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Cantilever Beams 

Welcome back to prestressed concrete structures. This is the first lecture on module 8, on 

cantilever and continuous beams.

 (Refer Slide Time: 01:25)

First, we shall have an introduction on cantilever beams, then we shall move on to the 

analysis of cantilevers, then determination of limiting zone and finally, we shall cover 

cable profile. 



(Refer Slide Time: 01:45)

Prestressed cantilever beams are present in buildings and bridges. Usually, the cantilever 

is provided with a back span, which is also called anchor span, to reduce the torsion in 

the supporting member. In a building, the cantilever can be an extension of a continuous 

beam. In a bridge, the cantilever is a part of the balanced cantilever girder. 

(Refer Slide Time: 02:25)



We shall see that the cantilever is a part of a beam; in a building it can have a back span;  

like in this figure, the cantilever on the right has a back span which reduces the moment 

in the supporting column. Also, the cantilever can be a part of a continuous beam; that 

means, usually we do not find cantilever by itself, we find either with a back span or as a 

part of a cantilever.

(Refer Slide Time: 02:57)

A cantilever is a part of a balanced cantilever girder. This is the photograph during the 

construction of the Pamban bridge at Rameshwaram in Tamilnadu. Here you can see that 

on each pier there is a balanced cantilever girder, in the sense that there is a cantilever on 

each side, so that the eccentric load on the pier is reduced. The cantilever on the two sides 

is made in a progressive fashion, so as to have minimal effect of the eccentric load on the 

piers. 



(Refer Slide Time: 03:54)

The important  aspect  of the design of  prestressed cantilever  is  the selection  of  cable 

profile. The cable profile refers to the profile of the CGS, which is the variation of the 

distance of the CGS from CGC along the length of the beam. When we discussed simply 

supported beams, we had talked about a cable profile; that means, once we have done the 

analysis for the critical section, we find out the eccentricity at the critical section and then 

we determine the cable profile along the length of the beam.

The  essential  difference  between  the  analysis  of  a  simply  supported  beam  and  a 

cantilever is in the selection of the cable profile and for a cantilever it is different than 

that of a simply supported beam. 



(Refer Slide Time: 04:52)

The analysis of a section at a particular location of a prestressed cantilever is similar to 

that of a simply supported beam. The difference is that for gravity loads, the bending 

moment in cantilever is negative, that is, compression is generated at the bottom of the 

beam. Thus, the CGS is placed above the CGC for that particular location. 

Whatever we have studied for a simply supported beam, the analysis or the design is 

applicable for a cantilever beam as well. But the difference is that for a simply supported 

beam the moment is always positive; that means, compression is created at the top due to 

bending. For cantilever beams due to gravity loads the moment is negative; that means, 

compression is created at the bottom and tension is created at the top. The equations that 

we have used for a simply supported beam can be used for a cantilever, provided you 

take account of the sign of the moment and then we place the CGS above the CGC, 

because  the  moment  is  negative.  This  is  the  essential  difference  in  the  design  of  a 

cantilever beam with respect to that of a simply supported beam. 



 (Refer Slide Time: 06:35)

The following aspects need to be considered in the analysis and design of a prestressed 

cantilever beam. First, certain portions of the back span are subjected to both positive and 

negative moments. Hence, there will be two design moments at service loads. In a simply 

supported beam, we had seen that throughout the length of the beam, the beam is always 

subjected to a positive moment due to gravity loads. But in a back span of a cantilever 

beam, the same section can be subjected to a positive moment or a negative moment 

depending on the loading condition. Thus, we have two values of design moments for 

most of the back span under service loads. 



 (Refer Slide Time: 07:30)

The second aspect is the beam may be subjected to partial loading and point loading. A 

cantilever beam, if it is subjected to a partial loading or a point loading, can generate a 

different  type  of  moment  condition  as  compared  to  when  the  load  is  distributed 

throughout. Hence, a partial loading or a point loading analysis becomes important for a 

cantilever. 

