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Two-way Slabs (Part 2)

Welcome back to prestressed concrete structures. This is the fourth lecture in the Module 

9 on special topics. Today, we are continuing with the topic on the two-way slabs. In 

today’s lecture, we shall cover the checking for shear capacity then we shall study the 

design of spandrel beams. 

(Refer Slide Time: 1:29)

After that we shall move on to the anchorage devices and finally we shall mention some 

additional aspects for the design of two-way slabs. Last time, I talked about the analysis 

and design for the flexural capacity and what we have learnt is that the flexural analysis is 

done  by  considering  equivalent  frames  in  each  orthogonal  direction.  The  equivalent 

frame is  analyzed under  the gravity and lateral  loads  and from that  we calculate  the 

moments at the critical sections. once we know the moments at the critical sections we 



distribute the column strip and the middle strip then by the value of moment per unit 

width we design for the prestressing tendons.

(Refer Slide Time: 02:30)

Next, when we are looking for the shear capacity, the checking for shear capacity of flat 

plates and flat slabs is of utmost importance. In absence of beams the shear is resisted by 

the slab near the slab-to-column junction. We have to understand that when there are 

beams then the shear demand on the slab is much less, but in the absence of beams the 

shear  demand on the slab near  the slab-to-column junction  is  quite  high.  Hence,  the 

checking for shear capacity in two-way slabs is extremely important, especially if the 

two-way slabs is of a flat plate and a flat slab. 

The shear capacity of the slab could be adequate to resist the shear from two actions. The 

first is the one-way shear, which is also called the ‘beam shear’ and the second is the 

‘two-way or the ‘punching shear’. That means, for two-way slabs we analyze for two 

types of shear; first is the one-way shear and second is the two-way shear. The one-way 

shear is analogous to that generates in a beam due to flexure. This is checked in a two-

way slab for each spanning direction separately.  The critical  section for checking the 

shear capacity is at a distance effective depth ‘d’ from the face of the column across the 

entire width of the frame. The critical section is transverse to the spanning direction. 
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For gravity loads the shear demand in the critical section generates from the loads in the 

tributary area shown in the next figure. For lateral loads the shear demand is calculated 

from the  analysis  of  the  equivalent  frame.  Thus,  first,  once  we have  determined  the 

equivalent frame and the spanning direction, the one-way shear is checked for the section 

which is transverse to the spanning direction and at a distance of the effective depth from 

the face of the support.
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In this sketch you can see the critical section marked by the dash line is at a distance ‘d’ 

from the face of the column. Note that, the spanning direction is running is east-west, 

whereas the critical section is running north-south. The shear demand that comes in this 

critical section can be determined based on this tributary area which is shown shaded for 

gravity loads. But if there are lateral loads then we get the shear in the critical section 

from the  analysis  of  the  equivalent  frame.  This  shear  is  analogous  to  the  shear  that 

generates in a beam under reflections. 

(Refer Slide Time 05:49)

In the presence of a drop panel two critical sections need to be checked. The first section 

is at a distance d1 from the face of the column where d1 is the effective depth of the drop 

panel. The second section is at a distance d2 from the face of the drop panel, where d2 is 

the effective depth of the slab. Thus, if there is a variation of the thickness of the slab due 

to the drop panel, the first critical section is at the distance d1 from the face of the column 

or the column capital,  where d1 is  the effective depth of the drop panel.  The second 

critical section is at a distance d2 from the face of the drop panel where d2 is the effective 

depth of the slab. Thus, whenever there is a variation in the depth slab we need to have 

multiple critical sections checked.



