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Welcome back, to Prestressed Concrete Structures. This is the second lecture in Module 2 

on losses in prestress.  

(Refer Slide Time: 01:16) 

 

In today’s lecture, we shall cover two types of losses in prestress. First is due to friction 

and the second is due to anchorage slip. Then we shall learn about the force variation 

diagram due to both these losses.  

The first topic is the loss due to friction.  

1 
 



(Refer Slide Time: 01:41) 

 

The friction generated at the interface of concrete and steel during the stretching of the 

curved tendon, leads to a drop in the prestress along the member from the stretching end. 

Unlike the elastic shortening, where the loss occurs throughout the length of the member, 

the loss in prestress due to friction is more towards the anchored end, and less towards 

the stretching end. That means, the loss progressively increases from the stretching end 

towards the anchored end. Loss due to friction does not occur in pre-tensioned members, 

because there is no concrete during the stretching of the tendons.  Thus, the losses due to 

friction and anchorage slip both are typical phenomenon for post-tensioned members. 
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(Refer Slide Time: 02:47) 

 

The main reason of the friction is the curvature of the tendon. This figure shows a typical 

profile of a curved tendon in a continuous beam. On one side, we have the jack, the 

stressing equipment. In the first span, the curved profile is as shown towards the left. 

Near the support, the curve goes upwards and then again the tendons come downwards, 

and finally it gets fixed at the anchored end. In a post-tensioned beam, the curvature of 

the tendon is the root cause of the friction in the tendon. 

(Refer Slide Time: 03:51) 
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Now, in addition to friction, the stretching has to overcome the wobble of the tendon. The 

wobble means that, the tendon is not perfectly straight when it is stretched, but it is 

slightly twisted. To overcome that twisting, some additional force is needed. The losses 

due to friction and wobble are usually grouped together, and they are termed as the loss 

due to friction. 

(Refer Slide Time: 04:28) 

 

The formulation of the loss due to friction is similar to the problem of belt friction in 

machines. At the location of a curvature, a vertical component of the prestressing force is 

generated on the duct. The sketch shows the forces acting on the tendon of infinitesimal 

length dx, where the tendon is curved in a circular arc; R is the radius of the curvature; dα 

is the angle subtended by the length dx; P is the force towards the stretching end; and 

there is a friction in the opposite direction. The force in the other side is P + dP. Later on 

we shall see that dP will come out to be negative and hence, it will imply a drop in 

prestress on the right side. We see that the friction is generated due to the vertical 

component of the prestressing force, whose resultant is denoted as N. Next, P and N can 

be put together in the form of a force triangle, which is under equilibrium. From this, we 

can relate P and N. 
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(Refer Slide Time: 05:49) 

 

Just to summarize that in the previous sketch, P is the prestressing force at a distance x 

from the stretching end; R is the radius of curvature; dα is the subtended angle. The 

derivation of the expression of P is based on a circular profile. Although a tendon in a 

post-tensioned beam has a parabolic profile based on the moment diagram, the error 

induced is insignificant. 

(Refer Slide Time: 06:27) 
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How do we quantify the friction? The friction is proportional to the coefficient of friction 

between the prestressing steel and the duct in the concrete (subsequently referred to as the 

concrete). The second factor is the resultant vertical reaction from the concrete on the 

tendon, which is equal and opposite to the vertical component of the prestressing force. 

This vertical component generates due to the curvature. 

(Refer Slide Time: 07:05) 

 

From the equilibrium of the forces in the triangle, we can write that the vertical 

component N = 2P times sine of the angle dα/2. From a Taylor series expansion, an 

approximate relationship is 2P dα/2. Hence, the vertical reaction is equal to P times dα. 

That means, the vertical reaction is proportional to the prestressing force, and also it is 

proportional to the angle subtended, which is a measure of the curvature. The more 

curved a profile, the higher will be dα. The friction over the length dx is equal to μ times 

N, equal to μ times Pdα. 
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(Refer Slide Time: 08:04) 

 

Thus, the friction depends on the following variables: first, the coefficient of friction, 

second, the curvature of the tendon, and third, the amount of prestressing force.  

