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Compression Members

Welcome back to prestressed concrete structures. This is the fifth lecture of module nine 

on special topics. In today’s lecture, we shall cover compression members. 

(Refer Slide Time: 01:29)

After  the  Introduction,  we shall  study about  the  analysis,  development  of  interaction 

diagram and effect of prestressing force.



(Refer Slide Time: 01:34)

Prestressing  is  meaningful  when  the  concrete  in  a  member  is  in  tension  due  to  the 

external  loads.  Hence,  for  a  member  subjected  to  compression  with  minor  bending, 

prestressing  is  not  necessary.  But  when a  member  is  subjected  to  compression  with 

substantial moment under higher loads, prestressing is applied to counteract the tensile 

stresses. Examples of such members are piles, towers and exterior columns of framed 

structures. Earlier, when we studied the behaviour of axial members, we had known that 

the prestressing is effective only when the concrete is under tension. In fact, prestressing 

may be harmful if the concrete is under compression, because the compressive capacity 

of the member gets reduced. Thus, prestressing is applied to mostly tensile members; but 

if a compression member is subjected to substantial moments along with compression 

then prestressing may be meaningful.  Thus,  for  compression members  prestressing is 

applied  to  piles,  towers  or  columns  in  a  building  only  if  they  are  subjected  to  high 

moments  due  to  lateral  forces.  As  the  seismic  forces  are  reversible  in  nature,  the 

prestressing of piles or columns is concentric with the cross-section. Some typical cross-

sections are shown below.
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The one in the left is a partially prestressed column, where we are having non-prestressed 

reinforcement at the four corners and we also have prestressing tendons at the centre. The 

two figures on the right are piles. The first one is the circular section and the second one 

is the hexagonal section and here, the prestressing tendons are along the perimeter but the 

effect of prestressing force is concentric to the section. 
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This is a figure which shows the lowering of the reinforcement cage for a pile. 

(Refer Slide Time: 04:16)

Since a prestressed member is under self-equilibrium, there is no buckling of a column 

due to internal prestressing with bonded tendons. In a deflected shape, there is no internal 

moment due to prestressing. The justification is explained in the next figure. 
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If a column or a pile is subjected to an axial force then, when it gets deflected there will 

be a moment due to the deflected shape.  For a deflection of delta at  the middle,  the 

moment  at  mid-height  is  represented  as  P  delta.  This  happens  under  the  axial 

compression,  whereas  for  an  internal  prestressing  we  observe  that,  even  under  the 

deflective shape, the internal prestressing is under equilibrium with the tension in the 

prestressing tendon and there is no internal moment generated under the deflected shape. 

(Refer Slide Time: 05:33)

Thus,  in  the  free  body  sketch  of  figure  9e-a,  the  external  compression  P  causes  an 

additional moment due to the deflection of the member. The value of the moment at mid-

height is P delta. This is known as the member stability effect which is one type of P 

delta effect. If this deflection is not stable, then buckling of the member occurs. Thus, the 

external compression can cause buckling of a member depending upon the slenderness 

ratio. 
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In the second case, for a prestressing in the free body sketch there is no moment due to 

the  deflection  of  the  member  under  the  prestressing  force,  since  the  compression  in 

concrete which is C and the tension in the tendons which is T, balance each other. 

(Refer Slide Time: 06:36)

When the additional moment due to deflection of the member is negligible, the member 

is  termed as short  member.  The additional  moment needs to  be considered when the 



slenderness ratio of the member is high. The slenderness ratio is the ratio of the effective 

length and lateral dimension. These types of members are termed as slender members, 

where the additional moments need to be considered. In the analysis of a slender member, 

the  additional  moment  is  calculated  by  an  approximate  expression  or  second  order 

analysis.  In this  module,  only short  members  will  be considered.  Thus,  if  we have a 

slender member depending upon the slenderness ratio greater than a certain value then we 

need to account for the additional moment generated due to the external compression. 