The  third  important  aspect  is  the  sequence  of  loading  is  important  to  design  the 

prestressing  force.  During  construction,  the  sequence  of  loading  in  a  cantilever  is 

important to design the prestressing force and prestressing force can be applied in stages 

to take account of the sequence in the loading.

The fourth important aspect is high values of moment and shear occurs simultaneously 

near the support. For a simply supported beam, the mid span is usually the location of 

maximum flexure and a section close to the support is the critical section for shear, but in 

a  cantilever  beam,  the  sections  near  the  supports  can  be  critical  both  for  shear  and 

moment.



Hence, the sections near the supports have a larger depth compared to the sections away 

from the support. This variation of the depth along the length of the beam should also be 

considered in the analysis. 

(Refer Slide Time: 09:33)

Next, we are studying the important aspects of the analysis of a cantilever beam. The 

analysis of a cantilever beam with a back span is illustrated to highlight the aspects stated 

earlier.  The  bending  moment  diagrams  for  the  following  load  cases  are  shown 

schematically in the following figures. First, we shall see the bending moment due to the 

dead load; next, we shall see the bending moment due to live load only on the back span; 

third,  we shall  see the live load only on the cantilever  span and what  is  the bending 

moment due to that and finally, we shall see the envelop moment diagrams.



(Refer Slide Time: 10:25)

This is the sketch of a cantilever on the right side and has back span on the left side and 

the dead load is throughout the length of the member; it need not be uniform, if the depth 

of the member is varying, but for the sake of convenience, right now, we are showing it  

as a uniform load. Due to the dead load, the moment in the cantilever is negative with 0 at 

the end and with increasing value towards the support. When we go to the back span then 

we observe that close to the support we have negative moments and then as we move 

away from the support and proceed toward the left we can have positive moment in the 

back span. This is the moment diagram due to the dead load which occurs throughout the 

length of the beam. 



(Refer Slide Time: 11:30)

In the second figure, we are having the live load only on the back span. Due to the live 

load, the back span experiences a positive moment and depending on the magnitude of 

the live load, the location of the maximum moment can be anywhere in the middle of the 

back span. Here for convenience we have shown a uniform live load throughout the back 

span. Observe that throughout the back span the moment is positive. 

(Refer Slide Time: 12:11)



Third, the live load is placed only on the cantilever span. Here we find that the cantilever 

is subjected to a negative moment which increases from the 0 value at the end towards 

the support and then in the back span, the moment varies linearly from the support at the 

right to the support at the left, where the moment drops down to 0.

 (Refer Slide Time: 12:45)

If you have the dead load and the live load acting throughout the length of the beam, then 

we have a combined moment diagram where the cantilever has a high negative moment. 

Then,  as  we enter  the  back span,  we have  negative  moment  near  the  support  and a 

positive moment towards the left support.

Now from these diagrams, suppose, we have the live load on the back span, or the live 

load in the cantilever span, or the live load throughout - from these different placement of 

the live load, we develop the envelop moment diagrams for the total beam. 



(Refer Slide Time: 13:16)

In  this  figure  we  are  seeing  the  envelop  moment  diagrams.  The  orange  line  is  the 

maximum moment, in an algebraic sense. We see that in the back span we do have high 

positive moments towards the left support. Then as we are coming towards the support on 

the right, we will not observe any positive moment, but the value of the negative moment 

can be less under certain loading conditions. In the cantilever the Mmax value is always 

negative depending on the load distribution on the beam. 

If we are taking the Mmin, which is the minimum value in an algebraic sense, in that case 

we find that the moment in the cantilever is substantially high close to the support. Then,  

in the back span as we move from right to left, the moment drops down. There may be a 

region where there is no negative moment generated which is close to the left support, but 

otherwise most of the back span has a negative moment which is given by the envelop 

diagram of Mmin. Notice that certain portions of the back span can be subjected to both a 

negative moment and a positive moment depending on the load conditions. 

If I pick up a section somewhere at the middle of the back span, we observe that Mmax is 

positive and Mmin is negative. Since the two envelop values have opposite sign that means 

that particular location will experience both positive moment and negative moment under 

the service loads. 