(Refer Slide Time: 08:22) 

 

The other phenomenon, wobble is affected by the following variables: first, rigidity of the 

sheathing; second, diameter of the sheathing; third, spacing of the sheath supports for a 

continuous beam. Usually, the sheaths are supported by some means to have the curved 
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profile. The spacing of the supports is also influential in determining the wobble. The 

type of tendon and the type of construction, whether segmental construction or not, 

influence the wobble. 

(Refer Slide Time: 09:04) 

 

The friction effect due to wobble is assumed to be proportional to the following: first the 

length of the tendon; that means, the longer the tendon, the longer will be the effect of the 

wobble. Second, the amount of prestressing force; that means, the more prestressing force 

we want to apply, the more resistance will be due to the wobble effect. For a tendon of 

length dx the friction due to wobble is expressed as k times Pdx, where k is the 

proportionality constant termed as the wobble coefficient or coefficient of wave effect. 

Based on the equilibrium of forces in the tendon for the horizontal direction of the sketch 

that we have shown earlier, the following equation can be written. 

8 
 



(Refer Slide Time: 10:04) 

 

On the left side, we have P acting towards the left; on the right side, we have P + dP 

acting towards the right, and then we have the total frictional force which is also acting 

towards right. The total frictional force is a summation of the friction due to the curvature 

and the wobble effect. From there, we get this differential equation dP =  ̶ (μPdα + kPdx) 

The equation can be solved to express P in terms of x. 

(Refer Slide Time: 11:15) 
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The solution procedure is conventional. We are dividing both sides by P, and we are 

integrating the expressions on the left and right, from a distance zero to a distance x. At x 

= 0, the prestressing force is denoted as P0. At x, the prestressing force is denoted as Px. 

The angle subtended between 0 and x is equal to α. Once we integrate, then we have the 

logarithm of P, varying from P0 to Px, =  ̶ (μα + kx). Finally, we have Px = P0 e̶ (μα + kx). 

Here, P0 is the prestress at the stretching end, after the loss due to elastic shortening, if 

any. 

As I said that there can be elastic shortening in post-tensioned members, due to sequential 

stretching of the tendons. Now here, we have got an expression which gives the variation 

of the prestressing force along the length. Due to the friction and wobble, the prestressing 

force is not constant over the length of the post-tensioned member. It drops in an 

exponential form. 

(Refer Slide Time: 13:13) 

 

We have a small value of  μα + kx, because α is expressed in radians and k, the wobble 

coefficient, is itself a small value. Then the exponential term can be simplified by the 

Taylor series expansion. We have a simplified expression, which is Px = P0 (1 ‒ μα ‒ kx). 

Here, we can see that the variation of P with x is linear, which drops from P0 as x 
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increases. Thus, for a tendon with single curvature, the variation of prestressing force is 

linear with the distance from the stretching end. 

(Refer Slide Time: 14:14) 

 

We are plotting the variation of the prestressing force along the length of a post-tensioned 

beam with a curved tendon, where the jack is at the left end. The force is P0 at the left end 

and then, we have a dropping value which is denoted as Px at distance x from the 

stretching end. 
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(Refer Slide Time: 14:53) 

 

In order, to get the value of Px, we need to the know the friction coefficient μ and the 

wobble coefficient k. In the absence of test data, IS: 1343-1980 provides some guidelines 

for the values of μ and k. For steel moving on smooth, concrete μ = 0.55. For steel 

moving on steel fixed to the duct, μ = 0.30. For steel moving on lead, μ = 0.25.  Thus, the 

coefficient of friction drops if the interface of the steel with the duct becomes smoother. 

The value of k varies from 0.0015 to 0.0050 per meter length of the tendon, depending on 

the type of tendon. Usually, these values will be provided by the suppliers of the tendon 

and the duct. 
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(Refer Slide Time: 16:08) 

 

Let us work out a problem, to find out the loss due to the friction for a post-tensioned 

beam. Here, we see a beam whose cross-section is 100 mm × 300 mm, spanning over 10 

m. It is stressed by successive tensioning and anchoring of three cables A, B and C, as 

shown in the figure. Each cable has a cross-section area of 200 mm2 and has an initial 

stress of 1200 MPa. If the cables are tensioned from one end, estimate the percentage loss 

in each cable due to friction, at the anchored end.  

