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Good morning so, we continue looking at the Strength and Behaviour of Masonry under 

different actions, we were examining the behaviour of masonry under compression and 

trying to look at the possibility of a closed form solution that gives you the compressive 

strength of masonry. 
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With the knowledge of its constituent properties- the unit and the mortar and the 

theoretical framework that we were looking for failure under compression on the basis of 

linear elastic; an assumption of linear elastic behaviour of the constituents was what we 

were looking at in the previous lecture. And we were examining, as we were concluding 

the lecture, how this important assumption that the constituents are behaving in a linear 

elastic manner actually does not explain completely the failure mechanism as physically 

observed, right. 

So, the Haller-Francis theory which is what we actually defined, neglects this non-linear 

behaviour that you should expect of the constituent materials and the point is, if it is 



linear behaviour that you are going to assuming both in the unit and in the mortar it is 

going to be difficult to explain how the failure in the brick and the crushing of the mortar 

actually happen as simultaneous phenomena in reality, but the theoretical framework 

developed in this manner could not be able to give a justification for the physically 

observed phenomenon. 
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So, therefore, further developments in this direction have actually examined the 

possibility of looking at an inelastic behaviour of the mortar. This becomes an 

unrealistic, the elastic linear elastic assumption becomes an unrealistic assumption both 

for situations of the brick unit failing first or crushing happening in the mortar early on. 

So, this slide that you can see is where the unit has reached level of biaxial tension that 

causes cracking following which is where the crushing of the mortar is expected to 

happen. However, if you are looking at very weak mortars then as per this theory you 

should have crushing in the mortar that that happens quite early on and the failure in the 

brick unit that happens after which again does not really explain the physical 

phenomenon of co-action between the two. So, you see the disparity in the values of F 

and D which do not give us clarity on how physically the phenomenon is occurring with 

the cracking in the brick unit leading to loss of confinement in the mortar causing 

crushing failure in the mortar itself. 
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So, the extension that we will look at, which is useful to examine is one way we consider 

that the mortar behaves in an inelastic manner. Now between the mortar and the unit you 

will agree that the behaviour of the unit is being the brittle material, probably closer to a 

linear response and it is ok to consider a linear elastic behaviour there, but look at a non-

linear behaviour and an inelastic behaviour of the mortar itself. 

So, we looking at the basis of this approach is the Hilsdorf’s approach of 1969 and if you 

remember the initial slide that I showed you when we will looking at co-action between 

the two, the mortar and the unit is where the stress path in the unit also has a inelastic 

behaviour of stress path of the mortar in the prism also has inelastic response and you 

can see that it is almost a simultaneous occurrence of failure in both the unit and the 

mortar. 

So, if this is really the more appropriate basis to describe a theoretical framework for the 

failure, then what is important is that you have analytical form of the failure of the unit 

and an analytical form of the failure of the mortar and considering factors of 

compatibility and equilibrium be able to use these two and write the final expression. So, 

that is exactly what we will be looking at. 
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So, the condition under which the unit is going to split we looked at this earlier, the 

straight-line failure surface between uniaxial compression and uniaxial tension in the 

brick masonry unit itself. If you are looking at the axial compression which you can 

estimate the axial compressive strength of the brick unit uniaxial compressive strength of 

the brick unit from a flat-wise compression test and you get fbc the uniaxial compressive 

strength of the brick. You do a direct tension test on the brick unit and establish the 

direct tensile strength of the brick unit and it is a straight-line failure plane that you get 

for the condition under which the brick is going to split. So, this is something we have 

used earlier in the Haller-Francis expression themselves. 
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Now let us examine mortar and what happening to mortar, and we understand that when 

we are doing uniaxial compressive test on the mortar it is under uniaxial compression, 

but in the prism under compression the mortar goes into state of triaxial compression. So, 

you need to alter the uniaxial compressive strength of the mortar to be able to explain 

what strength you would get in mortar in a confined manner right. 

So, the triaxial compressive stress, multiaxial state of stress with triaxial compression is 

something that we should be able to account for and so, if you are looking at the axial 

compression versus the bilateral compression that you have σjy and σjx. Knowing that the 

uniaxial compressive strength of the joint material from a uniaxial test, it is fj, it has been 

observed that the behaviour that you would get for mortar if subjected to a triaxial 

condition in compression would follow a linear pattern. The important aspect to 

understand is what is the factor by which, this is going to increase so, the slope of that 

line is used and this is basically based on tests that have been conducted on concrete. 