(Refer Slide Time: 06:53)

The calculations can be for unit width of the slab. The shear demand due to gravity loads 

per unit width is given as follows: Vu = wu (0.5ln  – d). Here, ‘ln’ is the clear span along 

the spanning direction. Thus, if we know the tributary area, the length of the tributary 

area is 1/2 the clear span minus the effective depth d and then, the shear demand per unit 

width of the slab is given as wu which is the factored gravity load per unit area times the 

length of the tributary area. Now, this is the shear demand that we are calculating for the 

gravity loads. 
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The shear  capacity  per unit  width is  given as follows: vur = vc where vc  is  the shear 

capacity of uncracked concrete of unit width of slab. The expression of vc is given in the 

“Module of Analysis and Design for Shear and Torsion”. In slab design, conventionally 

we do not  place  shear  reinforcement.  The shear  capacity  is  given only  by  the  shear 

capacity of concrete. In the shear capacity of concrete there are two expressions given in 

the code; one for uncracked sections and another for cracked sections. Usually, near the 

support the uncracked section governs and once we know vc, we equate that to vur, the 

resistance for shear. For adequate shear capacity we need to have vur greater than or equal 

to vu. That means, the capacity should be greater than or equal to the demand. If this is 

not satisfied it is preferred to increase the depth of the slab to avoid shear reinforcement 

along the width of the slab. 

Thus, if in absence of drop panels and if we have a shear demand which is exceeding the 

shear capacity then we can provide a drop panel that means we can thicken the part of the 

slab near the column and we can have vur greater than or equal to vc. That means, without 

providing shear reinforcement if we can increase the thickness of the slab then we may 

have the shear capacity greater than the shear demand. This is preferred to avoid shear 

reinforcement in the slab.
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Next, we move on to two-way shear. The two-way shear is specific to two-way slabs. If 

the  capacity  is  inadequate,  the  slab may fail  due to  punching around a column.  The 

punching  occurs  along  a  conical  frustum  whose  base  is  geometrically  similar  and 

concentric to the column cross-section. 

(Refer Slide Time: 10:28)



The punching shear failure is typical for two-way slabs and in absence of beams. In this 

case, under the gravity loads or if there are moments to be transferred from the slab to the 

column, there can be cracking in the slab which appears like a conical frustum whose 

base is similar to the column cross-section. Thus, in this figure, you can see the elevation 

where you see that there is conical crack in the slab and the slab tries to drop down from 

the slab and the column junction. The failure surface looks like a conical frustum. Note 

that the failure section is geometrically similar to the column cross-section.

(Refer Slide Time: 11:29)

Two-way shear is  checked for the two spanning directions  simultaneously.  So this  is 

unlike  one-way shear  where  we check the  shear  capacity  individually  in  each of  the 

spanning direction. But in two-way shear we check the capacity for both the directions 

simultaneously. The critical section for checking the shear capacity is geometrical similar 

to the column cross-section and is at a distance of d by two from the face of the column. 

Thus, based on the observed behavior under punching we select a critical section which is 

all around the column. It is geometrically similar to the column cross section and it is at a 

distance of d/2 from the face of the column or column capital. 

In our following expressions we shall  use these notations,  c1 is  the dimension of the 

column in the one reaction; c2 is the dimension of the column in the other orthogonal 



direction;  b1 is  the width of the critical  section,  which is  parallel  to c1; and b2 is  the 

dimension of the critical section, which is parallel to c2. Thus, the perimeter of the critical 

section is twice b1 + b2.

(Refer Slide Time: 13:13)

The depth of the critical section is equal to the average of the effective depths of the slab 

in  the  two  directions.  We  may  have  different  effective  depths  in  the  two  spanning 

directions  because  the  steel  in  the  two  directions  will  lie  above  each  other.  But  for 

computational  simplicity  we  consider  an  average  effective  depth  for  both  the  two 

directions and that is the value of d, we use to compute b1 and b2. The sketch below 

shows the isometric view of the critical section. Thus, for a rectangular column we have 

rectangular critical section with dimensions b1,b2 and the depth equal to the average of the 

effective depth, which is d.

The lengths  of  the  sides  of  the  critical  section  along and transverse  to  the  spanning 

direction are denoted as b1 and b2 respectively. Thus, b1 = c1 + d, because each side the 

section is at a distance of d/2. Hence, b1 = c1 + d by 2 on the left plus d by 2 on the right. 

