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Welcome back to Prestressed Concrete Structures. Today, we are starting the second 

module on losses in prestress. 

(Refer Time Slide: 01:23) 

 

In the first lecture of this module, we shall first get familiar with the notations in the 

geometric properties and load variables. Next, we shall go through the first type of loss in 

prestressed concrete structures, that is the elastic shortening. We shall understand the 

phenomenon of elastic shortening for pre-tensioned and post-tensioned members. In 

either type of the prestressed structures, we shall look into examples of axial members 

and bending members. 
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(Refer Time Slide: 02:05) 

 

The commonly used geometric properties of the prestressed members are explained in 

this slide. Ac is the area of the concrete section, that is given the total sectional area of the 

member, if we subtract the area of the prestressing steel, then the remaining area is 

termed as ‘Ac’. There can be of course substantial difference between Ac and the total 

area A, if the duct is voided and its size is large. The second notation is Ap, which is the 

area of prestressing steel, that is the total cross-sectional area of the tendons. The third is 

the area of the prestressed member, which is the summation of Ac and Ap. 
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(Refer Time Slide: 03:08) 

 

There is another definition which is used in elastic analysis, that is the transformed area 

of the prestressed member. This is the area of the member when the steel is substituted by 

an equivalent area of concrete. The transformed area is given as Ac plus the modular ratio 

times the area of the prestressing steel. If we substitute back the expression of the total 

area, then the transformed area is given as the total area plus the modular ratio minus 1 

times Ap. The modular ratio is defined as the ratio of the elastic modulus of the 

prestressing steel divided by the elastic modulus of the concrete. 

The modulus of concrete can change with time. In our elastic analysis, we may stick to 

the short-term elastic modulus. Then, the modular ratio is defined just based on the short-

term elastic modulus. If we use the long-term elastic modulus of concrete, we are 

including the effect of creep in the definition of modular ratio of the member. 
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(Refer Time Slide: 04:37) 

 

To explain it by figures, on the left is a cross-section of a rectangular prestressed 

member. If we look into only the net area of the concrete cross-section, it is represented 

by Ac. The total area of the prestressing steel, here we have denoted within one circle, is 

represented as Ap. This prestressed section is equivalent to a transformed section, where 

the full section is considered to be of concrete. That means the prestressing steel has been 

substituted by an equivalent area of concrete. This transformed area is considered to be 

made up of only one material, which is used in the elastic analysis.  The analysis is same 

as that of an elastic analysis of a section with homogenous material. 
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Next, we are going to learn the definitions of the centroids. The first one is the CGC, the 

centroid of concrete, or the centre of gravity of concrete. The centroid of the gross section 

can be taken as the CGC. Here, we are not deducting the area of the prestressing steel, 

just for simplicity in the computation. We should note that the CGC may lie outside the 

concrete section. An example is given for a box girder. Here, the centroid of the section is 

lying outside the concrete, it is lying inside the hollow space of the box girder. The 

second definition is the centroid of the prestressing steel, or the centre of gravity of the 

prestressing steel, and we shall denote that as CGS.  

The CGS may also lie outside the tendons or the concrete of the section. In most of our 

calculations, we do not consider the individual tendons in the prestressed member. We do 

the calculations based on the total area Ap, and the location being considered at the CGS. 

There are two types of sections being shown: on the left is a box girder where both the 

CGC and CGS are lying inside the hollow space of the box girder. On the right hand side, 

we are seeing an I-girder, where the + symbol is the CGC and the blue circle is the CGS. 