 (Refer Slide Time: 16:00)

In the envelop moment diagrams, Mmax and Mmin represent the highest and lowest values. 

These are algebraic values with sign of the moments at a section respectively. Thus Mmax 

is the maximum value in an algebraic sense; Mmin is the minimum value in the algebraic 

sense. Why we are saying it is algebraic is that we are not comparing the numeric value 

of these two yet; we are considering these two moments with the respective signs. 

Note  that  certain  portions  of  the  beam  are  subjected  to  both  positive  and  negative 

moments. This is an important aspect of a cantilever beam with the back span that there 

are locations in the back span which is subjected to a positive or a negative moment  

under the service loads. 



(Refer Slide Time: 16:55)

For moving point  loads  as in  bridges,  first  the  influence line  diagram is  drawn. The 

influence  line  diagram  shows  the  variation  of  the  moment  or  shear  for  a  particular 

location in the girder, due to the variation of the position of a unit point load. The concept 

of influence line diagram is covered in the Structural Analysis course. In this particular 

topic we are not covering influence line diagram, but we are briefly mentioning that the 

influence line diagram is used if there is a moving point load. The influence line diagram 

shows the variation of moment or shear at a particular location due to the variation of the 

position of a unit  load along the length of the beam. Once the influence line is  first 

developed then the vehicle load is placed based on the influence line diagram to get the 

worst effect. 

Thus,  in bridges the effect  of live load is  designed placed on influence line diagram 

where once the influence line diagrams are available, then the vehicle load is placed in 

such a way so that we get the worst effect - whether it is the positive moment or whether 

it is a negative moment or whether it is the shear; depending on each of these variables 

from the  corresponding  influence  line  diagrams  we  can  place  the  load  in  the  worst 

condition.



(Refer Slide Time: 18:45)

 

Next, we are moving on to the determination of limiting zone which is done after the 

analysis of the beam. The limiting zone of placing the CGS of the tendons is helpful in 

selecting a cable profile. I said earlier that once the analysis of a cantilever is performed, 

the sectional analysis or design is very similar to the simply supported beam, but the 

difference is since the moment has different sign and the sign of the moment can change 

based on the location of the beam, selecting an appropriate cable profile is important in 

the design of a cantilever beam. To have a proper cable profile, first the limiting zone is 

determined and here we shall recollect the concept of limiting zone. 

The limiting zone was explained for a simply supported beam under design of members 

for flexure. Here, the concept and the equations are first reviewed for a simply supported 

beam with positive moment; that means, we shall first check how did we develop the 

equations for a simply supported beam; the same equations can be used for a cantilever 

beam provided we are particular about the sign of the moment and then we can determine 

the limiting zone of placing the CGS of the tendons in the cantilever beam.



(Refer Slide Time: 20:30)

There  are  three  types  of  prestress  members  as  per  our  code.  For  a  fully  prestressed 

member which is referred to as Type 1 - tension is not allowed under service conditions.  

If  tension is  also not allowed at  transfer,  the compression in  concrete,  which will  be 

referred to as C, always lies within the kern zone. The limiting zone is defined as the 

zone for placing the CGS of the tendons such that C always lies within the kern zone. 

Also the  maximum compressive stresses  at  transfer  and service should be within the 

allowable values. 

That is - how do we determine the limiting zone for a simply supported beam? For a 

simply supported beam, under positive moment, we find out extreme position of C that is 

possible without creating any tension for a Type 1 member. The minimum moment is at 

transfer and at that time C can push down to the lowest kern point and the maximum 

moment  is  under service loads where C can be shifted to  the upper kern point.  This 

maximum travel of the C is helpful to have an economical section. 

Now, since we are not allowing any tension in the section, the C always lies within the 

kern zone of the section; this determines the limiting zone of a simply supported beam. 

Let us now check what the equations are to find out the limiting zone. 



 (Refer Slide Time: 22:32)

For limited prestressed members like Type 2 and Type 3, tension is allowed at transfer 

and under service conditions. The limiting zone is defined as the zone for placing the 

CGS such that the tensile stresses in the extreme edges are within the allowable values. 