This can be estimated by an approximate expression or by second order analysis. In this 

lecture, we are considering only short members where the additional moment due to the 

deflection of the member is negligible.
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Next, we move on to the analysis of compression members. The stress in the section can 

be calculated as follows. fc is equal P0 divided by A. Here, A is the area of concrete and P0 

is prestress at transfer after short-term losses. Thus, after the concrete is cast and then the 

prestressing  is  transferred  to  the  member,  we  find  that  the  stress  in  the  member  is 

compressive and it is uniform since the prestressing is concentric. This compression is 

given as the prestress at transfer, which is P0 divided by the area of the concrete, which is 

A. In this equation, it is assumed that the prestressing force is concentric with the cross-

section.  For  members  under  compression,  a  compressive  stress  is  considered  to  be 



positive. In this lecture, we shall consider that the compressive stress is positive and the 

tensile stress is negative. This is the convention which is used for compression members. 

(Refer Slide Time: 09:34)

The permissible prestress and the cross-sectional area are determined based on the stress 

to be within the allowable stress at transfer fcc,allowable. Thus, given the compressive stress 

to be within the allowable value, we can determine P0 and A; a suitable combination of 

the two variables.

Next, we move on to the analysis at service loads. The analysis is analogous to members 

under flexure. The stresses in the extreme fibres can be calculated as follows.
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fc is equal to Pe divided by A plus N divided by At  plus minus M times C divided by It. 

The first term is due to the prestressing force, which is now the effective prestress under 

service loads; the second term is due to the external compression which is represented as 

N and the third term is due to the external moment which is represented as M.
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In this equation, the external compression for a prestressed member is denoted as N and 

is  concentric  with  the  cross-section.  The  eccentricity  is  considered  in  the  external 

moment M. A is  the area of concrete,  At is  the area of transformed section;  c is  the 

distance of the extreme fibre from the centroid of the section which is CGC; I t  is the 

moment of inertia of the transformed section; Pe is the effective prestress. The value of 

the fc should be within the allowable stress under service conditions. 

Next we move on to the analysis at ultimate.

(Refer Slide Time 11:42)

When the average prestress in a member under axial compression and moment is less 

than  2.5 Newton per  millimeter  square,  clause  22.2 of  IS:  1343 -  1980 recommends 

analyses  of  the  member  as  a  reinforced  concrete  member,  neglecting  the  effect  of 

prestress. Thus, if the prestress is small then the code allows us to analyze the prestress 

member as a reinforced concrete member, with just the amount of the external load acting 

on it. If the amount of prestress is greater than 2.5 Newton per millimeter square, then we 

analyze the prestress member including the prestress and with the help of interaction 

diagrams for the ultimate limit state. At the ultimate limit state, an interaction diagram 

relates  the axial  load capacity,  which is  represented as NuR and the moment capacity 

which is represented as MuR, 
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The R stands for resistance and the u stands for ultimate. It represents a failure envelop.  

Any combination of factored external loads Nu and Mu that fall within the interaction 

diagram is  safe.  Let us understand this  by the help of a sketch.  A typical  interaction 

diagram is shown below.
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The shaded area inside gives combinations of external loads Mu and Nu, that is safe. Thus, 

this boundary is a failure envelope and any combination of the external loads which fall 

within this boundary is safe and the combination which falls outside this boundary is 

unsafe. In this boundary, we have two types of failure conditions. One is the compression 

failure and the other  is  the tension failure.  The transition between them is called the 

balanced failure. The radial line in the previous sketch represents the load path. Usually, 

the external  loads increase proportionally.  At any load stage, M and N are related as 

follows: M is equal to N times eN
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Here, eN represents the eccentricity of N which generates the same moment M. The slope 

of the radial line represents the inverse of the eccentricity, which is 1 by eN. Thus, in most 

of  the  cases,  the  axial  load  and  the  moment,  when  they  increase  they  increase 

proportionally. Hence, the load path is a straight line which passes through the origin and 

move towards to the failure envelope. The slope of the line is given as 1 by eN where eN is 

the ratio of the moment M and the axial force N. At ultimate, the values of M and N, 

which  are  represented  as  Mu and  Nu respectively,  correspond  to  the  values  on  the 

interaction  diagram.  As  the  load  increases  along  the  load  path  and  finally,  when  at 

ultimate, the load state falls on the interaction diagram, then a failure occurs. 



(Refer Slide Time: 16:15)

For  high  values  of  N  as  compared  to  M,  that  is  eN is  small,  the  concrete  in  the 

compression fibre will crush before the steel on the other side yields in tension. This is 

called the compression failure. For high values of M as compared to N, that is eN is large, 

the concrete will crush after the steel yields in tension. This is called the tension failure.  