When we do our computations, these are the two most important locations that we are 

concerned of. 
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The other important geometric properties are: the first is the moment of inertia of the 

prestressed section, which is represented as ‘I’. This is the second moment of area of the 

gross section about the CGC. Remember that for an elastic section, the neutral axis lies at 

the CGC. The second one is a more refined calculation of the moment of inertia that is 

based on the transformed section, where the second moment of area is calculated about 

the centroid of the transformed area. The first one ‘I’ is the simplified form of the second 

one which is It. 
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Another most important variable that we shall use in our calculations is the eccentricity, 

which is the vertical distance between the CGS and the CGC. If the CGS lies below the 

CGC, then we shall consider the eccentricity to be positive. If the CGS lies above the 

CGC, then the eccentricity will be considered to be negative. For the box girder, we see 

that ‘e’ is the distance between the CGC and the CGS and here, it is positive. Similarly, 

for the I-girder also, e is positive because the CGS is lying below the CGC. 

(Refer Time Slide: 09:35) 
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Among the load variables, Pi represents the initial prestressing force which is applied by 

the jack. This force is recorded by the gauge in the jack. The second one is P0, which is 

the prestressing force after immediate losses. That means, the actual prestressing force 

that is transferred to the concrete section is lower than the value which is recorded by the 

gauge in the jack. It is lower because of the immediate losses due to elastic shortening, 

friction and seating of the anchorage, which we shall study subsequently.  The third one 

is Pe, which is the effective prestressing force after the time dependent losses. As we 

have learnt earlier, the prestressing force drops with time and after several years, it gets 

stabilised to a final value. That value will be referred to as the effective prestressing 

force, and it will be denoted as Pe. 

 

Next, we are moving on to the losses in prestress. 

(Refer Time Slide: 10:55) 

 

Unlike reinforced concrete member, the strength of a prestressed concrete member is not 

constant throughout its lifetime. Even if we neglect the deterioration, the prestressing 

force drops with time due to the time dependent losses. Hence, the calculation of the 

losses is very important in prestressed concrete applications. In the prestressed concrete 
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applications, the most important variable is the prestressing force. In the earlier days, it 

was observed that the prestressing force does not stay constant, but it reduces with time.  

(Refer Time Slide: 11:41) 

 

Even during prestressing of the tendons and the transfer of prestress to the concrete 

member, there is a drop of the prestressing force from the recorded value in the jack 

gauge. The various reductions of the prestressing force are termed as losses in prestress. 

(Refer Time Slide: 12:06) 
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In this chart, we are trying to understand the various losses under different sections. The 

losses in prestress can broadly be classified under two groups: one is the immediate 

losses, which are shown on the left side. The other is the time dependent losses, which 

takes several years till the prestressing force gets stabilized. Out of immediate losses, the 

important one is the elastic shortening, which is the shortening of the concrete member 

when the prestressing force is transferred to it. It is an immediate shortening. Then, the 

second one is the friction. The friction is the drop in the prestressing force along the 

length of the prestressing tendon, because of the curvature in the prestressing tendon. The 

third one is the anchorage slip. After the jacks have pulled the tendons and the wedges 

are placed, the tendons are released.  At that instant, the wedges and the anchorage block 

seat in the prestressed member. During the seating, there is some loss till the wedges get 

locked in the anchorage block. The loss due to this seating of the anchorage is called the 

‘anchorage slip’.  

Among the time dependent losses, we have already studied the phenomena under the 

material properties. Creep and shrinkage are typical behaviour of concrete. Creep is the 

deformation with time under a constant load. Shrinkage is the deformation with time due 

to loss of moisture. Relaxation is a property of the prestressing steel, which is the drop in 

the stress under a constant strain, with time. In today’s lecture, the following section will 

quantify the loss due to elastic shortening. 
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In pre-tensioned members, when the tendons are cut and the prestressing force is 

transferred to the member, the concrete undergoes immediate shortening due to the 

prestressing force. The tendons also shorten by the same amount, which leads to the loss 

of prestress. The elastic shortening is more of a concern in a pre-tensioned member. 