Hence, b1 = c1  + d. Similarly, b2 = c2 + d and here, c1 is the dimension of the column or 

column capital in the spanning direction and c2 is the dimension of the column or column 

capital in the transverse direction. 
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For a non-rectangular column, the critical section consists of the slab edges as per figure 

13,  IS: 456-2000. There can be columns other  than rectangular  columns and in  such 

situations, the code IS: 456-2000, gives us guide lines, how to select the critical section 

for non-rectangular columns. For edge and corner columns, the critical section consists of 

the slab edges as per figure 14, IS: 456-2000. That means, if a column is close to an edge 

and in that case, the critical section has the slab edge as one of its sides and how to select 

a critical section in such a situation is also given as IS: 456-2000.

We are not going to the details of special cases but we are focusing on the calculating 

shear  demand  and  the  shear  capacity  for  a  critical  section  of  an  interior  rectangular 

column.



(Refer Slide Time: 16:13)

The demand in terms of shear stress is given as follows: touv is equal to vu divided by b0d 

plus Muv  about axis2-2 access times b1 by 2, divided by j about axis2-2 access plus a Muv 

about axis1-1 access times b2, divided by two divided by j about axis1-1 access. Let us try to 

understand  this  generic  expression  by  the  individual  terms.  Note  that  here,  we  are 

calculating the shear demand in terms of the shear stress touv. Thus, vu is the shear due to 

gravity loads from the tributary area. 

What is the tributary area? 

We shall discuss later. The first term vu, divided by v0d comes from the gravity loads in 

the tributary area. Muv is the fraction of the moment transferred about an axis. 

For flat plates and flat slabs, the moments from the slab are transferred to the column by 

the slab-to-column junction and part of the moment is resisted by the shear. That, we are 

determining by a special expression,  we shall see later. We are denoting the part of the 

moment that is transverse by shear as Muv. When the moment is acting about the axis1-1 

the corresponding notation of the moment which generates shear stress is Muv about axis1-

1.  Similarly,  when  the  moment  acts  about  the  axis2-2,  the  corresponding  moment 

generating the shear stress is denoted as Muv2-2. Hence, b0 is the perimeter of the critical 

section which is  equal to twice b1  + b2.  This we saw earlier,  for a rectangular  cross-



sectional column we have a rectangular critical section. In that case, b0 = 2 (b1 + b2) and j 

is the polar moment of inertia of the critical section about an axis. We shall see what is 

the expression of j, again we have to calculate j about 2 axis; about1-1; about2-2 axis.

(Refer Slide Time: 19:11)

The tributary area of the column is the area within the center-lines of the spans minus the 

area within the critical section. It is shown shaded in the sketch below. When we are 

calculating vu, we are considering this shaded area which is the area bounded by center-

line of the adjacent spans. From that we are deducting the area which is within the critical 

section. Thus, this shaded area generates the shear force vu. The second and third terms 

are due to transfer of moments from slab to the column. 
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The moment about an axis is due to the unbalanced gravity loads for the two sides of the 

column or due to lateral loads. It is transferred partly by the variation of shear stress in 

the critical section and the rest, by flexure. The fraction transferred by the variation of 

shear stress about an axis is denoted as Muv. 

Thus, to summarize the second and third terms are related with the moment that gets 

transferred from the slab to the column. This moment can generate due to unbalanced 

loads on the two sides of the spans. If the spans are of different length then we can have a 

moment  generated even if  the load is  uniformly placed and if  the spans are of same 

length, then also we can have a moment if the live-load is placed only on one side. Thus, 

first, we need to calculate the moment that gets transferred from the slab to the column.

If  there  is  lateral  load acting  then this  moment  is  available  from the  analysis  of  the 

equivalent frame. From that moment, part of it is resisted by the variation of the shear 

stress in the critical sections. We are denoting that fraction as Muv. Thus, Muv about2-2 is 

the  fraction  of  moment  transferred  about  axis2-2.  Muv1-1 is  the  fraction  of  moment 

transferred about axis1-1.
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The shear and moments acting at the critical section are shown below. If you see the first 

diagram, the shear force, Vu acts at the center of the column. In the second diagram, Muv 

is the part of the moment that acts about the axis2-2. In the third diagram, you can see Muv1-

1 is the part of the moment that acts about axis1-1. Thus, these are the three forces that are 

acting  in  the  critical  section,  which  generates  shear.  The shear  stresses  due  to  these 

individual forces are represented below. 