The transition of these two cases is referred to as the balanced failure, when the crushing 

of  concrete  and  yielding  of  steel  occur  simultaneously.  Thus,  the  significance  of 

compression failure is that, the concrete is crushing before the steel has the chance to 

yield and the tension failure means, the concrete is crushing after the steel has yielded. 

The transition between them is called the balanced failure but the crushing of concrete 

and yielding of steel occur simultaneously.
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For  a  prestressed  compression  member,  since  the  prestressing  steel  does  not  have  a 

definite yield point, there is no explicit balanced failure. The steel for reinforced concrete 

member tend to have a sharp yield point, such as mild steel. Unlike that ,  the 

prestressing steel does not have a sharp yield point. Hence, the definition of a balanced 

failure  is  not  explicit  for  a  prestressed  compression  member,  as  compared  to  our 

reinforced concrete member under compression.

Next,  we  shall  learn  about  the  development  of  interaction  diagram.  An  interaction 

diagram can  be  developed  from the  first  principles  using  the  non-linear  stress-strain 

curves of concrete under compression and steel under tension.
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Several sets of NuR and MuR for given values of eN or xu are calculated. The distance of 

neutral axis from the extreme compressive face is denoted as xu. Partial safety factors for 

concrete and prestressing steel can be introduced, when the interaction diagram is used 

for  design.  Thus,  the  interaction  diagram  is  developed  by  calculating  values  of  the 

capacities NuR and MuR for a given eccentricity eN. Also, you can do the same calculation, 

for  a  given value  of  xu, where  xu. is  the  depth  of  the  neutral  axis  from the  extreme 

compressive phase. 

Once we calculate  a  set  of  NuR and  MuR values,  we can  join those  points  to  get  the 

interaction diagram for that particular member. If we use partial safety factors, then this 

curve can be used for design. Here, the procedure is illustrated for a rectangular section 

with prestressed tendons placed at two opposite faces symmetrically and without non-

prestressed reinforcement.
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Thus, we shall study the development of interaction diagram for a rectangular section, 

whose lateral dimension about the direction of bending is the depth D and whose lateral 

dimension transfers to the direction of bending is B. The prestressing tendons are placed 

symmetrically about the centroid. The group on the left is denoted as Ap1 and the area on 

the right is denoted as Ap2; d1 and d2 are the distances of Ap1 and Ap2 respectively from the 

CGC.
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The notations thus used are as follows: B is the dimension of the section transverse to 

bending; D is the dimension of section in the direction of bending; Ap1 is the area of 

prestressing tendons at the tension face; Ap2 is the area of prestressing tendons at the 

compression face; d1 and d2 distances of centers of Ap1 and Ap2 respectively, from the 

centroid of the section which is CGC.

(Refer Slide Time: 21:22)

For a prestressed member, the strain compatibility equation is necessary. It relates the 

strain in a prestressing tendon with that of the adjacent concrete. Due to a concentric 

prestress, the concrete at a section undergoes a uniform compressive strain. With time, 

the strain increases due to the effects of creep and shrinkage. At service, after the long-

term losses, let the strain in concrete be epsilonce. Let the strain in the prestressing steel 

due  to  effective  prestress  be  epsilonpe.  Thus,  just  due  to  prestressing,  the  section 

undergoes a uniform compression which increases with time due to the losses and after 

the losses, let the compressive strain in the concrete be epsilonce and the tensile strain in 

the prestressing tendons be epsilonpe. This is the strain diagram that we are observing, due 

to the prestressing force alone under service conditions. The strain compatibility equation 

for the prestressed tendons is then given as follows.
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Epsilonpe is equal to epsilonc plus delta epsilonp. Thus, under any load the strain in the 

prestressing steel epsilonp is equal to the summation of strain in the concrete, which is 

epsilonc at that level of prestressing steel plus the strain differential which we denote as 

delta epsilonp. Delta epsilonp  is calculated as epsilonpe minus epsilonce.  Thus we calculate, 

what is  the uniform compressive strain in concrete under service conditions due to the 

prestressing force? What is the tensile strain in the tendons under service conditions? We 

take their difference, get this strain differential and we add this strain differential to the 

strain in concrete to get the strain in the prestressing steel at that level. This is called the 

strain compatibility equation, which relates the strain in the concrete with the strain in the 

prestressing steel which is lying at the same level. The following stress-strain curve for 

concrete under compression is used. It is parabolic and then, it is constant up to strain of 

0.0035. 
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The stress-strain curve for the prestressed tendon under tension can be expressed in the 

following terms. 