Also the  maximum compressive stresses  at  transfer  and service should be within the 

allowable values. The difference of determination of the limiting zone for Type 2 and 

Type 3 members as compared to a Type 1 member is that in Type 2 and Type 3 we allow 

tensile stresses at transfer as well as under service and based on the allowable stresses we 

find expressions of the limiting zone, where we place the CGS is such a way that C may 

lie outside the kern zone provided that the tensile stresses in the opposite phase is within 

the allowable value. Also, the compressive stresses should be within the allowable values 

for both at transfer and at service.



(Refer Slide Time: 23:50)

The limiting zone is determined from the maximum or minimum eccentricities of the 

CGS along the beam corresponding to the extreme positions of C. Thus, once we know 

the extreme position of C, we can determine the corresponding maximum and minimum 

eccentricities  of the CGS at a particular  section.  When we draw the low side of this 

maximum and the minimum positions along the length of the beam, we determine the 

limiting zone. Remember that the limiting zone is related with the CGS of the tendons. 

Individual  tendons may lie outside the limiting zone; that  is,  when we are talking of 

limiting zone, we are talking about the placement of the CGS within the limiting zone. 

Individual tendons may lie outside the limiting zone provided a CGS is lying within the 

limiting zone.



(Refer Slide Time: 25:00)

For a simply supported beam, the maximum eccentricity, which will be referred to as 

emax,  at  any section corresponds to the lowest possible  location  of C at  transfer.  This 

generates  allowable  tensile  stress  at  the  top  of  the  section.  Thus,  the  maximum 

eccentricity - emax - is determined corresponding to the lowest position of C at transfer. 

The maximum compressive  stress  at  the  bottom should also  be  within  the  allowable 

value. The minimum eccentricity which is represented as emin at any section corresponds 

to the highest possible location of C at service that generates allowable tensile stress at 

the bottom of the section. 



(Refer Slide Time: 25:35)

Thus the minimum eccentricity of the CGS is calculated from the highest position of the 

C under service loads. This will generate allowable tensile stress at the bottom of the 

section. The maximum compressive stress at the top should also be checked to be within 

the allowable value.

(Refer Slide Time: 26:25)



The values of emax and emin can be determined by equating the stresses at the edges of 

concrete within the allowable values; else, explicit expressions of emax and emin can be 

developed. Thus, in order to determine the limiting zone we can calculate emax and emin for 

a particular beam, for the given loading conditions, or else we can try to determine them 

from some explicit expressions which are discussed here. These expressions help us to 

determine the maximum and minimum eccentricities at several locations along the length 

of the beam.

(Refer Slide Time: 27:22)

The following material  gives the expressions of emax and emin for Type 1 and Type 2 

sections.  The values  of emax and emin can be determined at  regular  intervals  along the 

length of the beam from which we shall determine the limiting zone.

The zone between the loci of emax and emin is the limiting zone of the section for placing 

the CGS. Here we shall recapitulate the expressions of emax and emin for Type 1 and Type 2 

members. For Type 3 members the expressions are similar to the expressions of Type 2 

members; the only difference being the value of the allowable tensile stress. Once we 

have determined emax and emin at regular intervals along the length of the beam, then you 

have the limiting zone, which is in between the loci of emax and emin along the length of the 

beam. 



(Refer Slide Time: 28:35) 

To have an analytical expression you are first seeing a Type 1 section at transfer. The 

lowest possible location of C is at the bottom kern point; the tension T is at the level of 

the CGS; the stress at the top is 0 for a Type 1 section at transfer and the stress at the 

bottom is fb. Kt and Kb represents the kern distances or the distances of the kern points 

from the CGC. Ct and Cb represent the distances of the top and the bottom fiber from the 

CGC. emax is the distance of the CGS from the CGC when C lies at the bottom kern point.  

We are using this stress diagram to develop the expression of emax.



(Refer Slide Time: 29:40)

emax minus Kb which is the lever arm by which C has shifted from T, is equal to the self-

weight moment that is acting as transfer divided by the prestress at  transfer which is 

denoted as P0. Transposing Kb towards the right side, we have emax equal to Msw divided 

by P0 plus Kb. 