For the beam, μ = 0.35 and k = 0.0015/m. The sketch shows that Cable A has a negative 

eccentricity at the ends; that means, the CGS is located above CGC. At the centre, it is 

having a positive eccentricity of 50 mm.  Cable B does not have any eccentricity at the 

ends, but has a positive eccentricity at the centre. Cable C does not have any curvature 

throughout. The eccentricity is constant, which is 50 mm throughout the length of the 

beam. Thus, Cable A is more curved as compared to Cable B, which is again more 

curved as compared to Cable C. 
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(Refer Slide Time: 18:06) 

 

The prestress in each tendon at the stretching end is equal to 1200 × 200 N = 240 kN. 

This value does not include any loss due to elastic shortening. To compute the prestress 

loss due to friction, we need to know the value of α, which is also equal to the change in 

the slope of the curved profile of each tendon. To know the value of α, the equation for a 

parabolic profile is required. The equation is given in terms of y, which is the 

displacement of the CGS from the level at the ends; y = (4ym / L2) x ( L ‒ x). This is a 

second order equation, which gives the equation of the parabola.  The subtended angle is 

same as the change in the slope between the two ends of the parabola, which is 

represented here as α(L). 

14 
 



(Refer Slide Time: 19:40) 

 

Here, ym is the displacement of the CGS at the centre of the beam from the level at the 

ends, L is the length of the beam, x is the distance from the stretching end, and y is the 

displacement of the CGS at distance x from the ends. 

(Refer Slide Time: 20:06) 

 

An expression of α(x) can be derived from the change in slope of the profile. The slope of 

the profile is given by the first differential, which is dy/dx = (4ym/L2) (L ‒ 2x). At x = 0, 
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the slope dy/dx = 4ym/L. The slope at any other point can be computed, and the 

difference between the slopes at two points gives the value of the subtended angle α. 

Since the expression of slope is linear, that means it is a first order function of x, the 

change in slope will also be linear with x. 

(Refer Slide Time: 20:58) 

 

The expression of α(x), the subtended angle can be written in terms of x as α(x) = θ x.  

This means α(x) is proportional to x, where the proportionality constant θ = 8ym/L2. The 

variation is shown in the sketch. Thus for a parabolic profile, as we are moving from the 

stretching end towards the anchoring end, the subtended angle or the change in slope is 

linear with respect to the distance from the stretching end. The total subtended angle for 

the profile over the length L is given as 8 ym/L. 
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(Refer Slide Time: 21:56) 

 

The prestressing force Px at a distance x is given by this expression: Px = P0 e‒(μα + kx), 

which is simplified as equal to P0 e‒ηx, where μα + kx has been substituted by a function 

ηx. α in the first term and kx, both are proportional to x, the distance from the stretching 

end. Hence, we can substitute μα + kx as a term ηx which is also proportional to x.  

To calculate ηx, we need to know the value of ym, the displacement of the CGS at the 

middle from the level at the two ends. For Cable A, the total displacement is 50 mm at 

the left plus 50 mm at the middle, which gives a total of 100 mm or 0.1 m. For Cable B, 

ym is equal to 0.05 m. For Cable C there is no displacement; it is a straight cable and 

hence, ym = 0. For all the cables the length (L) is equal to 10 m. 
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(Refer Slide Time: 23:32) 

 

If we substitute the values of ym and L, then we get the expression of ηx for each cable. 

ηx = 0.0043x for Cable A, 0.0029x for Cable B, and 0.0015x for Cable C. ηx is a 

measure of the drop in the prestressing force. What we can observe is that, it is highest 

for Cable A, which is the most curved profile out of the three.  ηx is lower in Cable B as 

compared to Cable A, and it is the least in Cable C because, the only drop in the 

prestressing force is due to the effect of wobble. The maximum loss for all the cables is at 

x = L = 10, the anchored end. For that location, e‒ηL is equal to 0.958 for Cable A, 0.971 

for Cable B and 0.985 for Cable C. 
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(Refer Slide Time: 24:48) 

 

The percentage loss due to friction at the anchored end is given as (1 ‒ e‒ηL) × 100%. 