(Refer Slide Time: 24:24)

This  curve is  not elasto-plastic  behaviour.  It  has a gradual  transition from the elastic 

behaviour with increasing plastic strain. And this curve is symbolically represented as fp 



is equal to a function of epsilonp. The calculation NuR and MuR for typical cases of eN or xu 

are illustrated. 
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The typical cases are as follows. First, the case of pure compression where, eN is equal to 

0 and xu is equal to infinity; second, full section under compression where, eN can vary 

between 0.05D and less than eN corresponding to xu is equal to D and xu  is greater or 

equal to D; third, is part of section which is under tension, here, eN is greater than the 

value corresponding to xu equal to D, but it is less than infinite and xu is less than D. 

Finally, we have pure bending where, eN is equal to infinite and xu is equal to xu,min, which 

is the minimum value of xu. We shall study these cases as we move on. 
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In addition  to the above cases,  the case of  pure axial  tension  is  also calculated.  The 

straight  line  between the  points  of  pure  bending and pure  axial  tension  provides  the 

interaction between the tensile force capacity and the moment capacity. Thus, this part of 

the interaction diagram is in the lower quadrant, where the tensile axial force is given by 

a negative value. We calculate the moment capacity of the section under pure bending. 

We calculate the tensile force capacity of the member and then we plot these points, join 

them by a straight line; like that we get the interaction diagram for the quadrant which is 

for the tensile force applied on the section. Any combination of the external loads line 

within the green region is  safe.  Next,  we move on to the development  of interaction 

diagram for each of the typical cases separately. 

First is the pure compression. Under pure compression, the strain profile is constant and 

at ultimate the strain is given as minus 0.002. 
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The eccentricity is 0 because there is no moment, whereas the depth of the neutral axes 

from the compression phase is infinite.  Now the stress profile is, we have a stress of 

0.447fck uniform along the concrete and the stress in the prestressing tendons are denoted 

as fp1 and fp2,  which we shall calculate from the strains epsilonp1 and epsilonp2. From the 

strain  profile,  we  go  to  the  stress  profile  and  then  to  the  force  diagram,  where  the 

compression in concrete is denoted as Cu and the tension in the prestressing tendons is 

denoted as Tu1 and Tu2 for Ap1 and Ap2 respectively. 

The forces are as follows. Cu is equal to 0.447 fck times Ag minus Ap; Tu1 is equal to Tu2 is 

equal to Ap1 times fp1 is equal to Ap1 times Ep times minus 0.002 plus delta epsilonp. Thus, 

the term in the bracket represents the strain compatibility condition that we have used to 

calculate the strain in the prestressing steel from the strain in the concrete, which is minus 

0.002. The steel is in the elastic range and hence, we have used the hooks law which is 

the stress is equal to the modulus times the strain in the steel. 
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The total area of prestressing steel is denoted as Ap which is equal to Ap1 plus Ap2. And 

the area of the gross-section is denoted as Ag  is equal to BD. Thus, we can calculate the 

values of Cu,  Tu1 and Tu2 given the geometric variables of the section and the material 

properties. Next, we are calculating the axial load capacity. The moment capacity MuR for 

this case is 0; there is no moment, whereas axial load capacity is given as Cu minus Tu1 

minus Tu2. Again remember that, a compression is considered to be positive and a tension 

is considered to be negative for compression members. Once we substitute the values of 

Cu, Tu1 and Tu2, we get an expression of NuR. 
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In design, to approximate the effect of moment for eccentricities eN less than or equal to 

0.05D, the axial  force capacity  is  reduced by 10%. In design if  a member  has small 

moment applied on the section, then we try to by-pass using the interaction diagram, by 

considering a reduced axial force capacity and neglecting the effect of moment. This is 

allowed when the eccentricity is less than 5% of the dimension D and then the axial force 

capacity is reduced by 10% to get an expression of NuR. In that case, NuR is given as 0.4 fck 

times Ag minus Ap minus 0.9 Ap times EP times Ep minus 0.002 plus epsilonce. 

