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Hello everyone, what we are going to do in this lecture is to talk in detail about linear 

viscoelastic response. If you recollect in this course, we are more interested in the mechanical 

characterization of bituminous mixtures. So, when we use the word mechanical 

characterization, we really mean the models relating to the stress-strain-time response as well 

as the experiments that can be conducted to elicit such response. 

 

So, this is an iterative process. What kind of experiments we do and what kind of models can 

explain such behavior? In the earlier days at least before 1960s - 50s during those time most of 

the models that were used for characterizing the response of bituminous mixtures where 

linearly elastic in nature. This has something to do with the lack of sophistication that we had 

in the experimental characterizations. 

 

Over a period of time in 60s -70s and especially during the late 80s, when SHRP came in 

substantial amount of intros have been made in terms of the mechanical characterization of the 

bituminous mixtures. So, if we really need to understand how to interpret the experimental 

results we need to have some tacit understanding of how this material actually behave and in 

this lecture or in this series of lectures we will be talking about the linear viscoelastic response  

(Refer Slide Time: 01:53) 



 

And the overview we will have an introduction, we will be talking about elastic/viscous/ 

viscoelastic response and then we will also introduce in a nutshell what is aging material though 

we won't be spending too much time on this aging material. Okay? 
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And the study material for this will be the book by Wineman and Rajagopal “Mechanical 

response of polymers- An introduction” Cambridge University Press, 2000.  

 

There are few chapters in this book which are used in this particular lecture. And in fact, in this 

lecture, we will be introducing the concept of creep compliance and stress relaxation. In the 

next lecture, we will be looking at what exactly means to be a linear elastic material, the ideas 

related to scaling, superposition as well as the Boltzmann superposition will be introduced and 



then we will also look at few differential rate type models. So, this will more or less conclude 

our discussion about linear viscoelastic response. Okay? Right? 
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So, what exactly is this viscoelasticity or what it means is very simple in fact a very simplistic 

definition of viscoelastic is as if it is a additive of elastic solid and viscous fluid. This is not 

really the correct way of interpreting this response. In fact, the correct way of doing it will be 

to take into account the hereditary behavior of the material; there are hereditary solid mechanics 

fluid mechanics textbooks that handle such kind of things. 

 

But as far as this course is concerned and since our focus is going to be mostly on bituminous 

mixtures and we are going to use viscoelastic response as a tool to understand this material. 

So, we will be introducing the subject matter as much is essential. There are graduate level 

courses maybe three or four courses that one should take to completely understand the linear 

as well as the non-linear viscoelastic response of this material. 

 

And if you actually search through our NPTEL archives, there are many courses that are already 

offered or available in which one can develop substantial understanding. Right? first and 

foremost thing is we need to understand that time is an explicit parameter and we now want to 

ask this question under what circumstances one can include the response of the time or exclude 

the response of the time. 

 

So, in the earlier days around 1930s - 1940s, we had interest development with more some of 

the most famous scientists by name Marcus Reiner and Bingham, in fact these 2 people were 



credited with coining this word Rheology. So ‘Rheo’ essentially means flow. okay and this is 

the science of flow and the starting point for all these things is a fictitious number that they 

called it as Deborah number. 

 

This is a very critical point here when you want to really include the response of the time and 

when you conduct an experiment how much time one should even do an experiment. Okay? 

So that is the most critical point here. Right? 
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So, Deborah is credited to be one of the five women in the Bible called as a prophetess. I have 

written it as prophet because that is what it was given there and she is supposedly quoted to 

have said mountains flow before the Lord and in fact a later translation says mountains quake 

in the presence of Lord and that is from the older Testament right. So, this Deborah number is 

taken as the ratio of the time scale for material rearrangement to the experimental time scale. 

 

So that means you are taking a material you do not know what that material is and you are 

trying to do an experiment there is going to be some time before the material can completely 

respond and reach a steady state if your experimental time scale on the time required for the 

material to reach a steady state response are identical then it essentially means that the material 

shows what is really called as a viscoelastic response. 