So, the model that we looking at here is coming directly from concrete, developed quite 

early in the 20th century and the is of the form that the failure strength in compression of 

the mortar is an additive form of the uniaxial compressive strength plus, the compressive 

stress in the lateral direction multiplied by a factor that comes empirically from 

experimental observations. So, this is the failure surface that we would use for the multi-

axial state of stress in compression of the mortar. 



We are interested in rewriting this in terms of the stress in the joint and therefore, it is 

just rewritten in terms of σjx with the knowledge of the uniaxial compressive strength of 

the mortar joint material itself. 
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 So, this basically this last expression that you have seen is giving us literally at the point 

of failure is telling us how much minimum lateral confinement is available to the mortar 

joint just before the point of failure. So, σjx is the lateral compressive stress in the mortar. 

So, this expression now in terms of the uniaxial compressive strength and the stress in 

the z direction which is what we want to establish for the failure of the masonry 

assembly is written in terms of σjx ok. 
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So, with the failure planes for the constituents defined if we assume that now these two 

phenomena are meant to occur together; that is the crushing of the mortar is happening as 

soon as or immediately after the splitting of the bricks in the bilateral tension. Then we 

use our original equilibrium equations and rewrite the expressions that we saw in the 

previous slide to be able to pull out an expression for σz now from the material 

constituent strengths themselves. 



So, from equilibrium of forces we established that σbx which is the lateral stress in the 

brick into the thickness of the brick unit itself is equal to σjx which is the stress the lateral 

stress in the mortar into the joint thickness tj established because there is bond at the 

interface considering compatibility and equilibrium you get their expression. 
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And now we are able to write down the earlier expression that we had in σjx in the 

previous slide in terms of the lateral tensile strength; the lateral tensile stress in the unit 

itself.So, we write the previous expression, the previous expression if you remember in 

the previous slide was in terms of σjx. So, σjx was pulled out from the expression, the 

empirical expression of the failure criterion for mortar, we use that and with the 

consideration of equilibrium and compatibility, with this defined, we rewrite the 

expression in terms of σbx. That is what is done in this particular slide; give a factor this 

part tj/4.1tb is then replaced with this α’, we could simplify the expression a little. 

So, now we have an expression that comes from the failure criterion for mortar and using 

equilibrium in compatibility and expression for the mortar and now an expression for the 

unit itself coming from the consideration of the linear failure surface in tension 

compression of the brick unit itself. 
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 So, this is again the lateral stresses σx or σy in the unit defined in terms of the failure 

stress in tension and the failure stress in compression under uniaxial conditions of the 

brick itself. 

So, you have now these two expressions which are going to be linked now if you were to 

merge these two expressions and pull out σz from this, you get the at ultimate conditions, 

because you are considering the strength in the mortar uniaxial compressive strength of 

the mortar, the uniaxial compressive strength of the unit, the tensile strength of the unit, 

would then and the compressive strength of the uniaxial compressive strength of brick 

unit again you get the expression in sigma z.  
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This is the final expression that is used with respect to the Hilsdorf criterion.  

However, in comparison to experimental results there is a slight deviation and that is 

really because of the fact that in this we are assuming that the stress is going to be 

uniform at all points in the cross section which is not the case, stress is typically defined 

at a point. But here there is implicit assumption that entire cross section is under the 

same state of stress. So, that non uniformity that is there in the distribution of stress 

owing to several factors needs to be accounted for. 
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So, it is included in an empirical manner in this expression.  
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So, this non uniformity is actually coming from several sources, some of the sources are 

you can have perforations in the geometry, in the block itself and then the dimensions of 

these perforations can be different that can lead to a different state of stress in the block 

in the masonry prism itself. You can have irregularities on the brick surface and 



therefore, there will be concentration of stresses in some points. And smaller level of 

stresses in other points the mortar bed joint is again not something that is completely 

perfect. 

And therefore, again can contribute to a non uniform state of compressive stress and 

therefore, the expression that we saw in the last slide is altered to factor in the effect of 

this non uniformity. And the non uniformity factor is actually brought in; it is to be able 

to match experimental results in a way. And of course, this is dependent on the type of 

masonry that you are looking at some more variable than other types of masonry. 