Next, we move onto the case of a full section under compression under simultaneous 

axial load and moment.
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Note that here, this is applied when the eccentricity is larger than 0.05t but smaller than 

the case when xu is equal to D. Thus, whenever xu is equal to or greater than D, the full 

section is under compression. Let us try to understand the strain diagram. The depth of 

the neutral axis is outside the section that means the full section is under the compression. 

It is assumed that, the strain diagram pivots about a point which is at distance 3 by 7 D 

from the extreme compression face where the strain is minus 0.002. This is an important 

assumption to get the strain diagram for a given value of xu is equal to k times D. Note 

that,  here,  k is  greater  than 1.  Now, given the strain diagram we calculate  the stress 

diagram.  Here,  the  parabolic  part  of  the  stress  diagram in  concrete  goes  outside  the 

section. Hence, the computations are a bit more involved. We need to calculate the area 

under this curve and for that we first calculate the area under the rectangular region from 

which we subtract the area of this shaded part which we denote as A sector. We also 

calculate the tension in the prestressing tendons from the strains. 

The limiting case for full  section under compression corresponds to xu is equal to D, 

when the neutral axis lies at the left edge of the section. 



(Refer Slide Time: 33:50)

The strain diagram pivots about a value of minus 0.002 at 3 by 7D from the extreme 

compression face. To calculate Cu, first, the value of g is evaluated. This g is the intercept 

of the parabolic curve from the value of 0.447fck.  Based on the second order parabolic 

curve for concrete under compression, the expression of the g is as follows. 
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This  expression  can  be  derived  by  assuming  a  second  order  parabola;  g  is  equal  to 

0.447fck times 4 by 7D divided by xu, which is equal to kD minus 3 by 7D. This whole 

term is within bracket and raised to the power 2. This can be simplified to g is equal to 

0.447fck times 4 divided by 7k minus 3 whole square. The area of the sector is given as 

follows. This is the area of a parabolic section and it is given as one-third times g times  

the distance to the apex from the distance to the base which is 4 by 7D.

(Refer Slide Time: 35:23)

Thus, the area of the sector is equal to 4 by 21 g times D. Once we know g, we can 

calculate the area of the sector. The distance of the centroid of this area from this apex is 

denoted as x prime and this is equal to three-fourth of 4 by 7D, which is equal to 3 by 7D.
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Then Cu is given as the area of the rectangular section 0.447fck times D minus area of the 

sector A sector whole times B. Once we substitute the value of the area of the sector, we 

get an expression of Cu for the given value of k. 
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Next, we are finding out Tu1, which is Ap1 times fp1 and again here Tu1 is within the elastic 

limit  and we can substitute  the value of the strain in the concrete by this  expression, 



which we can derive from the strain diagram. That means, once we know the strain in the 

pivot point and we know that the strain at the neutral axis is 0 from the similarity of the 

triangles, we can find out what is the value of the epsilonC1 at the distance of xu minus D 

by 2 plus d1.Thus, this expression has come from the similarity of the triangles. To the 

strain of the concrete, we add the strain differential to get the strain in the prestressing 

steel. From that, we calculate the stress and then we calculate the force in the prestressing 

steel Ap1.
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Similarly, we can calculate Tu2, which is from the strain in the concrete at the level of Ap2 

and here also, we find that the strain at epsilonC2 can be determined from the similarity of 

the triangles. That means, based on this value of minus 0.002 at the pivot point, we can 

calculate  what  the  strain  at  this  level  is.  Again  this  expression  is  derived  from this 

similarity of the triangles. Thus, after these calculations the moment and the axial force 

capacities are as follows.
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NuR is equal to Cu minus Tu1 minus Tu2, and MuR is equal to plus Mc plus Mp; the Mc is the 

moment due to the force in the concrete and Mp is the moment due to the forces in the 

prestressing tendons. The expression of Mc and Mp about the centroid of the section are 

given below. 
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Anti-clock wise moments are considered to be positive in this derivation. Mc is equal to 