Vu generates  a  uniform shear  stress  all  around  the  critical  section.  Muv about  axis2-2 

generates a varying shear stress, which varies from the left to right as we cross the axis 2-2. 

It is of course, uniform in the faces, which are parallel to the axis2-2. Similarly, the shear 

stress that is, generated by Muv1-1 varies in the faces, that is perpendicular to1-1 and they 

are uniform about the faces that are parallel to1-1. 

Thus, once we understand the mechanism of the transform of shear from the slab to the 

column, we can develop the expression of the shear stress that was given before. That 

means, the first term of the shear stress is Vu divided by the area in the perimeter which is 

b0d. The second term is due to the moment acting about axis2-2 and the third term, due to 

the moment acting about axis1-1. Finally, we add them up for the maximum shear stress 

that occurs anywhere in the critical section.



If we note in the sketch the right-hand corner, the near corner in that case, say, if I pick 

up this corner, then the shear stress is downwards for due to Vu. Similarly, due to Muv2-2, 

that is also downwards and the maximum value. For the shear due to Muv1-1, that is also 

downwards  and  the  maximum value.  Thus,  in  this  corner,  all  the  shear  stresses  are 

additive.  Hence,  we  are  adding  all  the  terms  to  get  the  maximum  shear  stress  that 

generates in the critical section.

(Refer Slide Time: 25:03)

The resultant shear stress diagram is shown below. Here, you can see that the stresses 

have added up in this closer right-hand corner and it is less in the other corners. But it is  

the closer right-hand corners which determine the shear demand. Hence, in all the terms 

of  a  shear  demand we are adding the values  due to  the three terms.  The fraction  of 

moment transferred by the variation of shear stress about an axis which is denoted as Muv 

is given in terms of the total moment transferred Mu as follows:



(Refer Slide Time: 25:59)

As I said earlier, first, we need to calculate Mu. For gravity loads, it is calculated from the 

unbalanced loads on the two spans on the two sides. For lateral loads, Mu is calculated 

from the analysis of the equivalent frame. Now, once we know Mu then we can calculate 

Muv by this expression, Muv = 1 – alpha (Mu). The value of Mu due to unbalanced gravity 

load is calculated by placing live load on one side of the column only. The value of Mu 

due to lateral loads is available from the analysis of the equivalent frame. Then, we can 

combine the effects of the gravity loads and live loads based on the load combinations 

that we are familiar with. The parameter alpha is based on the aspect ratio of the critical 

section.
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It has been found that, when the critical section is square then the resistance to shear is 

better for this punching shear and hence this parameter has been developed to quantify 

the shear capacity for non-square sections. That means, for non-square sections, it will be 

less  than  the  value  corresponding  to  a  square  critical  section.  The  parameter  alpha 

depends on the aspect ratio of the critical section. 

The aspect  ratio means the ratio  of one side divided by the other side of the critical 

section. Alpha is equal to 1 divided by 1 plus two-thirds of square route of b1 divided by 

b2. Here, b1 and b2 are the dimensions of the critical section parallel to axis1-1 and axis2-2. 

Then, from the aspect ratio, we can calculate the value of the parameter alpha. Next, once 

we know Muv, the next quantity we need to know is the polar moment of inertia.



(Refer Slide Time: 28:21)

The polar moments of inertia of the critical section about the axes are given as follows:

J about1-1 is equal to 2 times 1 by 12 b2 d cube plus 1 by 12 d b2 cube plus b1d times b2 

divided by 2 whole square. Similarly J about2-2 is equal to 2 times 1 divided by 12 b 1 d 

cube plus 1 divided by 12 d b1 cube plus b2d times b1 divided by 2 whole square. The 

expressions of the polar moments of inertia have been determined based on the parallel 

axis and perpendicular axis theorems. These theorems are covered in the undergraduate 

structure analysis courses. From those theorems, we can develop these expressions of the 

polar moments of inertia.