So, this value actually comes from experimental investigations on different types of 

masonry you can see that if you can adopt an average value of 1.3. So, 30 percent 

correction is required; however, depending on the type of mortar and brick unit these 

values can actually vary quite significantly from about 1.1 to about 2.5. So, this 

theoretical framework, the Hilsdorf theoretical framework, actually gives you better 

physical interpretation of the failure mechanism and is appropriate primarily because it 

considers the inelasticity in the material, the weaker material the mortar in formulating 

the expression itself. 

So, so have would looked at couple of formulations one based on linear elastic approach 

and one which bases base bases itself on the inelastic behaviour of the material. So, you 

could look at how well they are able to match experimental results. Both fairly well do 

their jobs in capturing the failure strength of masonry. 

Student: Sir fj and fbc are both uniaxial compressive strength? 

Yes. So, the yes that is true. fj is uniaxial compressive strength, fbc is the uniaxial 

compressive strength of the unit, j is of the joint material and fbt is the tensile strength of 

the unit. So, the basic point is that it is an assembly of different constituents it is a 

composite masonry is a composite construction. 

Now, if I know the strengths of the individual elements can I arrive at the strength of the 

assembly in compression it is we have seen that it is not additive, it lie somewhere in 

between the strength and deformability of the unit and the strength and deformability of 

the mortar. So, the whole attempt is to be able to look at an analytical framework for it 

and you have seen that it is possible to link it to the geometry. So, the joint thicknesses 



are what alpha prime is standing for; the ratio of the joint thicknesses. You also have the 

factor 4.1 that comes in here and then the uniaxial strengths of individual materials 

compression mortar and unit and tensile strength of the unit. 

However, there is still variability and the non uniformity factor is something that is 

accounting for the variability that we are not able to capture analytically within the 

within a closed form solution itself ok. 
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So, continuing it is useful to look at in terms of stress- strain curve what sort of what sort 

of a analytical formulation fits the stress-strain curve of masonry itself. Again ,we are 

examining compression and in a way it is not very different from concrete in its 

behaviour in compression and studies were carried out few decades ago and they still 

valid because they do a rather good job in capturing the stress strain behaviour of 

masonry in compression. 

So, work carried out in the 70’s- Powell and Hodgkinson and Turnsek and Cacovic are 

two typical initial works that tried to examine what sort of a stress strain relationship do 

you get in different types of brick work. They also examined do you get differences if the 

bond patterns change, do you get differences if you are looking at face-loaded, if you are 

looking at flat wise compressive strength that is a prism made out of bricks laid out in a 

flat wise manner versus brick on edge and so on. 



So, several iterations were carried out in the configuration of the brick work and the type 

of masonry units and mortar as well. However, that is the typical stress strain curve and 

you can see a certain idealization the stress strain curve is possible because it tends to the 

close to a parabolic shape and here represented in terms of the ratio normalized stresses σ 

to σmax and ε to εmax. Then makes it possible to closely related to the shape of parabola 

and have if you need to use it for design purposes the equation of the parabola very well 

matches the stress strain curve of masonry itself. 

The fact that a parabola is what is matching the stress strain curve of masonry, also tells 

you that if you were looked at in initial tangent as the description of the modulus of 

elasticity and secant modulus close to the peak. Let us say two-thirds or three quarters to 

the peak you will see a significant difference between the model I defined as a tangent 

modulus in initial elastic tangent modulus and the secant modulus. And this is principally 

telling you that the material starts showing non-linearity quite early on right ok. 
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So, with that let me move on to elements. So, what we did examine in the previous 

lecture and today’s lecture in the beginning is the behaviour of masonry as a material in 

compression. And the expression is a representation of the strength of the material, but 

you do not get the same strength in a wall, for example, and that because you have other 

effects that come into the picture. So, we have now moved on from strength of the 

material of masonry to the strength of masonry element in compression and what effects 



the strength of walls in compression for example, and we will again examine if there is 

eccentricity of your axial loads, if there is eccentricity of your compression, what sort of 

effects occur and what sort of effects should you be able to analytically capture if you are 

estimating the strength of the masonry element itself. 

So, the moment we look at structural elements like walls, the slenderness of the wall, the 

basic geometry of the wall can start inducing second order effects. We have just been 

looking at a first order effect as for as arriving at the compressive strength is concerned, 

but you will never get that compressive strength of masonry in your wall. And therefore, 

if you where to estimate the compressive strength of a masonry wall, you cannot use the 

compressive strength of the masonry and say I have arrived at the strength of the wall. 