0.447 fck times DB times 0. This is the area of the rectangle, whose centroid lies at the 

centroid  of  the  section  and  hence  this  rectangular  stress  block  does  not  create  any 

moment about the centroid. The Mc is only due to the area of the sector, A sector, which 

is given as A sector times B within bracket x prime plus 3 by 7 D minus D by 2. That is the 

distance of the centroid of the sector from the centroid of the cross-section. Thus, this 

term on the right hand side gives the value of Mc, which, when simplified is equal to 10 

divided by 147 gD square times B. Mp is given by, taking the moments of Tu1 and Tu2 

based on the centroid and since, these are the distances d1 and d2, Mp is equal to Tu1 times 

d1 minus Tu2 times d2. 

Next, we move to the case where, part of the section is under tension. Note that, in the 

strain diagram, from the left hand side, we have some tension. eN is less than the value 

corresponding to xu is equal to D whereas, eN is less than infinite, which is for the case of 

pure bending. 
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xu which is depth the of the neutral axis, is lower than D. Once xu is lower than D, we 

have some tension on the left side. From the strain diagram, we get the stress diagram. 

Note that, the extreme compression is now 0.0035 and the stress diagram is similar to a 



reinforced concrete section. That means once the section cracks, the analysis is similar to 

a section under flexure.  The forces are as follows. Cu is equal to 0.36 fck times xu times B, 

which is the resultant of the stress block in concrete; Tu1 as before, is given as Ap1 times 

fp1. Now here, fp1 should be calculated from the stress in curve. Now, the concrete around 

Ap1 is under tension and the prestressing tendon may go to the yield region. Hence, we 

should not use the elastic values without checking whether the steel is yielding or not. For 

Tu2 the steel need not yield and we can use the elastic relationship.

(Refer Slide Time: 42:21)

The strains  epsilonc1 and  epsilonc2 are  calculated  from the  strain  diagram as  follows. 

These expressions are based on the linearity of the strain diagram. From the similarity of 

triangles given this extreme strain minus 0.0035 and given the location of the 0 strain, 

which is xu, we can find out what epsilon c1 is. Similarly, we can find out what epsilon c2 

is, knowing these distances. Thus given the distances of Ap1 and Ap2 from the neutral axis, 

we can find out what the value of epsilon c1 and epsilon c2 is. For epsilonc1 and epsilonc2 

we calculate epsilonp1 and epsilonp2 from which we calculate fp1 and fp2 and then we get 

the forces. Finally, the moment and the axial force are given by these equations, which 

are same as we had seen before that, NuR is Cu minus Tu1 minus Tu2 and MuR is equal to Mc 

plus Mp.  The expression of Mc about the centroid is given by the stress block times the 

lever arm, which is D by 2 minus 0.42 xu and the expression of Mp  is same as before. 



Finally, we are coming to the case of pure bending, where the eccentricity is now infinite, 

because there is no axial force coming and the depth of the neutral axis has the minimum 

value for all these cases. 
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The value of xu is determined by trial and error from the condition that the sum of the 

forces is 0. Thus, we write the generic expression Cu minus Tu1 minus Tu2 is equal to 0. 

You substitute the values of Cu and then from this, we get the expression of xu. The stress 

epsilonp1 and epsilonp2 are calculated from the strain compatibility equations. 
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The strain eplisonp2 is within the elastic range, where as epsilonp1 may be outside the 

elastic range. The stresses fp1 fp2 are calculated accordingly from the stress versus strain 

relationship of prestressing steel. 
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The steps for solving xu are as follows. Assume some value for xu say, 15% of the total 

depth; then determine epsilonp1 and epsilonp2 from strain compatibility; determine fp1 and 



fp2 from the stress versus strain relationship for the prestressing tendon. Calculate xu from 

the expression which satisfies that, the axial force in the section is 0 and then, compare 

this xu with the assumed value. If it does not satisfy, iterate till we converge. That means, 

we are satisfying the condition  that  the  axial  force in  the section  is  equal  to  0.  The 

moment and the axial force capacities are as follows. The axial force capacity is 0 for 

pure bending and the moment is equal to Mc plus Mp, but the expression of Mc and Mp are 

same as the previous case. 
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Last, we come to the axial tension, where the moment and the axial force capacities are 

given directly. The cracked concrete is neglected in calculating the axial force capacity. 