(Refer Slide Time: 29:37)

For adequate shear capacity, the touv, which is the resultant shear stress demand due to 

the three forces should be less than or equal to kstouc The shear stress capacity of concrete 

for a square column is given as follows: touv is less than or equal to 0.25 root over fck, 

where f ck is the characteristic strength of the concrete in the slab. The effect of prestress 

is neglected. Thus, the shear capacity touc is given as 0.25 root over fck, neglecting the 

effect of prestress. The factor ks accounts for the reduced shear capacity of non-square 

columns. 

Again as I said that, for a cross-section, which is non-square, it has been found that the 

shear capacity is lower than that of a square cross–section. That is taken into account by 

these factor ks, where ks is equal to 0.5 plus betac. The value of ks should be less than one 

and betac is the parameter based on the aspect ratio of the column cross-section. It is the 

ratio of the short side to long side of the column or column capital. Again, betac is the 

ratio of the short side to long side of the column. To that, we are adding 0.5 to get the 

value  of  ks.  We need to  make sure that  ks is  less  than  or  equal  to  1.  Then,  we are 

multiplying ks to touc, which is equal to 0.25 root over fck and by that, we are getting shear 

capacity of the critical section at a point. For adequate shear capacity, the shear demand 

touv has to be less than or equal to touc.
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If touv exceeds kstouc, a drop panel or shear reinforcement needs to be provided at the 

slab-to-column junction. Thus, if we find that the shear demand touv is greater than the 

capacity ks touc. Then, we have two options in hand. 

The first option is, we can thicken the slab around the column and that is called a drop 

panel.  The  second  option  is,  which  is  applied  for  flat  plates  that  to  provide  shear 

reinforcement inside the slab. The shear reinforcement can be in the form of stirrups or I 

section, which is sometimes called shear head or based on shear studs. The reinforcement 

based on shear studs reduces congestion for conduits and post-tensioning tendons. There 

have been various types of shear reinforcement. Some of it, we shall cover in this lecture 

and depending on the suitability, that is, how much reinforcement we have in the column, 

depending on that, we can select what type of shear enforcement we need to provide at 

the slab-to-column junction.



(Refer Slide Time: 33:00)

If touv exceeds 1.5 touc, it is an upper limit; in that case, the depth of the slab needs to be 

increased in the form of drop panels. That means, the code says that if the shear demand 

is very high, which is like 1.5 times touc, then we need to increase the depth of the slab 

around the columns which is known as drop panels. The stirrups are designed based on 

the following equation: Asv is equal to touv minus 0.5 touc divided by 0.87 fy Thus, we 

have calculated the shear demand, touv From that, we are subtracting only half of the 

shear capacity of the concrete, which is 0.5 touc. We are dividing that, by the permissible 

stress  in  the  stirrups,  which  is  0.87  fy to  get  the  value  of  Asv,  which  is  the  shear 

reinforcement around the critical section.

The stirrups are provided along the perimeter  of the critical  section.  The first row of 

stirrups should be within distance of 0.5 d from the face of the column. They can be 

continued in outer rows, which are concentric and geometrically similar to the critical 

section at an interval of 0.75 d till the section with the shear stress tou v is equal to 0.5 

touc. Let us understand this by the help of a sketch. 
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The different  types  of reinforcement  at  the slab-to-column junction  are shown in the 

following sketches: These sketches have been taken from Bureau of Indian Standards 

Publication, Handbook on Concrete Reinforcement and Detailing, which is SP 34: 1987. 

The second reference is Khan and Williams and the title of the book is Post-tensioned 

Concrete Floors and it has been published by Butterworth and Heinemann limited.

(Refer Slide Time 36:00)



In this  figure,  we see that  around the  column section,  we have identified  the critical 

section and we are providing the stirrups in a perimeter, which is geometrically similar 

and concentric to the column cross-section. The first row of stirrups should start within a 

distance point, 5d, so that at least there is one row of stirrups that intercepts the punching 

shear. Then, we may provide subsequent rows of stirrups till the shear demand comes 

below 0.45 touc. In this figure, we have seen that we are providing these stirrups in two 

more rows and you can see that these stirrups are also placed in a perimeter, which is 

geometrically similar and concentric to the column cross-section.