You need to factor in other problems coming in from geometry and we grossly refer to 

that as second order effects. 

But there are several aspects that contribute to the second order effects and some of them 

are listed here. It is almost exhaustive- you can have an eccentricity of the loading itself 

that the load is not acting concentric there is an eccentricity induced by the load. So, if 

the eccentricity is e you already have P into e acting on the wall which would mean there 

is a component that is just the gravity load P plus the moment acting on the wall. 

So, this itself can cause stress gradient and a strain gradient in the cross section and the 

compressive strength of such a wall is not going to be the same as when you are 

considering pure concentric uniaxial compression. So, this is typically represented in 

terms of the effect of eccentricity to thickness as a ratio, we talk of the e/t ratio and we 

are interested in understanding what is the e/t ratio that you are examining, where does 

e/t sit with respect to the overall thickness of the cross section, are you talking of e/t 

within the middle third or, are you talking of e/t that is outside the middle third, how 

severe is e/t right and codes would like to classify the way you deal with the compressive 

strength such walls to account for second order effects into different categories of e/t. 

So, low e/t, medium levels of e/t and high levels of e/t and a cap on what e/t is going to 

be as far as your design is concerned. And where does e/t, where does this effect come 

from. It is simply because your superimposed loads are not always design to sit 

concentrically with the wall you will have because of the geometry of the construction an 

eccentricity of the load transfer itself. So, code giving you a limit on the eccentricity ratio 



implies that you have to have construction detailing that ensures that the eccentricities 

induced by; the eccentricity of the load transfer by superimposed elements has to be 

curtailed. 

So, this is one of the important contributing factors of second order effects, another 

aspect that definitely has role to play is how slender the wall is right. Now typically 

codes would prescribe limits on the slenderness ratio that is defined here as the height to 

thickness ratio. We are looking at the least lateral dimension. So, you take the height of 

the wall to the thickness of the wall and again there are limits on what should be the 

slenderness ratio, because slenderness and eccentricity loading together is going to lead 

to compromise in the compressive strength of the masonry ok. 

So, we will examine eccentricity of loading first and then the effect of slenderness ratio 

and you will see as we start looking at design that most codes would give you the 

reduction in compressive strength because of a combination of e/t and h/t effects. So, the 

IS code for example, would give you a table which has h/t on one axis, e/t on the other 

axis and you look at what is the fact by which you may reduce the compressive strength 

because increase in slenderness ratios and increase in eccentricity ratios would mean 

lesser and lesser compressive strength of the element itself. 

Now, the other aspect that does have a role to play which very often we do not give 

enough attention to is you have a wall, you have boundary conditions that are the real 

boundary conditions that occur because of the construction detailing and typology and 

then for our calculations we idealize the boundary conditions right. You would idealize it 

has a fixed-fixed boundary condition top and bottom, you would want to idealize it as a 

pin-pin condition, but reality does not always have to be exactly what the idealized 

conditions are going to give you. 

Now, which means that there can be a deviation you can actually work out some 

estimates of what is the rotational restraint and the translation restraint partial restraints, 

you may be able to estimate those partial restraints and actually use those partial 

restraints to be able to arrive at effects in the wall due to eccentricity of loading or due to 

slenderness effects. So, this is an additional layer of complexity that would definitely 

come in and therefore, first being able to idealize rather correctly what the boundary 

condition should be and if there is significant deviation from idealized conditions being 



able to estimate what those partial rotational translation restraints could be is the other 

aspect that needs to be looked at. 

There is another aspect the moment we consider the boundary conditions the point is 

when you are looking at walls and floors interacting the amount to joint rotation that you 

can get really depends on what is the relative stiffness of the floor and the wall itself. The 

joint rotation that is that the floor is permitting is something that can alter the boundary 

conditions and the deflections in the wall itself and then of course, the distribution of the 

loads. 

Now, we are not talking about single load, you can have multiple loads, you can have 

loads that are varying over the length of a wall and that can introduce certain difference 

in the estimates of the strength of the masonry wall, and together these effects contribute 

to geometric second order effects also referred to P-delta effects. So, what we are going 

to be doing now is examining what is the role of second order geometric effect in 

reducing the strength of the masonry wall and if so can we have a simplified analytical 

framework based on a set of assumptions, of course, to estimate the force displacement 

relationship, the P-delta relationship of the masonry wall itself. 