 

If you take a material and if you apply a load and if the material instantaneously responds, so 

that means if the material rearrangement timescale is very, very small compared to the 

experimental timescale you are going to call those material as elastic. On the other hand, if the 



material is keeping on it is never reaching any steady state and it is keeping on deforming; 

okay? In which case you are going to say that the material response is viscous? 

 

A viscoelastic material in a sense says that the material rearrangement scale as well as the 

experimental scale are of the same order and so the Deborah number is supposed to be 1, in 

which case you cannot exclude the influence of time. Okay? So, we need to carry out 

experiments always as a function of time. So that means if you really want to express the 

response of the material you always have to write something like this. Okay? It is always going 

to be the function of the stress, the strain as well as the time. 

(Refer Slide Time: 08:20) 

 

So, to re-emphasize again, in a typical viscoelastic material the time necessary for the material 

rearrangement to take place is comparable with the time scale of the experiment. In real life, 

all the material the rearrangement takes some finite time based depending on the boundary 

value problem that we want to solve us choose to include or exclude the influence of time. 

Because by adding time as another variable in all your calculations in a very simple language 

all the ordinary differential equations, now become partial differential equation.  

 

The integral you have to solve integral equations, and these are not reasonably easy integral 

equations to solve. So, most of the time what practitioners do is to look at the boundary value 

problem that they are trying to solve and find out whether it is essential to include the influence 

of time. If it is not necessary, we just exclude the influence of time and then we solve it in a 

reasonably simpler way.  

 



And in fact to emphasize, all the real-life material are always viscoelastic in nature and we 

choose to ignore the influence of time. In fact, to give an example, you have seen concrete 

behaving like a viscoelastic material, soil behaving like a viscoelastic material, almost all the 

polymeric composites are viscoelastic material, human blood is a viscoelastic material, most 

of the composites that you see are viscoelastic in response and under very high temperature 

even conclude that steel will behave like a viscoelastic material. Right? 

(Refer Slide Time: 10:19) 

 

So now what we are going to do is we are going to look at what is elastic response? What is 

viscous response? And what is viscoelastic response? And most of the motivation that I am 

going to present now in this particular section, can be found in detail in Chapter 1 of the 

reference that has been given earlier. Right? 
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So, we are going to now do a very simple experiment, what we are going to do is we are only 

going to do let me underline this is going to be the one-dimensional stress-strain state. So, we 

are going to find out where the stress versus time as well as strain versus time. Since we say 

that almost all the material exhibit responses that depend on time irrespective of whatever be 

the material be we will include the influence of time and then later depend on the uniqueness 

of the stress-strain relationship we will choose to include or exclude the influence of time. 

 

So, for illustration purpose we are going to take a steel rod or anything having a length L naught 

and it is subjected to that results in a stress of Sigma and this is the length. Okay? So, I am not 

here really very careful here I am since I am talking about one dimensional stress state. I am 

not going to be too much worried about what kind of traction is going to be applied that will 

result in this kind of a stress. 

 

So, it could be a uniaxial extension, or it could be something like shear. Here also I am not 

differentiating between the shear stress as well as the normal stress and the same notation of 

Sigma is used here. Okay? Right? 
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So, let us go to the thing so we will start now looking at the classical elastic solid. So, by 

classical elastic solid now we have to give some kind of a model to it. So, we will take the 

ubiquitous spring having a length of 𝐿0 and it is subjected to a force 𝐹 and if you extend it by 

𝐿0 + ∆ and this is a linear spring. Okay? So, since this is a linear spring, one can straightaway 

write the relation between 𝐹 and ∆ as 𝐹 = 𝑘∆F. 

 



And so now what I am going to do is I am going to straightaway write the relation between 

stress and strain for this material. So, I am writing it as 𝜎(𝑡) = 𝐸 𝜀(𝑡). Now this is an elastic 

spring, linear elastic spring we know very well that it can be safely concluded that you know it 

will not depend as a function of time but let us explore it little more carefully. Okay?  
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Now what we are going to do is, we are going to do some simple experiments thought 

experiments. So, what do I mean by, that I am going to do a stress control test? So, if you see 

here in the top figure this is σ and this is time. So, I am applying a stress given by (a), in which 

I apply a  σ0 here and when I apply this stress 

(Refer Slide Time: 13:50) 

 

Since the response of the material in fact if you look at this equation, 𝜎(𝑡) = 𝐸 𝜀(𝑡) and since 

𝐸 is the constant. 
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What we are going to get is the response of the strain is also identical in nature to the stress. 