That means, first, we are calculating the prestressing force at the anchored end.  Next, we 

are subtracting that from the value at the stretching end, and then we are dividing the 

difference by the force at the stretching end. We are getting the percentage loss by 

multiplying the result by 100. Once we do the computations, the results are 4.2% for 

Cable A, 2.9% for Cable B and 1.5% for Cable C. That means, the percentage loss in 

Cable A is maximum. The percentage loss in Cable B is in-between Cables A and C, and 

the percentage loss in Cable C is the minimum.  
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(Refer Slide Time: 26:01) 

 

If we plot the variation of the prestressing force, then we find that, from the stretching 

end the prestressing force drops the least for Cable C (the green line). The drop in Cable 

B (the brown line) is in between those for Cable A and Cable C, and for Cable A the drop 

is maximum (the red line). This confirms the concept that the prestressing force will drop 

more for cables with higher curvature. 

(Refer Slide Time: 26:41) 
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The loss due to friction can be considerable for long tendons in continuous beams with 

changes in curvature. The drop in the prestress is higher around the intermediate 

supports, where the curvature is high. Let me explain this by a sketch. 

(Refer Slide Time: 27:13) 

 

What we see in the simplified sketch is that in a continuous beam, the curvature changes. 

For the first span, the profile is going down, and then over the support the curvature is in 

the reverse direction. There is a point of contraflexure between these two curves, and 

again when we go to the second span the curvature is in the same direction as in the first 

span. Thus, for a continuous beam the cable changes curvature, and this leads to a higher 

drop in the prestressing force. There is one angle subtended by the first curve, there is 

another angle which is subtended by the second curve and there is a third angle, which is 

subtended by the third curve. What we observe is that the intermediate angle will be the 

highest out of all the three. 

As we said earlier, that the drop in the prestressing force is proportional to the length x 

and is also proportional to the curvature of the cable. Since the curvature in the span is 

lower than that of the support, the rate of drop is relatively low. But over the support, the 

rate of drop is high. Then, again when we go into the span, the rate of drop is low.  
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To summarize, if we are stretching the cable from one end, the drop is uniform for the 

first curvature. It will be steeper over the supports and again uniform for the third 

curvature. The longer the beam becomes, the more spans and curvatures the beam has, 

and there will be larger drop in the prestressing force. 

(Refer Slide Time: 30:28) 

 

The remedy to reduce the loss is to apply the stretching force from both ends of the 

member in stages. That means, to reduce the drop in the prestress due to friction, one way 

is to first stretch from one side. Next, bring the jacks to the other side and, stretch from 

the other side. Repeat this process and get a more or less uniform prestressing force. If, 

more than one jack is available then the stretching can be done from both the sides.  

Next, we shall learn the concept of anchorage slip. 
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(Refer Slide Time: 31:21) 

 

In post-tensioned members, when the prestress is transferred to the concrete, the wedges 

slip through a little distance before they get properly seated in the conical space. The 

anchorage block moves before it settles on the concrete. There is a loss of prestress due to 

the consequent reduction in the length of the tendon. 

(Refer Slide Time: 31:47) 
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The above sketch animates the process of the loss due to anchorage slip. What we can 

notice is that, as the prestressing tendon is released from the jack, the wedges seat in the 

conical space. The anchorage block gets slightly depressed within the concrete. The sum 

total effect is called the anchorage slip, which causes a reduction in the length of the 

prestressing tendon and leads to a drop in the prestressing force. Thus, the anchorage slip 

is another phenomenon which leads to a loss in the prestressing force. 

(Refer Slide Time: 32:43) 

 

The total anchorage slip depends on the type of the anchorage system. Usually, the 

suppliers of the anchorage block will provide some data to calculate the anchorage slip 

for their particular system. In absence of manufacturer’s data, typical values of some 

systems can be used. 
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(Refer Slide Time: 33:07) 

 

The anchorage slip is given by the total slip, the distance by which the prestressing 

tendons shortens because of the setting of the anchorage block. It depends on the system, 

like for a Freyssinet system with 12 numbers of 5 mm strands, the slippage is by 4 mm. 

