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Welcome back to prestressed concrete structures. This is the lecture of Module 6 on 

calculation of deflection and crack width.  
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In this lecture, we shall first study the calculation of deflection. Under that we shall learn 

about the deflection due to gravity loads, deflection due to prestressing force, the 

calculation of total deflection, the limits of deflection, determination of moment of inertia 

and limits of span-to-effective depth ratio. Next, we shall study about the calculation of 



crack width, under which we shall study the method of calculation and the limits of crack 

width. 
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First is the calculation of deflection. The deflection of a flexural member is calculated to 

satisfy a limit state of serviceability. The deflection is calculated for the service loads. 

Since a prestressed concrete member is smaller in depth than an equivalent reinforced 

concrete member, the deflection of a prestressed concrete member tends to be larger. This 

is one drawback, that if very shallow members are used then there may be deflection 

problems. Hence the calculation of deflection becomes necessary, when the members are 

shallow. We have to make sure that the deflection does not cause any problem in the 

functioning of the member. 
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The total deflection in a prestressed concrete member is a resultant of the upward 

deflection due to prestressing force and downward deflection due to the gravity loads. 

Thus, unlike reinforced concrete member here we have another component of deflection, 

which is the deflection due to the prestressing force. For a simply supported beam, the 

prestressing tendon provides an upward thrust to the member, which results in hogging 

during the prestressing of the member. The total deflection is a summation of the upward 

deflection due to the prestressing force and the downward deflection due to the gravity 

loads. 
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The deflection of a member is calculated at least for two cases. First is the short term 

deflection at transfer. This deflection is due to prestressing force before long term losses, 

and self-weight without the effect of creep and shrinkage of concrete. Thus, when the 

prestress is transferred the member may have a resultant upward deflection (camber) 

depending on the amount of prestressing force and the self weight of the member. It has 

to be checked, whether the camber is too much during the prestressing operation or not. If 

there is some finishing over the member then, it has to be checked whether there will be 

any cracking on the finishes or not. 
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The second case is the long term deflection at service loads. This deflection is due to 

prestressing force after long term losses, and the permanent components of the gravity 

loads, including the effects of creep and shrinkage. Thus, at service loads the deflection 

has two components. One is due to the prestressing force after the long term losses, and 

next is that due to the gravity loads. For the later, only the permanent components of the 

gravity loads are considered in the long term deflections. The permanent components of 

the gravity load include the dead load and sustained component of the live load. 

Now, here comes an engineering judgment; that how much live load should be 

considered to be sustained, that depends upon the analyst. In the permanent load, we are 

including only the sustained part of the live load and not the total live load. If we are 

interested in the total deflection, then we may include the deflection due to the additional 

component of the live load as well. First, we shall see the calculation of deflection due to 

gravity loads. 
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The methods of calculation of deflection are covered under structural analysis. These 

methods include the following: double integration method, moment‒area method, 

conjugate beam method and principle of virtual work. A student should have studied 

these methods in a course on structural analysis. In this lecture, we are not going into the 

details of the evaluation of deflection based on these methods, but we shall consider the 

end results from these methods. Numerical solutions schemes can be implemented in a 

computer, based on the above methods. 
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For members with prismatic cross-sections (that is, the cross-section is constant 

throughout the span of a member), common support conditions and subjected to 

conventional loading, the deflections are available in tables in text books. The 

expressions of deflection (which is represented as ∆) for a few cases are provided here. I 

is the moment of inertia of the section, and E is the modulus of elasticity of concrete. 