So, if I know the geometry and the material strengths can I for the geometry estimate 

what the strength in compression of the masonry wall is ok. So, that is what we are going 

to be looking at in this half of the lecture. 
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The assumption, the basic assumption that we make in this process here, we are looking 

at when you have eccentricity there is bending in the wall and that can basically lead to a 

situation of buckling. So, we looking at a brittle material masonry wall or masonry 

column and examining the phenomenon under elastic buckling itself. 

For the case that we are going to examine we are going to be looking at pinned ends 

which means the ends are free to rotate, that is you might ask me when you construct a 

masonry wall how is that you get pin conditions at the ends of the wall, but typically 

what happens is you have a different material on which the wall is constructed. It is not 

brick work that is going to continue for the entire length of the building entire height of 

the building, you normally have a concrete slab that will come in at a certain point if you 

are looking at the ground storey and the plinth you might have a damp proofing course. 

So, you would normally have a different material at the boundaries of the wall and 

because you have different material thermal expansion coefficients will be different and 

that is sufficient to cause a cracking between these two surfaces. 

So, you can work with the assumption that you have crack surfaces at the top and the 

bottom allowing for some rotation and therefore, the assumption of a pinned end, two 

ends being pinned is rather acceptable from the engineering calculations themselves. So, 

we looking at a wall that is initially straight subjected to eccentric loading and examine 

the deflections in the wall due to these eccentric loading and see if those deflections are 

actually going to compromise the force capacity, the strength capacity of the wall itself. 

So, if this is the wall we are examining, we have an eccentricity of the load acting on it, 

P and we assume that the eccentricity is same at the top and the bottom; eccentricities 

can be different at the top and the bottom. Again, depends on support conditions, if you 

have full support and loads coming at a certain eccentricity different from what the 

reaction eccentricities are the base you will have top eccentricity and bottom 

eccentricities that are different. 

Now, due to the deflection of the wall, due to the deflection of the wall because of the 

moment induced by the eccentricity of the load part of the wall will crack and part of the 

wall will remain un-cracked ok. So, there will be a part of the wall which goes into 

cracking along the height and you call that the cracked zone. This crack zone is really not 



going to be participating in the load carrying function, it is only the uncracked zone that 

is actually going to be actively participating in stress distribution. 

So, we have seen earlier in our introductory lecture that if the resultant of the forces 

acting on the wall lie within the middle third of the section, then we know that the entire 

cross section is in compression, but the moment the resultant falls outside the middle 

third of the cross section you start getting tension and if the material is assume to have 

low or no tensile strength you can start getting cracking in a material which is brittle. So, 

under this assumption it is possible that for the deflection you have cracking in some part 

of the wall. If the crack has to if the entire height of the wall has to crack, it means a 

significant amount of the wall has thrust which is acting outside the middle one third of 

the cross section. 

So, basically you need to account for the fact that part of your wall, based on your 

calculations should have cracked in part of the wall maybe in the un-cracked condition, 

which means you have now different cross sections to deal with as far as load 

equilibrium is concerned right. 
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So, we will keep that in mind and use that as the fundamental difference between 

different resisting sections of the wall itself. The wall is expected to fail when the 

cracked zone reaches the line of thrust and that is at the moment of collapse itself you get 

a hinge that is forming at the mid height of the column the mid height of the column 



itself is the location where you have the maximum displacement and expect maximum 

cross section to have cracked. 

So, let us say a significant amount of cross section has cracked at the mid height and now 

the resultant compression is basically passing through a point and when the stress level 

reaches the compressive strength of the material masonry, you get crushing and you can 

have failure. But now we have basically assuming that the mid height section is 

completely cracked, but the line of thrust is passing through a point which is now the 

hinge and we are considering that almost two blocks are capable of rotating about the 

hinge itself and still continue to equilibrium the axial load that is acting on the eccentric 

axial load that is acting on it. 

Now, if you were to examine the wall along it is height which has some parts cracked 

and some parts uncracked, the deformations are going to be different and therefore, for 

the crack zone and the uncracked zone you should actually be using different differential 

equations to be able to estimate the deflections that occur because of the deflected form 

itself.  

So, we will come to these aspect, you will have to consider a different differential 

equation for the cracked zone and the uncracked zone and then you could solve these 

equations for different boundary conditions and arrive at an expression to get a load 

deflection curves. The load deflection curves will actually be able to tell you how much 

the strength in compression of the element is going to be different from the compressive 

strength of material itself. 
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So, let us examine this we want to calculate the vertical load bearing capacity of the wall 

and these are the assumptions that we begin with. We are considering a wall of length l; 

height h, it has pinned ends and it subjected to eccentric compression. We have the same 

eccentricity at the top and the bottom; eccentricity represented with the notation e here 

top and bottom eccentricities are equal.  