Thus this is the expression of emax for a simply supported beam, for the load condition at 

transfer, where we have the moment due to the self-weight, the prestressing P0 and the 

geometric property Kb. Using these expressions we can calculate the value of emax at a 

particular location. We have to check that the stress at the bottom should be less than the 

allowable compressive stress at transfer. 



(Refer Slide Time: 31:00)

Next, we are determining emin for Type 1 section under service loads. Under service loads 

we are allowing C to traverse as high as possible, so that it is at the top kern point under 

service  loads,  for  which  the  stress  at  the  bottom  is  0  and  the  stress  at  the  top  is 

represented as ft. The location of the CGS for the upper most location of C is the emin or 

the minimum possible eccentricity. 

(Refer Slide Time: 31:45)



From the stress diagram we can find that  the lever arm through which C has shifted 

which is emin plus Kt, this is equal to the moment under service loads which is represented 

as Mt divided by the effective prestress at service which is denoted as Pe. Transposing the 

term Kt on the right side, we have an explicit expression of emin equal to Mt divided by Pe 

minus  Kt.  Thus,  given  the  values  of  Mt,  Pe and  the  geometric  variable  Kt we  can 

determine emin at a particular location. Of course, we need to check that the stress at the 

top is less than the allowable compressive stress under service loads. If for a particular 

section eminimum comes out to be a negative, it implies that the CGS can be placed above 

CGC. This happens near the supports of a simply supported beam.

(Refer Slide Time: 33:03)

Next, we are recollecting the expressions of emax and emin for Type 2 sections. At transfer 

there is allowable tensile stress at the top; the position of C is outside the kern region by a 

distance e1 and the lever arm between C and T is represented as e2. emax is the position of 

the CGS, such that C is in the bottom most location which creates allowable tensile stress 

at the top during transfer. 



(Refer Slide Time: 34:00)

The lever arm by which the C traverses is emax minus Kb which is equal to Msw plus fct, 

allowable times A times Kb divided by P0. This expression is a general form of the expression 

that we have seen for the Type 1 members. Transposing the term of Kb on the right side 

we have emax equal to Msw which is the moment due to self-weight plus fct, allowable which is 

the allowable tensile stress in the concrete at transfer times the area of the section times 

Kb whole divided by P0 plus Kb. Thus, this expression is applicable for both Type 2 and 

Type 3 members with the appropriate value of fct, allowable. Note, that if fct, allowable is made 0, 

then this expression becomes same as that for a Type 1 member. Thus, this expression is 

more generic as compared to the expression for a Type 1 member.  Also, we have to 

check the stress at the bottom, fb, is less than the allowable compressive stress at transfer. 



(Refer Slide Time: 35:20)

For service conditions, C is at maximum level which can be beyond the kern point. Here 

the distance of C from the upper kern point is denoted as e3. The corresponding location 

of CGS is emin. The stress at the top is represented as f t and the stress at the bottom is the 

allowable tensile stress in the concrete under service conditions. With this stress block, 

we can write the expressions of eminimum plus Kt which is equal to Mt minus fct, allowable times 

A times Kt divided by Pe. Transposing the term of Kt on the right side we have emin is 

equal to Mt minus fct, allowable times A times Kt divided by Pe minus Kt.

Thus, this is an explicit expression of eminimum corresponding to a Type 2 section under 

service load conditions. The same expression can be used for a Type 3 member if you 

have the appropriate value of fct, allowable. Note, that this expression is more generic form of 

the expression for a Type 1 section, because, once we substitute fct, allowable equal to 0, we 

find that this expression become same as expression for a Type 1 section. Also, we need 

to check that the stress at the top should be less than the allowable compressive stress 

under service conditions.