That we have given here so there is going to be a jump here and then the stress is constant it is 

going to be here something like this, so there is going to be an instantaneous deformation to 

some fixed value 𝜀0 which will basically depend on the value of  σ0 that we applied and this is 

not varying with time 𝑡. Okay? Very nice! 

 (Refer Slide Time: 14:34) 

 

So, let us go to the next step, we will do the same test instead of stress control test? We will do 

this strain control test. What do we mean by the strain control test? We are going to take this 

steel rod, whatever be the object and subject it to an instantaneous strain of 𝜀0  that is shown 

here and because of this what will really happen the stress also reaches an instantaneous value 

or to put it in a correct way to get a strain of 𝜀0 one needs to apply a stress of value σ0 here and 



since the strain is kept constant. Okay?  And the stress that is required to keep the strain constant 

is also going to be of this particular order and this is also not varying with time. Okay? Right? 
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Then what we want to do is we want to see whether the effect of different histories will play a 

critical role? what are all the different histories, we are not only talking about stress history (a), 

we are talking about something like (b) and we are talking about something like that (c). so 

now, if you reach this strain 𝜀0 by in fact you can actually see we reach this strain 𝜀0 at time 𝑡1 

and you can reach it through (a), you can reach it through (b) and you can reach it through (c). 

 

And you will see that more or the same stress is reached at 𝑡1 and this is going to be independent 

of the strain rate. So, what is the strain rate here? This is the strain, and this is the time. So, the 

derivative of this is your strain rate but since we have a constant material constant here which 

is independent of the time even the stress is also going to be of the same way and this is going 

to be independent of the strain rate. 
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So what now we can do is, we have now seen here that we gave as we did the stress control 

test, we did a strain control test, we also looked into the influence of different stress histories 

and once we have done all these things we realized that for each value of strain or stress there 

is an unique value of stress or strain. Okay? So, this equation that we see here we realize that 

it is not necessary to write in this particular way;  

 

So, what we are going to do is we do not want to do this we can straight away write this without 

explicit mention of time here and so we can plot 𝜎 and 𝜀, and which is what you see here. So, 

this holds good for a linear elastic solid. 
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The next thing that we want to also say is and in fact, if we, if you take a good course on 

mechanics the big continuum mechanics course most of the time the formulations will start 



with the thermodynamics. So that means, the manner in which a body stores and dissipate 

energy essentially tells us something about what is the constitution of that particular body.  

 

So most of the thermo dynamics based modelling will start with the reduced energy dissipation 

equation and then we prescribe constitutive assumptions on how the material stores energy and 

how the material dissipate energy and subject to some appropriate physical constraints, derive 

the equation for the model, for the constitutive model for the material. 

 

So, it is always very, very useful to keep in mind something about what is really called as the 

energy dissipation. And as far as bituminous materials are concerned. it is going to be necessary 

to understand that some amount of energy is going to be dissipated, whenever there is a vehicle 

passage in real life, be it for the case of rutting which you must have heard many times during 

this lecture series or be it in terms of the fatigue damage. 

 

That is always going to be energy dissipation and the quantification of the energy dissipation 

only gives us some reasonable and rigorous specification criteria. Okay? So now let us 

understand what happens to an elastic solid when we subject to this kind of a deformation, we 

know for a fact that there is no energy that is dissipated. So that means if you take an elastic 

material and if you deform it and if you retain it to the original shape then absolutely the work 

done is 0. So, there is no energy dissipated. 
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Then we will also look into quickly into what happens in terms of the sinusoidal oscillation. 

