 10 power - 20 okay. 

 

The gold particles would experience a greater van der Waals force of attraction compared to 

the polystyrene particles because the Hamaker constant for gold particles are much larger 

than the Hamaker constant for polystyrene, okay, that is the implications. Therefore, you go 

back and look at literature, whenever you people talk about gold nanoparticles, you will 

always see that the moment you may gold particles they cluster together. 

 

And they form large aggregates because of the large magnitude of van der Waals force of 

attraction, if you want to keep particles of metals, okay in a dispersed state, what people 

typically do is they make particles and then they typically put a stabilizing layer. It could be 

grafting, okay, it could be putting a surfactant layer on the top okay, something like that there 

is always done. 



 

If you do not do that, the van der Waals interactions are going to dominate and they will lead 

the particles could aggregate a cluster because of van der Waals forces, okay. So, before we 

finished just one point one thing that you should watch out is whenever you have an 

expression for energy, in some cases, the energy is expressed as energy per unit length. If you 

look at this, right, A has units of joules. 

 

This is metre per half right, there is R right and you have metre power 3 by 2, okay, this gets 

cancelled therefore, energy is going to be in okay, joules per unit length. And of course, you 

had a case where you know the energy was expressed in terms of energy per unit area, okay 

or if you can take cases like this energy is expressed just in terms of joules itself, okay, one 

thing that you should worry about whenever you get an expression, you can have an 

expression in which you calculate the interaction energy. 

 

Or interaction energy per unit area, or interaction energy per unit length, you have to be 

careful, that is all okay, so with that we will stop. So, what we will do tomorrow is we will 

talk a little bit about the limitation of the approach that we followed, okay. And then we are 

going to come up with some simple methods by which I can relate a Hamaker constant to 

some measurable properties of the materials, okay, it is what we are going to look at in the 

next class. Thanks. 