So, we are basically assuming a first order eccentricity; you can complicate this problem 

little more with and have etop and ebottom there are different you will have to then account 

for that in the differential equations. Your deflections are going to be different based on 

the relative values of etop and ebottom. We assume that the material has no tensile strength 

right, which means the moment you reach an eccentricity equal to the middle third of the 

cross section you get the conditions for cracking because zero tensile stress has been 

arrived at the extreme fiber. 

And a fundamental assumption here, which can become a point that you take forward 

and improve with a non-linear stress strain relationship in compression. In this particular 

exercise we are going to be looking at the behaviour and compression as being linear 

elastic. To keep things a little simple the self weight is neglected is assumed to be very 

small in comparison to the superimposed load and this is also useful as a simplification, 

because then you can assume that the same load P is acting at all sections if you consider 



the self weight that is going to be incremently changing from the top to the bottom. So, 

this is again a simplification ok. 
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So, now we need to assume we need to start examining the cracked zone and the un-

crack zoned and look at developing expressions differently for the cracked zone and the 

uncracked zone. So, let us examine one of the sections along the height of the wall itself. 

You look at a generic cross section. So, if the eccentricity is going to be within the 

middle third of the cross section, we are looking at section 1-1, if the eccentricity within 

the middle third the entire cross sections in compression. So, that is the uncracked region 

of the wall itself. However, in regions of the wall particularly the middle portions of the 

wall, the eccentricity is now going to be beyond the middle third of the cross section and 

so, you will have cracked conditions. 

So, section 0-0 or other sections between section 1-1 and the 0-0 should possibly have 

the situation of cracking. So, you have got cracked sections defined and the uncracked 

sections defined and we are going to be assuming that the cracked zone is not going to 

participate in the load equilibrium itself ok. We are looking at sections along x, along the 

height x, delta x is the deflection at any specific section x that you are looking at. So, 

there is a total eccentricity- one is contributed by the eccentricity of the load, the other is 

contributed by the deflection of the wall itself, total eccentricity e’= e + Δ.  



And now since we have assumed that part of the wall section is going to be cracked and 

part is uncracked, we are interested looking at what is the width of the compressed zone 

because you can use only the width of the compressed zone in the equilibrium equations. 

So, let us assume that the width of the compressed zone is c and it varies for the 

uncracked zone and the cracked zone. So, the total thickness is t the compress zone the 

width of the compress zone is equal to t if the eccentricity is within the middle one - third 

of the cross section. So, if the eccentricity is less than or equal to t/6 then c = t, right. 
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If eccentricity is greater than; if eccentricity is greater than t/6 then we have to then 

estimate what is going to be c which is less than t. Now for the cracked portion we look 

at a trianglur distribution the width of the compressed zone is c, the total length is t and 

we want to estimate what is this width of the cracked zone in case the eccentricity is 

greater than t/6. 

So, we looking at a triangular distribution and the total width of the cracked zone is 

going to be based on a triangular distribution. 

 if e > 
t t

c 3 e
2 6

 
= − −  

 
 



So, we have established the width of the compression zone for the two situations. Now as 

I said we need to established differential equations that are different for the two cracked 

and uncracked segments of the wall itself. 

So, for the uncracked portion of the wall for the uncracked portion of the wall; the total 

eccentricity is the eccentricity of the load plus the deflection at that section. So, we write 

the differential equation,  
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So, that the differential equation from the first expression taken forward and for the un-

cracked portion in the cracked section you have a triangular distribution we are assuming 

that the material remains linear elastic it is a triangular distribution of stresses and the 

resultant is actually going to be acting at the centroid of that triangular distribution one-

third. So, it is written in terms of the compressive stress now the compressive stress in 

the extreme fibre is considered as fc. 
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Now, knowing the load knowing the compressive stress the strain in the cross section is 

defined merely in terms of the distress edge stress fc by the modulus of elasticity of the 

material and having defined the stress the width the compressed zone and the strain the 

curvature in the section can be defined in terms of curvature of that section can be 

defined in terms of strain over the compress length. 
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So, now with the curvature established this is essential because we know that the 