What is the value of the moment of inertia we need to consider, that we shall discuss 

later. 
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In this figure, we can see two simply supported beams. For the top one, the beam is 

subjected to a uniformly distributed load and the deflection at the centre is given as ∆ = 

(5/384) × wL4/EI. In the figure at the bottom, a beam is subjected to a point load at the 

centre, and ∆ = PL3/48EI. 
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For a cantilever beam under a uniformly distributed load, the deflection at the end is 

given as ∆ = wL4/8EI. For a cantilever beam with a point load at the end, ∆ = PL3/3EI. In 

most of the prestressed concrete applications, the beams are simply supported. Hence, we 

can use the standard expressions for simply supported beams, for calculating the 

deflections due to the gravity loads. Next, we are calculating the deflections due to 

prestressing force. 
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The deflection due to prestressing force is calculated by the load-balancing method, 

which is explained under “Analysis for Flexure”. Earlier, we had seen that there are three 

methods of analysis of a prestressed member. First is based on the stress concept, the 

second is based on the force concept and the third is based on the load-balancing method. 

Now, the third method is used to calculate the deflection due to prestressing force. Here, 

we shall see the expressions of the deflections due to prestressing force for the standard 

cases. The deflection due to prestressing force is represented as ∆p. 
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For a parabolic tendon with prestressing force P and eccentricity ‘e’ at the middle, there 

is a uniform upward load, which is represented as wup.  The span of the beam is equal to 

L. The upward load is given as wup = 8Pe/L2. Then, we can calculate the upward 

deflection. ∆p = (5/384) wupL4/EI. Thus, this is the expression of upward deflection of a 

beam that is prestressed with a parabolic tendon. 
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For a singly harped tendon, there is an upward force at the location of the harping, which 

is denoted as Wup. Wup = 4Pe/L. Then ∆p = WupL3/48EI. This is the expression of the 

deflection of a beam that is prestressed with a singly harped tendon, and the harping point 

is at the middle of the beam. 
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Next, we are going on to the expression for a beam with a doubly harped tendon. Here, 

the harping points are symmetric, and each harping point is at a distance aL from the 

support. In this figure, we see that there are two upward forces, corresponding to the two 

harping points, and each upward force is represented as Wup. Wup = Pe/aL. Then, ∆p = a(3 

‒ 4a2)WupL3/24EI. 
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Next, we are calculating the total deflection due to the prestressing force and the gravity 

loads. As we said before, that the total deflection is calculated for the two cases: first, the 

short term deflection at transfer, which we shall denote as ∆st, and the second is the long 

term deflection under service loads, which is denoted as ∆lt. 
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The short term deflection at transfer, ∆st = ‒∆Po + ∆sw. Here, ∆Po is the magnitude of 

deflection due to the prestress at transfer (Po) which is before the long term losses. ∆sw is 

the deflection due to the self-weight, which is downwards. Note, that the sign of the two 

deflections are opposite. A negative sign has been placed for the deflection due to the 

prestressing force, since this is upwards. Thus, in presence of the prestressing force, the 

total deflection may become negative, if the value of ∆sw is numerically smaller than ∆po. 

In that case, the beam will have a camber and it will deflect upwards. 
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Now, we are calculating the long term deflection under service loads. The calculation of 

long term deflection is difficult because the prestressing force and creep strain influence 

each other. The creep of concrete is explained in the module of material properties. 
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The creep of concrete is defined as the increase in deformation with time under constant 

load. Due to the creep of concrete, the prestress in the tendon is reduced with time. This 

is an important aspect in the calculation of long term deflections that the concrete 

deforms with time due to the permanent load, and due to the deformation of the concrete 

the prestressing force gets reduced.  There is a loss in the prestressing force. Thus, creep 

and the prestressing force influence each other. Hence, the exact calculation of long term 

deflection gets difficult.  

The creep was discussed in detail in the module of material properties. Here we are 

having a quick review of how to measure the creep strain in concrete. The ultimate creep 

strain is found to be proportional to the elastic strain. The ratio of the ultimate creep 

strain to the elastic strain is called the creep coefficient θ. 
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The creep coefficient θ, for three values of age of concrete at prestressing (termed as age 

of loading, or age of prestressing) as per the code IS: 1343–1980 is given in the table. At 

seven days of prestressing, the creep coefficient is 2.2; that means if the prestressing 

force is transferred when the concrete age is seven days then the creep strain is 2.2 times 

the elastic strain. If the prestress is transferred at twenty eight days, then the creep 

coefficient is 1.6. Thus, the ultimate creep strain is reduced to 1.6 times the elastic strain. 