We have to provide some holder bars for the stirrups incase for pre-stress slabs and these 

stirrups have to be placed in and perimeter, which is geometrically similar to the column 

cross-section. The second type of shear reinforcement is by the beam cage reinforcement. 

In this figure, we are showing some stirrups which are analogous to beam stirrups, 

(Refer Slide Time: 37:44)

These are closed stirrups placed about the holder bars and if I take a cross section at the 

mid-depth of the slab, then the vertical legs of the stirrups appeared this way. Again, we 

see that the stirrups are around the column, which is geometrically similar and concentric 

to the column cross-section. This is another alternative of placing the stirrups around the 

columns. The third alternative is by providing bent-up bars. This is suitable in absence of 



lateral loads and if the amount of shear reinforcement is less. We can provide some bars 

which have inclined legs and these inclined legs can carry the vertical component of the 

shear force. Hence, again if I take a section at the mid-depth of the slab, then we see that 

the legs of the stirrups appear to be about a perimeter, which is geometrically similar and 

concentric to the column cross-section. 

(Refer Slide Time: 39:33)

The fourth type of the shear reinforcement in a flat plate, especially can be given by shear 

head or which are I sections welded together. In this sketch, we find that there are two I  

sections, which are welded at the center and this shear head reinforcement can be placed 

at the slab-to-column junction to sufficiently increase the shear capacity of the junction.
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Finally, we are coming to the reinforcement based on shear studs. Here, shear studs are 

welded  to  plates  and  this  assembly  is  placed  at  the  slab-to-column  junction.  The 

advantage of shear stud reinforcement is that, it does not intercept the main reinforcement 

through the column and the placement of the prestressing tendons conduits is easier, if we 

have this shear stud reinforcement. Thus, depending on the column reinforcement, the 

layout  of  the  prestressing  tendons,  any  other  obstruction,  whether  it  is  an  electrical 

conduit; in that, depending on this, we are selecting the type of shear reinforcement to 

enhance the shear capacity of the slab-to-column junction. 
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The residual moment transferred by flexure, which is denoted as Muf is given in terms of 

the total moment transferred Mu as follows: Muf is equal to alpha times Mu. Thus, what 

we have seen is that, the moment to be transferred is Mu. Part is transferred by shear, 

which is one minus alpha times Mu and we have denoted that as Muv. The other part which 

is transferred due to flexure is denoted as Muf and Muf is equal to alpha times Mu. This Muf 

will be resisted by additional flexural reinforcement.

Additional non-prestressed reinforcement is provided at the top of the slab over a width 

c2 plus 3 h centered with respect to the column to transfer Muf. Thus, once we know Muf, 

we can calculate the amount of non-prestressed reinforcement that is required to transfer 

Muf in each orthogonal direction.  Also, reinforcement is provided and it is distributed 

over  a  width c2 plus  three  times  the depth of  the  slab.  In  that  width,  this  additional 

reinforcement  is  banded to transfer  the part  of the moment  by flexure.  Next,  we are 

coming to the design of spandrel beams. 
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The flat plates are provided with spandrel beams at the edges. These beams stiffen the 

edges  against  rotation.  In  turn,  the  beams  are  subjected  to  torsion.  When we earlier 

studied about flat plates, we said that the flat plate option is selected to have a flat bottom 

beneath the slab, so that it  does not create any obstruction for the conduits. Even for 

plates,  usually  a  beam is  provided  around  the  edge  of  the  building  which  does  not 

intercept the conduits and this beam stiffens the edges for the slab against rotation. These 

special beams are termed as ‘spandrel beams’. In turn, the spandrel beams are subjected 

to torsion, for which they have to be analyzed and designed, if required. The maximum 

torsion is  calculated  by assuming a uniform torsional  loading along the  width of  the 

equivalent frame. Of course, IS: ACI 318-02 recommends a triangular distribution. The 

spandrel beams are provided with closed stirrups to resist  the torsion.  The design for 

torsion is given in the module of ‘Analysis and design for shear and torsion’. 
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In this figure, we are showing the torsion variation along the spandrel beam. We have 

selected the width of the equivalent  frame and we are assuming the torsional  load is 

uniformly  distributed  along  this  length  of  the  spandrel  beam,  which  spans  in  the 

transverse  direction  along  l2.  If  the  torsional  loading  is  uniform,  then  the  maximum 

torsion will be at the face of the column. We are denoting this maximum torsion as Tumax. 