(Refer Slide Time: 37:21)

With this  recapitulation of the determination  of limiting  zone for a simply supported 

beam, we are moving on to the determination of limiting zone for a cantilever beam. In a 

simply  supported  beam,  the  external  moments  are  always  positive.  The  minimum 

moment is due to self-weight; the maximum moment is under service loads.
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For cantilever beams, the minimum external moment need not be at transfer, when the 

moment is due to self-weight; that means, when we are trying to determine the limiting 

zone for a cantilever, we have to be careful that the minimum moment may not be at 

transfer; the moment at transfer is due to self-weight only.

We have to also check the moment conditions under service loads. Under service loads, 

there are two moments Mmin and Mmax at  a location which obtained from the envelop 

moment diagrams. Unlike a simply supported beam where we have only one value of the 

moment, under service conditions in a cantilever beam, you can have two moments Mmax 

and Mmin if there are of opposite sign then we have to consider both the values. This is the 

essential difference between the analysis of a cantilever beam with respect to that of a 

simply supported beam. 

Thus, we have three moment values at a particular location: one is due to the self-weight 

and another is from the envelop moment diagrams under service loads which give a min 

and a max. 

(Refer Slide Time: 39:30)

The maximum and minimum eccentricities - emax and emin - at a particular location are first 

determined for service loads from Mmin and Mmax respectively at that location and the 



effective prestress Pe. That means first emax is calculated at a particular location from Mmin 

which is obtained from the envelop moment diagram; emin is calculated from Mmax at that 

particular location; both emax and emin we are calculating first for the service loads and then 

we are checking for the transfer condition. We calculate another set of emax and emin for the 

loads at transfer from the self-weight moment Msw and the prestress of transfer that is P0. 

 (Refer Slide Time: 40:35)

The  final  emax is  the  lower  of  the  two  values  calculated  at  service  and  at  transfer. 

Similarly, the final emin is the higher of the two values calculated at service and at transfer. 

Thus, we have two sets of calculations - one for the service loads and another for the 

transfer. The values are selected judiciously that for emax we have two values - one for 

service and one for transfer - whichever is lower will satisfy both of them and that is 

selected as the final emax. 

Similarly, we have two values of emin - one for service and one for transfer - which ever is 

higher of these two, that location will satisfy the strength condition both at transfer and at  

service and we select that as the emin. The expressions of emax and emin for simply supported 

beam were developed for positive moments. For a cantilever corresponding to a negative 

moment, the eccentricity implies that the CGS is located above CGC. Thus, when we are 

using the expressions from the simply supported beam, we have to be careful that the sign 



of the moment may be opposite; in that case, eccentricity refers to the location of CGS 

which is above CGC. 

(Refer Slide Time: 42:45)

To recapitulate  the  equations:  for  a  Type 1 section  at  service  we have  emax equal  to 

Mminimum divided  by  Pe plus  Kb;  this  is  the  expression  we  have  got  from the  simply 

supported beam where we have substituted Mmin in place of Msw; emin is equal to Mmax 

divided by Pe minus Kt. Both emax and emin are being calculated at service and hence we 

have Pe - the effective prestress - for both the expressions. 



(Refer Slide Time: 43:13)

At transfer, we have another set of equations where they are given based on the self-eight  

moment Msw and the prestress at transfer to P0. emax is equal to Msw divided by P0 plus Kb; 

emin is equal to Msw divided by P0 minus Kt. Again, this is an expression which is similar 

to that of a simply supported beam, but we are applying both the expressions for transfer 

and  that  is  why  we  have  Msw and  P0  in  both  the  expressions.  Thus  we  have  two 

expressions  of  emin -  one  for  service  and  one  for  transfer;  similarly,  we  have  two 

expressions  for  emax -  one  for  service  and one for  transfer  and from this  you finally 

calculate the emax and emin at a particular location of a cantilever beam. This is the way we 

determine the limiting zone for a cantilever beam. 
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For a Type 2 section we have emax equal to Mminimum at service plus fct, allowable times A times 

Kb whole divided by Pe plus Kb; emin is equal to Mmax minus fct,  allowable times A times Kt 

divided  by  Pe plus  Kt.  Again,  note  that  both  emax and  emin are  calculated  at  transfer 

corresponding  to  the  minimum moment  and  the  maximum moment  respectively  and 

using the effective prestress Pe. 