So if this is the history, strain history that you are prescribing and you will also going to see 



that, this is the stress history that is going to be necessary for you to make the material deform 

like this and you will also see that this amplitude ratio, which is nothing but  
𝜎0

𝜀0
, it is not varying 

with time, it is not an explicit parameter of the frequency.  

 

So, the effect of sinusoidal oscillation will be the same and in fact when we come to 

viscoelasticity, we differentiate between what is called as small amplitude oscillatory shear and 

large amplitude oscillatory shear. We will not be discussing about large amplitude oscillatory 

shear in this course we will be talking about small amplitude oscillatory shear and this will be 

discussed in detail by Dr. Padma Rekha. Right?  
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So now let us go to the viscous portion, so we to recap we said the viscoelastic material 

response could be taken as some kind of a sum of elastic solid and viscous fluid and we wanted 

to explicitly consider the influence of time. So, we assumed spring to be a model for elastic 

solid and we did some thought experiments basically such as stress control test, strain control 

test as well as different strain histories and we found out that one can eliminate the influence 

of time. 

 

So, an elastic solid you can draw the strain response in a 𝜎 versus 𝜀 graph. Now what we are 

going to now do it is we are going to look at the classical viscous fluid and we are going to 

prescribe some mechanical model here. So, these kind of mechanical models in a sense helps 

us to visualize the response of the material. If you go and take a good look at some of the 

rigorous textbooks in viscoelasticity.  



 

For instance, Christensen or many of the other books they normally do not encourage the use 

of these kind of models, analogous models but for the sake of pedagogy here we are going to 

prescribe and use this kind of a models here because it helps us to visualize how this material 

can actually responds. So, what is the model that we are going to use for a classical viscous 

fluid we are going to use a dashpot. 

 

So we all know what is a dashpot, so no explanation will be given, you can actually see that 

the interstices of this dashpot are filled with a Newtonian fluid so we subjected to the force 𝐹 

and you are going to see this extension and then interestingly you are going to see that what 

we draw here is 𝐹 versus ∆̇ (time derivative of Delta) and we will see that the equation that is 

given is 𝐹 =  𝜇 ∆̇, this is nothing but the Newton's equation of viscosity that most of you are 

familiar with. 

 

So, what we are going to do it the same thing we did whatever in the earlier times. So, we are 

going to write it as 𝜎 =  𝜇 𝜀̇,  and here you can actually see this is nothing but your viscosity. 

I am following the notation that is provided in the reference book for this material you will also 

notice that at many times in this course I have myself and my core teachers have used 𝜂 for 

viscosity they are all one and the same. 

They do not really think there should be any reason for confusion. Right? 
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So, we will do the same thought experiments, so we will go for the stress control test. now 

instead of 2 graphs which is σ versus 𝑡 as well as the 𝜀 versus 𝑡. that we do earlier for the elastic 



response we are going to have one more graph which is the 𝜀̇ and in fact it makes sense to 

connect these two things because our equation that you saw earlier is connected only in terms 

of 𝜎 and 𝜀̇. 

 

So, knowing epsilon dot we will be trying to see what kind of response we will get for 𝜀 versus 

𝑡. So, we do this stress control test, so we increase the stress to 𝜎0; please focus your attention 

on the stress path (a) and we hold it at a constant. Now what will really happen if you use the 

equation show earlier, this (a) it is also going to be constant and the material starts flowing. 

 

So, 𝜀̇ remains the constant, there is not going to be, no strain is recovered so if you unload it 

here that is not going to be any strain recovery and the strain rate instantaneously will go to 

zero. Now you can also try and get what will be the variation of 𝜀(𝑡) knowing the 𝜀̇ here. Since, 

𝜀̇ is constant this is going to increase at a constant rate here as can be seen here. Right.  
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So, this is the stress control test. But what about the strain control test for that we need to 

understand a little bit carefully. So how should one write this particular test that we did if you 

really want to write it carefully, we need to write it as in this form. Okay? And this is nothing 

but your Heaviside function. Okay? You should be able to understand what a Heaviside 

function is, any basic textbook of calculus book will tell you what is a Heaviside function. 

Okay? 