(Refer Time Slide: 14:51) 
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Let us try to understand this by the animation which we had seen before. This animation 

will clarify the phenomenon of elastic shortening during the transfer of prestress. At first 

in the prestressing bed, the tendon is anchored at the bulk heads. Next, we position the 

jack at one end and then we apply the tension in the tendon. After the shuttering is 

placed, the concrete is cast. It is cured and hardened to the desired strength, and then the 

tendon is cut. When the tendon is cut, note that the concrete will shrink from its original 

length to a reduced length. That shortening is called the ‘elastic shortening’. Note this 

process carefully.  

(Refer Time Slide: 16:04) 

 

As the prestressing is being transferred, this concrete member is reducing in length. That 

reduction is called the ‘elastic shortening’. If the tendon is placed eccentrically, then it 

will also deflect upwards which is called ‘cambering’, along with the elastic shortening. 

In a pre-tensioned member, the elastic shortening occurs when we are cutting the tendons 

at the end, and the prestressing force is getting transferred to the concrete. The system 

comes into an equilibrium after the elastic shortening. 
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In post-tensioned members, the phenomenon of elastic shortening is different from that in 

pre-tensioned member. If there is only one tendon, then there is no loss because the 

applied prestress is recorded after the elastic shortening of the member. In post-tensioned 

members, as the jack gets the reaction from the concrete member itself, when the jack is 

applying tension in the tendon, the member is shortening. After the shortening stabilises, 

we are recording the final force. Hence, we do not consider the elastic shortening as a 

loss, because we are recording the prestressing force after the concrete member has 

shortened. This is true, if we have just one tendon for post-tensioning the member. But, if 

we are having more than one tendon, then when we are applying tension to a subsequent 

tendon, the tendons which we have tensioned earlier, they will be undergoing some 

elastic shortening. For more than one tendon, if the tendons are stretched sequentially, 

there is loss in a tendon during subsequent stretching of the other tendons. 
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In this figure, we shall try to understand the process of elastic shortening in a post -

tensioned member. In a post-tensioned member, first the concrete is cast on a casting bed. 

There is a duct, which creates a hole in the concrete member. Through the duct, we pass 

the tendon and then we apply the anchorage at one end. We position the jack at the other 

end. When we are applying tension in the jack, notice that this member is undergoing 

elastic shortening. 

Once this member has come to a stable length, we record the jacking force. Hence, 

whatever shortening has occurred will not get reflected in the value of the force that is 

recorded by the jack. Hence, if we are just having only one tendon, then there is no elastic 

shortening from the value of the force that is recorded by the jack. But, if we have more 

than one tendon, then the tendons which are tensioned earlier will have a loss during the 

tensioning of the subsequent tendons.  
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How do we calculate the loss in prestress due to elastic shortening? The elastic shortening 

loss is quantified by the drop in the prestressing force in a tendon, due to the change in 

strain in the tendon. It is obvious from Hooke’s law, that if we have a change in strain, 

there will be a change in the stress. What we are trying to quantify is the change in the 

strain. It is assumed that the change in strain in the tendon is equal to the strain in 

concrete at the level of the tendon due to the prestressing force. This assumption is called 

strain compatibility between concrete and steel.  

For a pre-tensioned member, there is bond between the prestressing tendon and the 

concrete. For a post-tensioned member, there is bond when we are grouting the post-

tensioned members and hence, we can consider strain compatibility between the concrete 

and the steel. Whatever the strain the concrete undergoes at the level of the steel, the 

same strain is reflected in the prestressing tendon. The prestressing tendon also undergoes 

the same change in strain as equal to the strain in the concrete. 
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Our next step is how do we calculate the strain in the concrete? The calculations are 

based on the prestressing force, which we are recording. The strain is calculated from the 

stress that is generated in the concrete at the level of the prestressing steel, due to the 

prestressing force. A linear elastic relationship is used to calculate the strain from the 

stress. The following slide explains the quantification of the loss. 