The maximum torsion Tumax is given as follows: 

(Refer Slide Time: 45:08)



Tu max is equal to l2, which is the width of the equivalent frame minus c2, which is the width 

of the column parallel to l2 divided by 2, that means, we are dividing that area into two 

parts times Me minus divided by l2. This is the moment negative moment at the exterior 

support, which is uniformly distributed about l2. Thus, the maximum talks depends on the 

moment per unit length which is denoted as Me minus l2 times the half of the tributary 

length, which is l2 minus c2 divided by 2.Once we calculate Tumax, then we need to make 

sure that shear capacity TuR is greater than or equal to Tumax. The torsion design was 

covered in our previous module on analysis and design for shear and torsion’.

We need to make sure that the stirrups are closed in a spandrel beam, because torsion 

generates a circulatory shear around the periphery of the beam. Next, we are moving on 

to the anchorage devices of the flat slabs and flat plates. 

(Refer Slide Time: 46:48)

In post tensioned slabs, the anchorage devices transfer the prestress to the concrete. The 

device at the stretching end consists of an anchor block and wedges. At the dead end, the 

wires are looped to provide the anchorage. Bursting links are provided in the end zone to 

resist transverse tensile stresses in concrete. Earlier, when we studied anchorage devices 

for  beams,  we had seen  that  in  post  tensioned  members,  the  anchorage  device  is  of 

extreme importance, because the prestress is transferred to the concrete at the ends. The 



similar is true for post-tensioned slabs. In the stretching end, we have an anchorage block 

with wedges against which the tendon rests on the concrete and in the dead end, the 

tendons can be opened up to form a loop. This loop itself is sufficient to transfer the 

prestress from the tendon to the concrete.

We also provide bursting links near this anchorage zone, so as to check cracking due to 

the transverse tensile stresses that is generated due to the stress concentration. 

(Refer Slide Time: 48:36)

In this figure, we can see the anchorage device at the stretching end, that the tendons after 

they are passed to the duct. Then they pass through casting, which is a funnel shaped and 

then  we have  the  anchorage  block  within  which  there  are  wedges  and against  these 

wedges, the strands are hold. There is also the provision for tube, by which they can pass 

on the grout after the post-tension operation has been done. The research former is used 

so that after the post-tensioning operation is done, we can put some concrete around this 

anchorage  block  and  cover  it  up,  so  that  it  cannot  be  seen  from outside.  Thus,  the 

research former is just for an esthetic purpose and not for a functional use.



(Refer Slide Time: 49:36)

The  anchorage  device  for  dead end  appears  that  after  the  duct  ends,  the  strands  are 

opened up to form a loop. In this loop, a bar is passed and this loop rests against the 

concrete,  which helps  to transfer  the  prestress,  which is  lower in  the dead end.  This 

special form can avoid any wedge action that is necessary, if we have to provide any 

block at the dead end. There can be also a grout tube to pass grout throughout the dead 

end. 

(Refer Slide Time: 50:12)



This is another sketch of the anchorage device for the dead end, that we can have a plate 

against which the strands are hold. This plate rests against the concrete surface. 

This is the figure of the end of the post-tensional slab and at the stretching zone, you can 

see that this is the funnel, the casting piece and then, we have the anchorage block inside. 

We can also observe the bursting links, which checks the transverse tensile stresses and 

note that in the spandrel beam, there are closed stirrups, which help to carry torsion. This 

spandrel beam is required for the flat plates in order to stiffen the edge of the slab against 

rotation. 

(Refer Slide Time: 51:24)

This is the figure for the dead end and here, you observe that after the duct, the strands 

have been exposed; they have been spread out; and they have been opened up to found a 

bulk or loop. This loop resists against the concrete and which provides the anchorage at 

the dead end. We have also provided bursting links near the duct and you note that in the 

spandrel  beams,  the  stirrups  are  closed  stirrups.  Next,  we  are  moving  on  to  some 

additional  aspects  of  analysis  and  design  of  two-way  slabs.  First,  we  are  trying  to 

understand that what is the effect of prestress on the other components of the buildings? 