 

So, what is this essentially means is for 𝑡 < 0, 𝜎0 = 0 and for 𝑡 > 0, 𝜎(𝑡) = 𝜎0. That is what 

this operator essentially says. now what is that we are going to do here?  So, if you write the 



same thing here if in a strain control test this is what it is okay? Now if we want to take the 

derivative of  𝜎(𝑡) you are going to get because again from elementary calculus. 

 

You know that if you take the time derivative of the 𝐻(𝑡) you are going to get a Dirac Delta 

(𝛿(𝑡)) and 𝛿(𝑡) = 1 at 𝑡 = 0,  and elsewhere it is zero. 

So, what it means is if I have to conduct an experiment like this on a viscous fluid the force 

that is required to cause that the deformation is infinite. Okay? And it is going to shoot up like 

this and then come back at the same thing and it is going to be remained to be zero.  

 

Okay? While this kind of analogy are theoretically possible in practical sense of the word what 

it means is it is not possible for you to conduct a strain control test experiment on linearly 

viscous fluid. Because there is no way you can mobilize infinite force at 𝑡 = 0, so that the 

material can have a constant strain. So, these things are not really possible; 
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So, now if you are looking at the effect of different histories, so let us talk about trying to reach 

the same strain rate through different histories so (a) is what we talked about now let us take a 

look at (b), so this has a different strain history, strain rate. (c) has different strain rate, so while 

you might reach Sigma naught at the same as far as if you look at these two graph, but since 

the strain rate is going to be completely different. 

 

The actual strain that you reach at t1 is not the same and the strains are going to be completely 

different and even here also the strains are going to be completely different. Okay? 
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So, what it means is the time plays a very critical role here and if you want to really characterize 

the response of a viscous fluid there is no way you can ignore the influence of the time. So, the 

stress depends only on the strain rate, it does not depend on the value of strain at a time 𝑡1 or 

on the previous sequence of the strain values. So, if you eliminate t in 𝜀(𝑡) and 𝜎(𝑡) and we 

can plot 𝜎 versus 𝜀(𝑡) if you want you can do it, but you need to understand that the x-axis is 

𝜀̇. 

 

So, you can eliminate time and plot as long as 𝜎(𝑡) =  𝜇 𝜀(𝑡)̇  that is what it is okay? Right? 
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So, if now let us continue our discussion talk about energy dissipation. So, what this essentially 

means is if you take a viscous fluid and if you deform it the work is completely converted to 



thermal energy. So that means everything is dissipated. Okay? So that means you recover 

completely nothing out of it. 
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And if you talk in terms of sinusoidal oscillation; if you subject it to this particular strain history 

and when you take the derivative of it and substitute it here you are going to so if you have if 

you take the derivative of it you know what you are going to get so you will have mu if you 

write it in terms of 𝜎(𝑡) =  𝜇 𝜀(𝑡)̇  this is what you are going to get. 

 

So you take the derivative of it and then when you substitute it here you are going to have 𝜇 

here 𝜀̇ here 𝜔 sin 𝜔𝑡,  𝑐𝑜𝑠 𝜔𝑡 you are going to get and then you rewrite the 𝑐𝑜𝑠 𝜔𝑡 in terms of 

sin 𝜔𝑡 + 𝜋/2 , there is a reason to rewrite it in this particular way because it essentially tells 

you that there seems to be a lag between the stress and strain response and this lag for a linearly 

viscous fluid is 90. 

 

Now what was the lag as far as the elastic solid is concerned if you recollect this particular 

expression you are going to see that the lag was zero. There was nothing here so for your elastic 

solid the lag is zero, whereas for a viscous fluid the lag is 90. So, we need to remember this 

because when we are talking about the viscoelastic response of the material the lag can vary 

from 0 to 90. 

 

If the viscoelastic material exhibits a response close to that of an elastic solid the lag may 

approach close to 0 and when it behaves like a viscous fluid the lag can actually reach 90. So, 

it is a very simple and interesting way of interpreting the response of the viscoelastic material 



and this will come in handy when we are talking about master curves for bitumen or bituminous 

mixtures. 