(Refer Time Slide: 22:04) 
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The drop in prestress is equal to the elastic modulus of the prestressing steel times the 

change in strain. The change in strain in the prestressing tendon is equal to the strain in 

the concrete. The strain in the concrete is equal to the stress in the concrete, divided by 

the elastic modulus of the concrete. The ratio of the two elastic moduli, that of 

prestressing steel divided by that of the concrete is denoted as the modular ratio ‘m’. 

Hence, the basic equation to calculate the loss in prestress due to elastic shortening is 

equal to the modular ratio times the stress in the concrete at the level of the tendon.  

As we know that there need not be a single tendon, there can be several tendons in a 

concrete member. For simplicity, the loss in all the tendons can be calculated based on 

the stress in concrete at the level of CGS. Here comes the utility of the CGS, that we are 

considering as if all the tendons are concentrated at that location. We are calculating the 

stress in the concrete at the level of the CGS. From there, we are calculating the loss in 

the prestress. This simplification cannot be used when the tendons are stretched 

sequentially in a post-tensioned member, because in a post-tensioned member, the 

calculation is more involved. It is a sequential process. Hence, we cannot club together 

all the tendons to be located at the CGS. 

  

Let us first look into the pre-tensioned axial members. 
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The axial member means that we are neglecting the eccentricity of the CGS, as if the 

member will just shorten elastically and there will be no effect of camber. In order to 

calculate the stress in the concrete at the level of CGS, we are trying to understand the 

static equilibrium. When the prestressing force is transferred, the concrete member has an 

original length. During the process of transfer of prestress, this member comes to 

equilibrium with the reduced length after elastic shortening, and the prestressing force 

also drops from the initial value to a value P0. 
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The stress in the concrete is given as (remember, this expression is at the static 

equilibrium) P0 divided by the area of the concrete, which we are denoting as Ac. That 

means, Δfp is equal to the modular ratio times P0 divided by Ac. Here, there is a difficulty 

in using this expression. We do not know P0 correctly, because the value that we record 

by the jack is Pi. It is easier, if we can transform this equation in terms of Pi. We shall see 

later that this expression can be again written as the modular ratio times Pi, which is the 

force we are recording at the jack, divided by the transformed area. This can be 

simplified to a product of the modular ratio times Pi divided by the gross area. The 

difference between the gross area and the transformed area may not be significant, if the 

amount of steel is small.  
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Just to summarize, the stress in the concrete which is P0 divided by Ac can be equated to 

the stress in the transformed section due to the initial prestress. The following slides will 

provide this derivation. We have also seen that the transformed area At can be 

approximated to the gross area A, for computational simplicity. 

(Refer Time Slide: 26:45) 
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We are trying to understand the change in strain due to the elastic shortening. When we 

are stretching the steel, there is an initial strain in the prestressing strand. This strain is 

calculated based on the original length of the tendon before stretching, and is denoted as 

εpi. Next, after elastic shortening, the concrete undergoes a strain of εc. The final strain in 

the prestressing steel is denoted as εp0, which is calculated from the final length of the 

concrete member and the original length of the prestressing tendon. 

(Refer Time Slide: 27:41) 

 

The strain in concrete due to elastic shortening εc is the difference between the initial 

strain in the steel, which is εpi and the residual strain in the steel, which is εp0. Hence, εc 

is equal to εpi minus ε0.This is a strain compatibility relationship. 
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Each of these strains can be equated to the corresponding forces, by the elastic equations: 

εc is given by the force which is occurring after the member has come to static 

equilibrium, divided by the area of the concrete and the modulus of the concrete. εpi is 

given by the initial prestressing force which is applied to the jack, divided by the area of 

the prestressing steel and the modulus of the prestressing steel. εp0, which is the residual 

strain in the prestressing steel, is equal to the residual prestressing force P0 divided by the 

area of the prestressing steel and the modulus of the prestressing steel. 
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Substituting these expressions in the expression of the strains, εc = εpi  ̶  εp0, we get the 

top equation. We transpose the terms, that is, we are bringing the terms with P0 on one 

side and the terms with Pi on the other side, and we are also substituting the ratio of Ep 

and Ec by the modular ratio.  