(Refer Slide Time: 52:22)

The slab rests on the columns. Now, due to the restraint from monolithic columns or 

walls, the prestressing force in the slab is reduced. That means, when, if the column and 

the  slab  are  cast  together  and  then  after  that  we  are  post-tensioning  the  slab,  the 

prestressing operation is facing a restraint from the columns or the walls which have been 

integrally cast with the slabs. Hence, the stiff columns or walls should be located in such 

a manner that they offer least restraint.  Alternatively,  sliding joints  can be introduced 

which are made ineffective after post tensioning of the slab.

Since the stiff columns and walls provide some restraint in the prestressing operation, we 

need to locate them in such a way so that it creates the least resistance. There is another 

alternative option that we can have sliding joint between the slab and the column, which 

will be removed after the post-tensioning operation has been done. In that way, we can 

reduce the restraint from the vertical elements on the prestressing force.
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The  second  is  the  calculation  of  deflection.  Deflection  of  a  two-way  slab  can  be 

approximately calculated by the ‘equivalent  frame method’.  We have studied that the 

equivalent  frame method  is  one  option  to  analyze  and  design  a  two-way  slab.  This 

method  itself  can  be  used  to  calculate  the  deflections.  The  deflection  at  a  point  is 

summation of the deflections of the two orthogonal strips passing through the point.

Thus, if we take the middle of the slab, there are two strips passing through a point and 

the deflections of these two strips are approximately added up to get the total deflection 

at the point. Now, this is an easy way to find out the deflection from the analysis of the 

equivalent frame method. There are of course refined analysis to find the deflections. For 

an accurate evaluation, the following models can be adopted: a grillage model and a finite 

element model. These models are based on the finite element concept and where the slab 

is divided into small plate elements or beam elements in a privilege model and this model 

can be used to find out the deflection more accurately.
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Third is proportioning of drop panels and column capitals. Section 31 of IS: 456-2000 

provide guidelines for the proportioning of drop panels and column capitals. A minimum 

length and a minimum depth beyond the depth of the slab of a drop panel are specified. 

That means, even if we provide drop panels or column capitals, we need to have them 

adequate  enough  to  function  properly.  The  code  IS:  456  gives  some  guidelines  on 

proportioning the drop panels and column capitals. For drop panels, they have to be a 

minimum length and a minimum depth beyond the slab. For column capitals, they have to 

be a proper shape, so that the concrete in the column capital is effective.  For column 

capitals, it is preferred to have conical flaring at a subtended angle of 90 degrees, that 

means, whenever we are providing a column capital, it is preferred that the subtended 

angle  in the  column capital  should be 90 degree.  If  there is  material  outside this  90 

degree, then that has to be neglected in the analysis of the slabs. 

Thus, once we proportion the drop panels and column capital properly, then only we can 

take their full advantage. The critical sections are shown in figure 12 of the reference. IS: 

456 gives us guidelines that what are the critical sections if we have a drop panel or if we 

have a column capital. Those details are not being mentioned here, but you can refer to 

IS: 456 to go through these details. 
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Thus, in this lecture, we have covered the two-way slabs. After refreshing the flexural 

design, we moved on to the analysis and design for shear. We have found that for two-

way slabs, there are two types of slabs which need to be checked. The first is the one-way 

shear, which is similar to the beam under flexure and that is checked for each orthogonal 

direction separately. The second type of shear is the punching shears which is checked 

for  both  the  directions  simultaneously.  The  punching  shear  is  checked  for  a  critical 

section, which is geometrically similar and concentric to the column cross-section. If the 

shear  capacity  is  not  adequate,  then  we provide  shear  reinforcement  and the  type  is 

selected  based  on  how  much  column  reinforcement  we  have  and  how  much  shear 

reinforcement we need. We also studied the anchorage devices for the post-tensioned 

slabs. Finally, we moved on to the additional aspects like the restraints due to the vertical 

elements  and the deflection.  With  this,  we are ending the module  on two-way slabs. 

Thank you.