(Refer Slide Time: 45:02)

Similarly, at transfer we have two expressions of emax and emin which uses the self-weight 

moment Msw and the prestress at transfer P0. emax is equal to Msw plus fct,  allowable times A 

times Kb whole divided by P0 plus Kb. emin is equal to Msw minus fct, allowable times A times 

Kt whole divided by P0 minus Kt. Once we have these expressions of emax and emin we can 

determine the limiting zone for a Type 2 section. For a Type 3 sections the expressions 

are same; the only difference is that you have different values of the allowable tensile 

stress at transfer and at service.
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Next, we are moving on to have an idea of the cable profiles in a cantilever beam. The 

cable  profiles  for  a  few beams with cantilever  spans  are  shown schematically  in  the 

following figures. The vertical scale is enlarged to show the location of the CGS with 

respect to the CGC. 
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In this figures, we have enlarged the vertical scale to have a feel of the cable profiles. 

That top one is a beam with a single cantilever and you observe that in the back span 

region since it is subjected to a positive moment, we have a cable profile which is going 

down the CGC. Near the support, we always have a negative moment and hence the CGS 

is going above CGC and in the cantilever part the moment is always negative; hence, the 

CGS is always above CGC. Note that the cable profile which can be selected from the 

limiting zone has a variation which is similar to the moment diagram. The difference is 

near the support region, since, in a cable we cannot have a sharp kink we are providing 

and intermediate curve at the support region, without the kink. 

If you have a varying cross section in the cantilever span, we can change the location of 

the CGS within the limiting zone such that we have minimum bend along the length of 

the beam; this helps us in placing the tendon easily and it reduces the friction losses in a 

post tensioned beam. 

Thus,  the  straight  profile  of  the  tendon can  be  selected  from the  limiting  zone.  The 

straight profile has less friction losses and it is easy to place before the post tensioning 

operation. 

(Refer Slide Time: 48:52)



For a prismatic beam with uniform cross section along the length, the cable profile is 

similar to the moment diagram under uniform load. Thus, for regions of negative moment 

the CGS is located above the CGC since there cannot be a sharp kink in the tendons and 

the supports are not true point supports, the profile is shown curved at the right support. 

(Refer Slide Time: 49:28)

For a beam with varying depth, the cable profile can be adjusted within emax and emin to be 

straight for convenience of layout of the tendons. 



(Refer Slide Time: 49:46)

For beams with double cantilever spans, again for a uniform cross-section, you observe 

that the cable profile mimics the moment diagram where the CGS is below the CGC in 

the positive moment regions of the middle span. As we go close to the supports, the CGS 

is above CGC in the regions where the moment is negative. In the cantilever spans the 

CGS  is  always  above  the  CGC,  because,  the  cantilevers  are  always  subjected  to  a 

negative moment. If the depth of the beam is varied, then we can select a cable profile 

within the limiting zone which is convenient to place and has less loss due to friction. In 

this beam with double cantilevers, a straight tendon can be selected; in fact this straight 

tendon will be located above the CGC near the supports and it will come beneath the 

CGC near  the  middle of  the mid span. The selection  of  a  straight  cable  is  more for 

convenience and to reduce the friction losses in the post tensioning operation. 



 (Refer Slide Time: 51:46)

Sometimes we may observe that the top of the beam is varying in the elevations; for a 

beam with varying level of top of the beam, the cable profile can be selected somewhat 

like this, where the CGS is above the CGC in the cantilever portions and in the central 

region the CGS is  located  based on the  limiting  zone.  We are  trying to  avoid sharp 

variations in curvature so as to minimize the losses due to friction. 

Thus the selection of a  cable profile  is  dependent  on the limiting  zone that  we have 

determined and also on the placement of the tendons and friction losses. A cable profile is 

selected such that the tendon can be laid conveniently and there will be minimal friction 

losses during the post tensioned operations. 