Thus, the axial force capacity is equal to minus 0.87 times fpk times the total prestressing 

steel, which is Ap and MuR is equal to 0. The above sets of NuR and MuR are joined to get 

the interaction diagram. 



(Refer Slide Time: 46:29)

Let us calculate the design interaction diagram for the member given below. The member 

is  prestressed  using  eight  strands  of  10  millimeter  diameter.  The  strands  are  stress 

relieved with the following properties: the tensile strength is equal to 1715 Newton per 

millimeter  square; the total  area of tendon is 8 times 51.6 is equal to 413 millimeter 

square; effective prestress is 1034 Newton per milimeter square; modulus of elasticity, EP 

is 200 Kilonewton per millimeter square; the strain under fpe which is epsilonpe is given as 

0.0052; the grade of concrete is M40 and the strain under fpe which is epsilonce form the 

concrete is 0.0005.

The dimensions of the sections are as follows: D is equal to 300; B is equal to 300 and 

the distances from the edges to the centre of the prestressing steel is 50.



(Refer Slide Time: 47:44)

First is the calculation of geometric properties and strain compatibility relationship. Ag is 

90,000 millimeter square; Ap1 and Ap2 is 206 millimeter square; d1 and d2 is equal to 100 

millimeter; Delta epsilonp is equal to 0.0052 minus 0.005 which is equal to 0.0047. Thus, 

our strain compatibility equation is epsilonp is equal to epsilonc plus 0.0047.
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We are calculating for the case for pure compression. For this case MuR is equal to 0. We 

are  calculating  the  expression  of  Cu from  the  previous  expression  and  it  is  1601.8 

Kilonewtons; Tu1 and Tu2 come out to be 111.5 Kilonewtons.

(Refer Slide Time: 48:48)

We calculate the value of NuR and we get NuR is equal to 1378.8 Kilonewtons. If we 

reduce by 10% to consider  eccentricities  less than 0.05t,  then NuR is  equal  to 1204.9 

Kilonewtons. 
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Next, we are calculating for the full section under compression. We are selecting xu is 

equal to 400 millimeter. That means, the depth of the section is 300; whereas, xu lies 100 

outside section,  where k is  given as 4 by 3.  We can calculate  the value of g by the 

previous expression. 
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Then, we get the value of Cu, again substituting in the previous expression, we get cu is 

equal to 1486.9 Kilonewtons.
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We are calculating the strain in Ap1 from which we get Tu1 is equal to 148.4 Kilonewtons. 
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Similarly,  we  are  calculating  the  strain  in  Ap2 from  which  Tu2 is  equal  to  87.5 

Kilonewtons. 
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Thus, NuR is equal to Cu minus Tu1 minus Tu2. Substituting that we get NuR equal to 1251 

Kilonewtons. We can limit that NuR to the value corresponding to e is equal to 0.05 D and 

that value is 1240.9 Kilonewtons.
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We are calculating the value of Mc from the previous expression. We get Mc is equal to 

13.1 Kilonewton meters and Mp, we get 6.1 Kilonewton meters. When we add them up, 



we get MuR is equal to 19.2 Kilonewton meters.  Thus, for this case we got the values of 

NuR and MuR.
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We are selecting another case, where xu is equal to 300. That means the neutral axis is 

lying right at the edge of the section. Here, k is equal to 1. By similar calculations we can 

find the values of g, Cu, Tu1, Tu2.  NuR comes out 1060.6 Kilonewtons and MuR is equal to 

42.5 Kilonewton meters.
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Next, we move on to the case of a part of the section under tension. We are selecting xu is 

equal to 200 millimeters. Note that, now the neutral axis lies within the section. Cu is 

given by the expression, which is 864 Kilonewtons.
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We are calculating epsilonc1 from the strain diagram. Given the two distances 200 and 50, 

we can calculate what the value of epsilonc1  is. Epsilonp1 is equal to epsilonc1 plus the 



strain differentials 0.0047 which is equal to 0.0056. Since, the strain is within the elastic 

limit, now the elastic limit is given as 0.87 of 0.8fck divided by epsilonp, which is equal to 