(Refer Time Slide: 29:35) 
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Once we do this transposition and substitution, we come to the expression which gives 

the stress in the concrete (originally calculated based on the stress at transfer P0 divided 

by Ac) equal to the initial prestress that we record by the jack gauges, divided by the 

transformed area. This equation is helpful because, we do not need P0 any more, and we 

are able to calculate using Pi. Hence, we can substitute Pi / At in place of P0 / Ac. 

(Refer Time Slide: 30:21) 

 

Let us use this expression to solve a problem. A prestressed concrete sleeper produced by 

the pre-tensioning method has a rectangular cross-section of 300 mm × 250 mm. It is 

prestressed with 9 numbers of straight 7 mm diameter wires, at 80% of the ultimate 

strength (fpk) of 1570 N/mm2. We have to estimate the percentage loss of stress due to 

elastic shortening of concrete. Consider the modular ratio (m) to be 6.  We have already 

seen that fpi is equal to 0.8 times fpk.  

Here, the prestressing tendons are divided into two groups: 4 tendons are lying at the top 

and 5 tendons are lying at the bottom. Since, the tendons are divided into two groups, one 

above the CGC and the other group lying below the CGC, we are calculating the stress in 

the concrete at the two levels separately. 
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The first procedure will be an approximate solution based on the gross section. We are 

calculating the area of a single wire, which is π/4 times the diameter square. Then, the 

total area of the prestressing steel is given as 9 times the area of a single wire. The area of 

the gross section (A) is 300 × 250 = 75 × 103 mm2. The moment of inertia of the gross 

section (I) is equal to 300 × 2503/12 = 3.91 × 108 mm4. 

(Refer Time Slide: 32:30) 
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Once we know these geometric properties, we can calculate the location of the centroid 

of the steel. This expression comes from the concept of the first moment of area. That is, 

we are calculating the location of the CGS, by calculating the location of each of the 

tendons. Once we get the location of the CGS, we can calculate the eccentricity, which is 

the distance between the CGS and the CGC. Here, for the gross rectangular cross-section, 

the CGC is at the centre. What we can see is that, the CGS is located 115 mm from the 

bottom. Since there are 4 tendons at the top and 5 tendons at the bottom, the CGS is 

shifted a little bit down from the CGC. 

(Refer Time Slide: 33:43) 

 

The prestressing force is 80% of the ultimate strength times the area of the prestressing 

tendons. Thus, the total prestressing force applied is 435 kN. The eccentricity of the 

prestressing force is calculated from the location of the CGC, which is half of the total 

height, minus the location of the CGS. The value of eccentricity (e) is 9.5 mm. 
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Under the prestressing force, the stress diagrams are as follows: there is a uniform 

compression if we consider the prestressing force acting at the CGC, plus there is a 

varying force because of the eccentricity of the CGS from the CGC. The constant value is 

given as Pi /A. The varying stress is given as the moment due to the eccentricity of the 

CGS (which is Pi × e) times the distance from the CGC, divided by the moment of 

inertia. Once we add these two terms, we get the final stress profile due to Pi over the 

depth of the cross-section. We can see that the compression at the bottom is higher than 

the compression at the top, because the CGS is lower than the CGC. 
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Our next task in hand is to calculate the stresses in the concrete at the two levels of steel. 

We are calculating the stresses based on the stress profile that we have seen before. For 

the top wires, the distance is given by half the depth of the section minus the effective 

cover. Once, we substitute that in the expression of the stress, we get the stress at the 

level of the top steel. For calculating the stress, the first term is the uniform stress, and the 

second term is the varying stress which comes due to the eccentricity of the prestressing 

force. The stress at the level of the top wires is  ̶ 4.9 N/mm2. We are using a negative 

value for a compressive stress. 
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Similarly, the stress at a level of the bottom wires is given by substituting the distance of 

the bottom wires from the CGC. The distance is same as that of the top wires, which is 

half the depth minus the effective cover. When we substitute the value of y in the 

expression of stress, we get the stress at the level of the bottom steel which is  ̶ 6.7 

N/mm2. We see that the stress at the level of the bottom steel is higher than the stress at 

the level of the top steel. 