curvature is going to be different in the cracked zone and the curvature is going to be 

different in the uncracked zone ok. 
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The curvature therefore, in the cracked zone is now written in terms of the curvature 

itself. So, we defined the total displacement eccentricity plus delta as ω. So, the second 

derivative of the displacement as the curvature with now the expression for curvature 

derived as we saw in the previous slide is going to help us write down the differential 

equation for the cracked zone of the wall right. 
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So, with the two differential equations available we can now proceed to work towards a 

force displacement relationship now ok. The fundamental problem that this is rigorous, 

because your curvature can actually be different at different sections can some 

simplification be useful. So, what is done here is we assume that the wall is cracked for 

the full height ok. This is an assumption of course, the wall is not cracked for the full 



height, but this would be a conservative estimate and this basically helps us to keep the 

curvature same along the entire height of the wall ok, that can help us work towards a 

single closed form solution for the situation itself. 
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Double integration of that curvature can give us the displacements. 
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So, now in this particular case we know that the mid height displacement is maximum, 

delta naught maximum is at an x is equal to 0 you saw that the x that the origin is at the 

mid height of the wall and with the expression that we have developed for the curvature 

we can actually estimate what the displacements are at different height. The boundary 

conditions in this case if you were to have the curvature for all heights defined the slope 

of the displacement would be 0 at x is equal to 0 and looking at one half of the height of 

the wall itself and the displacement is going to be 0 at x is equal to h by 2. 



So, you have boundary conditions and you can actually then be able to arrive at what is 

the displacement at mid height by double integration of the expression. However, this 

curvature profile is something that is not known to us because the cracking is different at 

different stages this complication can be overcome if we assume that the curvature 

profile is uniform throughout the cross section. But the fact is this is still conservative an 

estimate, conservative with respect to the exact solution of the problem itself. 
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So, if we were to assume the curvature along the height being constant then the double 

integration becomes simpler you get from the expression for the curvature at any section 

plug in the values solve it and plug in the values and you get an expression in P. So, you 

get with this simplification you are able to pull out an expression in P you need a load 

displacement you need a load displacement finally, to be able to draw the effect of 

eccentricity of the load itself. 

So, simplifying this expression by assumption of the curvature being constant along the 

height you get an expression in P and earlier we have actually written down that 

expression for fc in P. So, we have 2 ways in which the axial load can be written, we 

have pulled out one from the integration of the curvature profile and the other one which 

was written down earlier with respect to the edge compressive stress. So, these 2 

expressions you could, use these 2 expressions together to get an expression for delta, I 



need 2 independent expressions one for the axial load and the other for displacement at 

mid height. 

So, you use the terms coming from the expression that you see there and the 2 ways in 

which the axial load has been derived use the 2 and get to get a quadratic expression and 

get the solution of the quadratic expression for mid height displacement Δ0. So, now, you 

have an expression for P and an expression for Δ0 and together you will be able to look at 

the force displacement relationship in the case of the wall with the dimensions as we 

started with. 

So, if you substitute the expression for delta naught back into P you get the expression 

for the force P as you see here and for a what you can basically do you see that this is an 

expression in fc in which is the edge compressive stress and the geometry of the wall and 

it also has the modulus of elasticity. So, for a given value of edge compressive stress, if 

you know that the edge compressive stress fc is the stress that which the material is going 

to fail feel. So, if fc is the compressive strength of the material for a given compressive 

strength of the material fc you can estimate what is the load that wall can carry. 

So, the final expression has P as a function of fc, P as a function of fc so, you know the 

compressive strength of the material, but the compressive strength of the material is not 

the strength of the wall because of the second order effects. So, knowing the geometry of 

the wall and therefore, you can see that there is h/t that comes into the picture directly 

that is the slenderness effect and y is the one that takes into account the eccentricity. So, 

the eccentricity effect eccentricity ratio and the slenderness effect together comes to 

reduce the the compression capacity, compression strength of the wall itself. 

So, this expression and the earlier expression for delta can help you draw a force 

displacement relationship knowing the compressive strength of the masonry, height of 

the wall thickness of the wall modulus of elasticity and the eccentricity of the loading 

itself. However, if you look at the closed form solution and the equation is actually valid 

only for a certain range of y or the eccentricity ratios. So, this is basically an exercise that 

looks at arriving at the capacity in compression of a masonry wall considering two 

important effects the eccentricity ratio and the slenderness ratio of the wall itself. 