0.0059.  Note  that,  epsilonp1  is less  than  epsilonpy and  hence,  we  can  use  the  elastic 

relationship. 
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fp1 is equal to epsilonp1, we get 1115 Newton per millimeter square, from which we get Tu1 

is equal to 230.1 Kilonewton.
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We  can  calculate  the  strain  in  Ap2 similarly,  from  another  strain  diagram  from  the 

similarity of triangles and from epsilonc2 we calculate epsilonp2 and that is equal to 0.0021.
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fp2 is calculated from the elastic relationship and Tu2 is equal to 85.9 Kilonewtons. Thus, 

NuR is equal to 548 Kilonewton. 
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Mc, we can substitute the values and that is equal to 57.0 Kilonewton meter. Mp is equal 

to 40.4 Kilonewton meters. Thus, MuR is the summation of Mc and Mp, which is equal to 

71.4 Kilonewton meters. 
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For the pure bending case, NuR is equal to 0 and now, we are trying to solve the equations 

by trial and error. We select xu is equal to 100. We calculate the value Cu, which is equal 

to 432 Kilonewtons. 
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We are calculating the values of epsilonc1 from the strain compatibility relationship. Then 

we calculate epsilonp1. From the stress-strain curve we find the fp1. This stress strain curve 

has to be used for the stress relieved type of steel and fp1 is equal to 1492 Newton per 

millimeter square. Tu1 is equal to 308 Kilonewtons. 
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Similarly, we can calculate epsilonc2 from the strain diagram and we calculate epsilonp2, 

from which we can calculate fp2 and finally, T2 is equal to 120 Kilonewtons. 
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Tu1  plus Tu2  is equal to 428.0 Kilonewton, which is close enough to Cu. Hence, the trial 

section of xu is satisfactory. 

(Refer Slide Time: 55:14) 



Mc, by the substitution of the values is 46 Kilonewton meter and finally, we get MuR is 

equal to 65.4 Kilonewton meters. 
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For axial tension, MuR is equal to 0 and NuR is equal to minus 616.2 Kilonewtons. The 

above sets of NuR  and MuR are joined to get the following interaction diagram. The limit 

on axial force capacity to consider the effect of eccentricity less than 0.05 D is not shown 

in this diagram. This is the interaction curve for the section and once we have plotted the 

points, we get this failure envelope. 
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To see the effect of prestressing force, let us compare the results with two equivalent 

reinforced concrete sections. For the first section, the blue line is represented as 

prestressed concrete section.
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The pink line above is the reinforced concrete section with the same flexural capacity and 

the yellow line is the reinforced concrete section with the same axial load capacity.
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Along with  the  interaction  curve  for  the  prestressed  concrete  section,  the  interaction 

curves for two reinforced concrete sections are plotted. The section denoted as RC 1 has 

the same moment capacity at zero axial force. The section denoted as RC 2 has the same 

axial force capacity at zero moment. The gross section of RC 1 is same as that of PC, but 

the section of RC 2 is smaller.
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Comparing the curves for PC and RC 2, it is observed that if the moment demand is small 

then  a  smaller  reinforced concrete  section  is  adequate  to  carry  the  axial  force.  With 

increasing moment, the flexural capacity of the prestressed concrete section is higher.
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Comparing the curves for PC and RC1, it is inferred that, for the two sections with same 

flexural capacities, the axial load capacity of a prestressed concrete section is less. Thus, 

prestressing  is  beneficial  for  strength,  when  there  is  occurrence  of  large  moment  in 

addition to compression. Such a situation arises in piles or columns subjected to seismic 

forces.  Prestressing  is  beneficial  at  service  loads  due  to  reduced  cracking.  Non-

prestressed reinforcement may be used for supplemental capacity.
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Today,  we covered  the compression  members.  After  the introduction  of  the different 

types of application of prestressing in compression members, we went on to the analysis 

of  compression members.  We first  saw the  analysis  at  transfer,  then  at  service,  then 

finally, at the ultimate state. For the ultimate state, we need the interaction diagrams and 

we learnt of the development  of the interaction diagrams. We came to know that the 

effect  of  prestressing  is  beneficial  only when there  is  high moment  along with axial 

compression; otherwise it may not be economical. With this we are ending the module on 

compression members. Thank you. 