(Refer Time Slide: 37:20) 
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Once we have calculated the stresses in concrete at the level of the steel, we are 

calculating the losses in the tendons at each level. The loss of prestress in the top wires is 

equal to the modular ratio times the stress in the concrete, times the area of the 

prestressing steel at the top. We are multiplying the drop in the prestress times the area of 

the prestressing steel, to get the total loss in the prestressing force. Similarly, we can 

calculate the loss of prestress in the bottom wires, which is the modular ratio times the 

stress in concrete, times the area of the prestressing steel at the bottom. The total loss of 

prestress is summation of the two terms, that is 12.3 kN. Our original prestressing force 

was 435 kN. From that, we have lost 12.3 kN due to the elastic shortening. The 

percentage loss due to elastic shortening is given as 12.3 divided by 435 times 100, which 

is 2.83%. We have lost 2.83% of the prestressing force due to elastic shortening.  

(Refer Time Slide: 39:18) 

 

The same problem can be done by the more accurate method, using the transformed 

section. The transformed area for the top steel is given as the modular ratio minus one, 

times the area of the prestressing steel. Similarly, we can calculate the transformed area 

for the bottom steel. Then, the total area of the transformed section is equal to the area of 

the gross section plus the equivalent areas corresponding to the two levels of prestressing 

steel. Note that, the transformed area is larger than the original area of 75,000 mm2. 
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We have to calculate the centroid of the section. This time, it is not at the mid-depth of 

the section, since we are considering a transformed section, and the steel is not symmetric 

about the horizontal axis. The centroid of the section, the CGC itself is shifted from the 

previous location. We can see it is 124.8 mm from the bottom of the beam, which is 

slightly different from 125 mm which we had seen earlier. The moment of inertia of the 

transformed section can be found out by using the principles of the parallel axes theorem. 

First, we are calculating the moment of inertia of the gross section. Then we are adding to 

that the terms, which are the products of the areas times the shifts in their centroids from 

the CGC of the transformed section. Once we use the parallel axes theorem, we get the 

moment of inertia of the transformed section. Note that, this is also slightly different from 

the earlier moment of inertia that we had calculated for the gross section. 
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The eccentricity of the prestressing force is the difference between the locations of the 

new CGC and the CGS. The calculation of CGS that we had done earlier remains same 

for this method of solution also. The difference between the CGC and the CGS gives the 

eccentricity (e) which is 9.3 mm. Once we have got these accurate values, we are 

calculating the stress at the bottom. It is the same expression, but with more accurate 

values of the area, the moment of inertia and the eccentricity. With the accurate values, 

we find that the stress at the bottom is  ̶ 6.52 N/mm2. 
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The stress at the top is  ̶ 4.81 N/mm2. Both the values of stress are slightly different from 

the values that we had seen earlier. From the stresses in the concrete, we can calculate the 

loss of prestress in the top wire, which is the modular ratio times the stress in the 

concrete, times the area of the prestressing steel at the top. Similarly, we are calculating 

the loss of prestress at bottom wires. When we add these two, we get the total loss of 12 

kN. 

(Refer Time Slide: 43:00) 
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The percentage loss is 12 divided by 435 times 100, which is 2.75%. It can be observed 

that the accurate and approximate solutions are very close. Hence, the simpler 

calculations which are based on the area and the moment of inertia of the gross section, 

are acceptable. The additional accuracy that we get by using the area and the moment of 

inertia of the transformed section may not be warranted, because it leads to more 

computation. The solution that we get based on the gross section is sufficiently good.  