For 12 numbers of 8 mm diameter strands, the slippage is by 6 mm. For Magnel system it 

can be 8 mm, for Dywidag system it can be as low as 1 mm.  

(Refer Slide Time: 33:52) 

 

25 
 



Due to the setting of the anchorage block as the tendon shortens, there is a reverse 

friction. This is an interesting phenomenon, that when we are first stretching the tendon 

there is a friction in the opposite direction of the stretching force; that means, if we 

stretch towards the left the friction acts towards the right. But when we are releasing the 

jack, and the anchorage block is setting on the post-tensioned member, the tendon is 

trying to move from left towards the right. For a certain distance near the stretching end, 

the friction reverses, and this phenomenon is called reverse friction. That means, it does 

not allow the movement to occur throughout the full length, but the shortening happens 

only in a limited region of the tendon. Hence, the effect of anchorage slip is present only 

up to a certain length of the member. Beyond this setting length, the effect is absent. This 

length is denoted as set.  

For friction, what we have seen is that, the drop in the prestressing force is occurring 

throughout the length of the member. But for anchorage slip, the reverse friction restricts 

the drop to a certain length of the member, which is adjacent to the stretching end.  This 

particular length is called the setting length, which is denoted as set. 

(Refer Slide Time: 35:47) 

 

If we plot the force variation after anchorage slip, what we observe is that before the 

tendons were released, the prestressing force was dropping linearly. But after the tendons 
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have been released, and the anchorage block has set, there is a drop in the prestressing 

force at the end. But this drop is not reflected throughout the full length because of the 

reverse friction. This drop reduces, as we go away from the stretching end, and after a 

certain distance this drop is not present. 

Now, both the friction and the anchorage slip cause a variation of the prestressing force 

along the length. We can plot the variation of the prestressing force in a diagram, which 

is called the force variation diagram. 

(Refer Slide Time: 36:54) 

 

For a post-tensioned member, the magnitude of the prestressing force varies along the 

length of the member due to friction losses and setting of the anchorage block. The 

diagram representing the variation of prestressing force is called the force variation 

diagram. This diagram is helpful if we are interested in the loss of the prestressing force 

throughout the length. It gives an idea at what location we have higher drops in the 

prestressing force, and how can we improve the variation with stretching the cable from 

the two ends either sequentially, or simultaneously. The force variation diagram helps us 

to determine the stretching process for a continuous beam, because in a continuous beam 

the force variation is quite significant. Unless we take a rational measure to do the 

stretching, we will not be having an idea how much to stretch at each of the ends. 
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(Refer Slide Time: 38:17) 

 

To draw the force variation diagram, we are again reverting back to the expression of Px. 

Considering the effect of friction, the magnitude of the prestressing force at a distance x 

from the stretching end is given by the expression Px = P0 e‒ηx, where ηx has both the 

effect of friction, as well as the wobble. ηx is equal to μα + kx, which denotes the total 

effect of friction and wobble. The plot of Px itself gives the force variation diagram. 

(Refer Slide Time: 38:59) 
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The initial part of the force variation diagram, up to length set is influenced by the setting 

of the anchorage block. Let the drop in the prestressing force at the stretching end be 

denoted as ΔP. The determination of ΔP and set are necessary, to plot the force variation 

diagram including the effect of setting of the anchorage block. We have an expression of 

Px, which is satisfactory to plot the force variation diagram for most of the length of the 

beam, except near the stretching end where over a certain distance there is a drop in the 

prestressing force from Px due to the anchorage slip. 

(Refer Slide Time: 39:55) 

 

Considering the drop in the prestressing force and the effect of reverse friction, the 

magnitude of the prestressing force at a distance x from the stretching end is given as 

follows. This equation is analogous to the equation that we have seen for friction. The 

difference is that the new value of the prestressing force, which is denoted as Px
/, is in 

terms of the reduced value of the prestressing force at the stretching end, and is given as 

(P0 ‒ ΔP) e‒η'x. Here, η/ is for reverse friction; that means, the friction is occurring in the 

opposite direction, and is analogous to η for friction and wobble. Now remember that, for 

reverse friction Px
/ increases with the distance from the stretching end. 
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(Refer Slide Time: 41:07) 

 

If we plot the two equations, the first equation gives a dropping curve from the value of 

P0 with x the distance from the stretching end; the second equation gives an increasing 

curve, which corresponds to the reverse friction. At a certain distance both these 

equations give the same value of the prestressing force, and the two curves intersect. The 

distance from the stretching end to this point is the setting length, which is denoted as set. 