(Refer Slide Time: 52:24)

In today’s lecture,  we covered the analysis  and design of cantilever  beams. First,  we 

observed the different types of cantilevers that can occur. In a building the cantilever can 

be a part of continuous beam, but the cantilever extends outside the last support. If there 

is not a continuous beam, usually a cantilever is provided with the back span to reduce 

the torsion in the supporting column. In bridges, there can be cantilevers in a balanced 

cantilever type of construction that means, over a pier, two cantilevers are progressively 

projecting out during the construction. There can be cantilever spans with an intermediate 

span in between. The analysis of a cantilever beam has to be done carefully by a proper 

placement of the live load. As compared to a simply supported beam, the main difference 

of a cantilever beam is that under different positioning of the live load, one particular 

section can have either a positive moment or a negative moment. If we place the live load 

in the cantilever span we get a certain moment diagram, if you place the live load in the 

back span we get another moment diagram. If you have a live load through out then it is a 

third type of moment diagram. From these conditions, we determine the envelop moment 

diagrams,  which  keeps  as  a  maximum value  Mmax and  a  minimum value  Mmin;  these 

values are algebraic, in the sense, the Mmax can have a positive value or it can have the 

least  negative  value  and Mmin can  have  a  least  positive  value,  but  it  has  the  highest 

negative value. 



Once we have done the analysis properly with different positioning of the live load we 

have the design moments - Mmax Mmin- for the design of a section of the cantilever. 

For the placement of the tendons we use the concept of limiting zone. Now, first we 

revised the expressions of the limiting zone for a simply supported beam. We have found 

that the maximum eccentricity corresponds to the minimum moment at transfer and the 

minimum eccentricity corresponds to the maximum moment under service loads; these 

are for a simply supported beam.

For a cantilever  beam the minimum moment  need not  be at  transfer.  We have extra 

moment conditions; we have one condition at transfer where the moment is due to the 

self-weight and then under service we have two values of moments Mmax and Mmin for a 

particular  section  which  is  available  from  the  envelop  moment  diagrams.  Thus  to 

determine the limiting zone we first use the Mmax and Mmin values at service from which 

we determine one set of emax and emin.  Then, we again calculate emax and emin for transfer 

and then we pick up the values of emax and emin which satisfies the stress conditions both 

for transfer and for service. The equations that we have written are for Type 1 member 

and Type 2 members. The equations are similar; the equations for Type 2 members are 

more generic, because, if we substitute the allowable tensile stress to be 0, then we get 

back the equations for Type 1 member. For Type 3 member the expressions are same as 

that for Type 2 member, provided we substitute the appropriate value of the allowable 

tensile stress. 

After we revised the expressions for a simply supported beam, we got the expressions for 

a cantilever which is the same expressions, but now for service loads we are calculating 

emax and emin corresponding to Mminimum and Mmaximum respectively. Then at transfer you are 

calculating another set of emax and emin corresponding to Msw.

Thus, once we have these two values of both emax and emin we finally come to the values of 

emax and emin which satisfies the stress condition both at transfer and at service. Once the 

limiting zone has been determined, we select the cable profile. The cable profile can be 

different type depending on the situation. If we have small beams with uniform cross 

section, then the cable profile mimics the moment diagram, where the CGS lies below the 



CGC in  the  positive  moment  regions  and  the  CGS lies  above  CGC in  the  negative 

moment regions. Near the supports the cable profile deviates from the moment diagram, 

because, we cannot provide a sharp kink near the supports and also the supports are not 

true point supports. 

If the depth of the beam is varying for large constructions, then the profile is adjusted 

within the limiting zone such that it  is convenient to place the tendons and you have 

reduced friction losses during the post tensioning operation. We can try to have a straight 

cable profile within the limiting zone, which will be convenient to place the tendon and 

will  have minimal  friction effects.  We have seen the cable profiles for beams with a 

single cantilever and also we have seen the cable profiles for beams with two cantilevers 

on the two sides. 

In our next class, we shall move on to the discussion of a continuous beam, which is the 

extension of the concept of a cantilever beam, but there the number of spans is more than 

2 or  3.  We shall  observe that  the  cable  profile  is  similar  to  what  you have seen for 

cantilever beams. 

Thank you. 