We are quickly reviewing the calculation of the loss for the other types of members.  

(Refer Time Slide: 44:02) 

 

A pre-tensioned bending member is subjected to camber. We also have to consider it’s 

self-weight in the calculations. At transfer, when it comes under a static equilibrium, it is 

not resting on the prestressing bed throughout its length, but it is resting only at the two 

ends. Hence, it is subjected to bending along with axial compression. Thus, for a bending 

member, we need to have additional terms for the stress, which consider the effect of 

bending. 
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Due to the effect of self-weight, the stress in concrete varies along the length. To have a 

conservative estimate of the loss, the maximum stress at the level of CGS at the mid-span 

is considered. For a bending member, since the stress in the concrete at the level of CGS 

varies along the length of the member, the elastic shortening also varies. To simplify the 

calculation, we consider the stress at the mid-span as the representative stress for the 

concrete at the level of the CGS. 

The expression of the stress in the concrete at the mid-span, at the level of the CGS 

consists of the following. The first term is the constant stress. The second term is the 

varying stress, due to the eccentricity of the prestressing force. Since we are calculating 

the stress at the level of the CGS, the distance of investigation is same as the eccentricity. 

Then, there is a third term, which is due to the self-weight of the member. Since the 

member is hogging up, the self-weight is also creating stress.  
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In the earlier expression, Msw is the moment at mid-span due to the self-weight. The 

precise result using At and It of the transformed section, in place of A and I of the gross 

section, is not computationally warranted. In the above example, the eccentricity of the 

CGS was assumed to be constant throughout the length of the member.  

Next, we move on to the post-tensioned axial members. 

(Refer Time Slide: 46:59) 
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To recollect, for more than one tendon, if the tendons are stretched sequentially, there is a 

loss in a tendon during subsequent stretching of the other tendons. The loss in each 

tendon can be calculated in progressive sequence or else, an approximation can be used 

to calculate the losses. The elastic shortening is of concern in a post-tensioned member if 

there is more than one tendon, and the tendons are stretched sequentially. Since the losses 

in each tendon due to the stretching of the subsequent tendons vary, the calculation is 

more involved than a pre-tensioned member. It needs a sequential calculation for each 

tendon separately. We can approximate this calculation by considering an average elastic 

shortening for all the tendons. 

(Refer Time Slide: 48:10) 

 

The loss in the first tendon is evaluated precisely and then, half of that value is used as an 

average loss for all the tendons. That means, we are calculating the stress in the concrete 

at the level of the first tendon, and multiplying that by the modular ratio. This is the loss 

in the first tendon. In our approximate calculation, what we are assuming is that, the 

average loss in the prestress of all the tendons is half of the loss of the tendon which has 

been stretched first. The expression can be written in terms of the initial prestressing 

force that is applied in the jack. Then, we are summing this up for all the tendons that are 

being stretched. To summarize, Δfp is equal to half times the modular ratio, times the 

summation of the prestressing force in each tendon, divided by the area of the cross-
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section. The summation is done from 2 to the total number of tendons (n). The 

summation starts from 2, to consider the tendons stretched subsequent to the first tendon.  

 (Refer Time Slide: 50:28) 

 

For a post-tensioned bending member, the procedure is similar. The calculation of loss 

for tendons stretched sequentially is similar to that of the post-tensioned axial members. 

For curved profiles, the eccentricity of the CGS and hence, the stress in concrete at the 

level of CGS varies along the length. This is another complication for a post-tensioned 

member, since usually the eccentricity varies along the length of the member. Most of the 

time, the profiles of the tendons are parabolic, that means the eccentricity at the mid-span 

is different from the rest of the length. To consider an average elastic shortening over the 

full length of the member, an average stress in the concrete can be considered. 
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(Refer Time Slide: 51:25) 

 

The above expression is specifically for a parabolic tendon. The average stress is given as 

the stress at the end of the member, which has a lower value, plus two third of the 

difference of the stresses at the mid-span and at the end. Thus, if the stress varies in a 

parabolic fashion from fc1 at the end to fc2 at the mid-span, the average stress in the 

concrete can be considered to be fc1 plus two third times the difference of fc2 and fc1. 