In the plot, the dashed line is the original force variation diagram after the stretching. The 

solid white line is the variation of the prestressing force after the anchorage slip. The blue 

line is the variation of the prestressing force beyond the setting length, which is due to the 

friction effect. 
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(Refer Slide Time: 42:25) 

 

Our next task in hand is to derive an expression of the setting length. In order to do that, 

we are substituting x is equal to set in both the expressions of the forces. On the left, we 

have the expression of Px. On the right, we have the expression of Px
/, and the equality is 

satisfied at x equal to set. We are transposing the terms related with the exponential, and 

here we are again using the Taylor series expansion. We get the third form of the 

equation. We are writing an expression of ΔP, which is the drop in the prestressing force 

at the stretching end, as equal to P0 (η + η/) set . We can express the reverse friction in 

terms of the friction in the tendon. 
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(Refer Slide Time: 43:58) 

 

Since, it is difficult to measure the reverse friction separately from the friction that we 

have seen earlier, the reverse friction is usually taken equal to the frictional value that we 

use in our conventional calculation of the prestressing loss. If we take η/ = η, then the 

expression of delta P simplifies to the following. That means, the drop in the prestressing 

force at the stretching end is equal to 2P0ηset. 

(Refer Slide Time: 44:46) 
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The following equation relates set to the anchorage slip. We can calculate ΔP from the 

slip that is provided by the manufacturer of the anchorage block. The slip (Δs) is given as 

½(ΔP/ApEp) set. This is the expression of the slip, which relates it to the setting length. 

Once, we substitute the expression of set from the previous expression, we can find an 

expression of the slip in terms of the stretching prestressing force P0, the friction term η 

and the reverse friction term η/. 

(Refer Slide Time: 45:56) 

 

Transposing the terms, we have brought set on the left and Δs (which is available from 

the manufacturer) on the right. We are also simplifying to η/ = η. 
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(Refer Slide Time: 46:17) 

 

From this, we get an expression of set. The set is equal to the square root of 

(ΔsApEp/P0η). We can observe that the setting length is proportional to the square root of 

the slippage. That means, the more slip we have for a particular type of anchorage block 

we shall have a longer set. But the variation is a square root function. The term P0η 

represents the loss of prestress per unit length due to friction. This, we can derive from 

the expression of Px. 

(Refer Slide Time: 47:31) 
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Once we have determined set from the value of the anchorage slip, and we know the 

drop in the prestressing force ΔP, we can draw the force variation diagram including the 

effect of anchorage slip. The force variation diagram is used when stretching is done 

from both the ends. It is a rational tool to determine how much force we need to apply at 

each end, and what is the sequence we should follow. Finally, what is the prestressing 

force we shall get along the member, is available only if we draw the force variation 

diagram. The tendons are over stretched to counter the drop due to anchorage slip. The 

stretching from both the ends can be done simultaneously, if we have more than one 

jacks, or it can be done in stages if we just have one jack. The final force variation is 

more uniform than the first stretching. 

(Refer Slide Time: 48:54) 

 

The following sketch, explains the change in the force variation diagram due to stretching 

from both the ends in stages. 
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(Refer Slide Time: 49:04) 

 

For this post-tensioned beam, the stretching is done from the right. We can see that there 

is a variation of the prestressing force as we move from the right towards the left, due to 

friction. Once the tendons are released on the right side, there is an anchorage slip which 

leads to a drop in the prestressing force near the stretching end. But the drop is reduced 

till the drop becomes zero at the distance set from the stretching end. The second sketch 

is the variation of the prestressing force after the anchorage slip at right end. 
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Next, we are moving the jack to the left, and we are re-stretching the tendon up to a value 

which is equal to the original value on the right side. When we are applying the tension 

on the left side, there is a drop in the prestressing force along the length due to friction, 

just like as it happened when we stretched from the right end. The green curve meets the 

previous curve near the centre of the beam. Once we release the jack at the left end, there 

is a drop in the prestressing due to the anchorage slip, and that drop again reduces. It 

becomes zero at a distance set from the left end, which is now the stretching end.  

Thus, what we observe is that for this single span beam, if we are stretching it from both 

the ends sequentially, the force variation diagram is more uniform compared to what we 

had got after the first stretching from the right end. 
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To summarize, the initial tension at the right end is high to compensate for the anchorage 

slip. It corresponds to about 80% of the characteristic strength and the force variation 

diagram (FVD) is linear. After the anchorage slip, the FVD drops near the right end till 

the length set. 

(Refer Slide Time: 51:48) 
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Then, the initial tension at the left also corresponds to about 80% of the characteristic 

strength. The force variation diagram is linear up to the central line of the beam. After the 

anchorage slip, the FVD drops near the left end till the distance set. 

(Refer Slide Time: 52:15) 

 

It is observed, that after two stages, the variation of the prestressing force over the length 

of the beam is less than after the first stage. If we do a few more stages, we shall observe 

that the variation will be still lower, and the prestressing force will be more uniform than 

the variation which we had obtained after the first stretching. This is more relevant in a 

long continuous beam, where the drop in the prestressing force is even higher. There 

sequential prestressing or a simultaneous prestressing from both the ends is the method to 

reduce the effect of the drop in the prestressing force, due to friction over the length of 

the member. If we are stretching from both the ends then, the force variation is more or 

less symmetric about the centre line of the beam, and that is desirable when the beam is 

loaded symmetrically.  
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(Refer Slide Time: 53:45) 

 

To conclude, today we talked about two more immediate losses of prestressing force. The 

first cause was the friction. Due to friction, the force drops from the stretching end as we 

move away from the stretching end. This can be severe for longer beams, and for 

continuous beams. We have found that the drop in prestressing force depends on first, the 

amount of the prestressing force; second, the length of the prestressing beam; and third, 

the curvature of the prestressing tendon. For a long continuous beam, there is reversal of 

curvature of the prestressing tendon. The drop in the prestress is significant near the 

intermediate supports because, there the curvature is high. Hence, there can be a 

significant difference between the prestressing force at the stretching end, and the 

prestressing force at the anchored end.  

The other type of immediate loss that we have observed is the anchorage slip. This occurs 

due to the seating of the wedges in the conical space, and also the setting of the 

anchorage block in the concrete. The anchorage slip is usually given by the manufacturer 

of the anchorage system. The effect of the anchorage slip is limited within a certain 

length, called the setting length, from the stretching end.  

The force variation diagram can be drawn to understand the variation of the prestressing 

force along the length. We have solved a differential equation to express the prestressing 
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force in terms of x, the distance from the stretching end. We have seen that the drop is 

almost linear with distance. If we incorporate the drop due to the anchorage slip, then we 

have an increasing curve near the stretching end up to a distance set from the stretching 

end, and after that the force drops down. The force variation diagram can be rationally 

used to have a more uniform prestressing force throughout the length. If the external 

loading is symmetric, then it is always preferred to have a symmetric prestressing force 

variation in the member. If we are loading it sequentially, what we can see is that, we can 

achieve a force variation diagram which has less variation than compared to the diagram 

after single stretching. 

With this we finish the immediate losses of the prestress. In our last lecture, we had 

covered elastic shortening. Today, we covered friction and anchorage slip. All these three 

losses occur during the prestressing process, and it is felt immediately during the 

stretching. Hence, all three are grouped under immediate losses. In the next lecture, we 

shall start the other group of loss of prestressing force, which is the long term loss, which 

depends on time. These are affected by the creep and shrinkage of concrete (which are 

the variations of the length of the concrete member with time), and by the relaxation of 

the steel (which is the drop in the prestressing force under a constant strain). These long 

term losses become functions of time, which we need to monitor to get the final effective 

prestress.  

Thank you.  
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