This expression can be derived from the equation of the parabolic variation of the stress 

in the concrete at the level of the CGS. 
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(Refer Time Slide: 52:38) 

 

First, we studied the notations that we are using in our equations. There were two sets of 

notations. One set was the geometric properties: there we have learnt the notations of A, 

the area of the gross section, Ac the area of the concrete, Ap the area of the prestressing 

steel and At the area of the transformed section. We learnt, I the moment of inertia of the 

gross section, It the moment of inertia of the transformed section, and e the eccentricity, 

which is the distance between the CGS and the CGC. The value of e is considered to be 

positive, when the CGS is below the CGC. The CGC is the centroid of the gross section 

and CGS is the centroid of the tendons. We have to be aware that either of CGC or CGS 

may lie outside the concrete section itself. We have shown that for a hollow box girder 

section. 

Next, we have learnt the notations for the force variables: Pi, which is the initial force as 

recorded by the gauges in the jack, P0 is the force which drops from Pi due to elastic 

shortening for a pre-tensioned member, and Pe is the effective prestress, which occurs 

after several years after the long-term losses of the prestressing force. Next, we moved 

into the losses of prestress, we have seen that the losses can be grouped into two 

divisions: the immediate losses, under which we have elastic shortening, friction and 

anchorage slip, the second group is the time dependent losses, which generates due to 

creep, shrinkage and relaxation. 
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In today’s lecture, we covered the first immediate loss, which is due to the elastic 

shortening. We saw that this is of a concern for pre-tensioned members. We saw the 

example of a pre-tensioned axial member in details. The calculations of a problem 

showed that, if we use the properties of a gross section, the values are close enough 

compared to the value which is derived by considering a transformed section. Hence, in 

our subsequent calculations we shall use the gross section instead of the transformed 

section for a member. Then we saw the expression of loss for a pre-tensioned bending 

member where, the eccentricity of the prestressing force and the stress created due to the 

self-weight of the member should also be included.  

For a post-tensioned member, we have seen that if there is a single tendon then we need 

not have to consider any loss due to elastic shortening, because the force in the jack is 

recorded after the elastic shortening has occurred. But, if there is more than one tendon, 

and if the tendons are stretched sequentially, then there will be losses in the tendons 

which are stretched earlier and the calculation of the loss is done sequentially for each 

tendon.  

The process can be simplified, if we consider an average loss for all the tendons, which 

are stretched sequentially. The average loss is given in terms of the loss in the tendon 

which is tensioned first, and the average loss is considered to be half that is seen in the 

first tendon. In calculating the stress of the concrete at the level of the CGS, we do the 

summation for all the tendons, except the first one. Hence, the summation is from 2 to the 

total number of tendons. Like that, we get an approximate expression of the loss due to 

elastic shortening in post-tensioned members, where the tendons are stretched 

sequentially. In a post-tensioned member, if the tendons have a parabolic profile, then the 

computation becomes a bit more involved. The eccentricity varies along the length of the 

member and hence, the stress also varies along the length of the member. For a parabolic 

profile, we have seen a simplified expression for an average value of the stress in the 

concrete.  It is an average between the stress at the end and the stress at the mid-span. 

From the average value of the stress in the concrete at the level of CGS, we can calculate 

an average loss in prestress in a post-tensioned bending member. 
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To summarize, elastic shortening needs to be calculated for a pre-tensioned member 

because the pre-tension force drops from the value applied by the jacks. It needs to be 

calculated for a post-tensioned member, when there is more than one tendon and the 

tendons are stretched sequentially. In our next lecture, we shall move on to the other two 

types of immediate losses, which are due to the friction and the anchorage slip.  

Thank you.  
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