Finally, if the transfer of prestress is at one year, then the creep coefficient is 1.1. That is, 

the ultimate creep strain is 1.1 times the elastic strain.  

In order to reduce the long term deflection, we should delay the application of the 

prestressing force such that the concrete gains adequate strength, and the effect of creep 

is reduced. In this table the only factor which has been considered in evaluating the creep 

strain is the age of loading for the concrete. There are other factors which influence 

creep. In case if more accurate evaluation of creep is necessary, with the time as a 

variable, then we need to look into specialised literature. 
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The following expression is a simplified form, where an average prestressing force is 

considered to generate creep strain. The shrinkage strain is neglected.  

∆lt = ‒∆Pe ‒(∆Po + ∆Pe)/2 × θ + (∆DL + ∆SL)(1 + θ) + ∆LL  

This is an expression of the deflection due to long term loads, where we have considered 

an average value of the prestressing force which causes the creep.  
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To summarize the notations in the previous expression:  

∆Po = magnitude of deflection due to Po, the prestress before long term losses;  

∆Pe = magnitude of deflection due to Pe, where Pe is the effective prestress after long term 

losses;  

∆DL = deflection due to the dead load, including self-weight;  

∆SL = deflection due to sustained live load;  

∆LL = deflection due to additional live load. 
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A more rigorous calculation of total deflection can be done using the incremental time 

step method. It is a step-by-step procedure, where the change in prestressing force due to 

creep and shrinkage strains is calculated at the end of each time step. The results at the 

end of each time step are used for the next time step. 
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This step-by-step procedure was suggested by the Precast/Prestressed Concrete Institute 

(PCI) committee. The title of the paper is “Recommendations for Estimating Prestress 

Losses”. It was published in the PCI Journal, Volume 20, Number 4, and in the month of 

July to August, 1975. The pages are from 43 to 75. This method is called the General 

Method of calculating the prestressing force with time. 
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In this method, a minimum of four time steps are considered in the service life of a 

prestressed member. The following table provides the definitions of the time steps. 
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First, the time scale is discretised into four steps, and the discretization is based on the 

variation of the prestressing force with time. The method suggests that at least a 

minimum four times steps should be considered and those time steps are as follows. For a 

pre-tensioned member, the beginning of the time step is the anchoring of the steel. For a 

post-tensioned member, the beginning is the end of curing. The end of the first time step 

is the age of prestressing. Thus, within this period for the pre-tensioned member there can 

be some relaxation losses after the tension has been applied on the steel. For the post-

tensioned member, there will be some shrinkage in the concrete which is neglected in the 

calculation of the loss of prestress. For the second time step, the beginning of the step is 

the end of the first time step, and the end of the second step is thirty days after 

prestressing or when subjected to superimposed load. Thus, the first one month after 

prestressing is important in the variation of the prestressing force, and the creep and 

shrinkage strains.  

For the third time step, the beginning is the end of Step 2 and the end is one year of 

service. The fourth time step begins at the end of Step 3 and ends at the end of service 

life. Thus, these are the minimum four time steps that the committee recommended to 

monitor the prestressing force with time considering the creep and shrinkage strains in 

the concrete. 
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The step-by-step procedure can be implemented in a computer program, where the 

number of time steps can be increased. Thus, we may not stick to four time steps, we can 

have even larger number of time steps, which can be implemented in a computer 

program. In this method, we need more accurate expressions of the creep and shrinkage 

strains, which are functions of time. 
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Next, we are calculating the limits of deflection. Clause 19.3.1 of IS: 1343‒1980 

specifies limits of deflection such that the efficiency of the structural element and the 

appearance of the finishes or partitions, are not adversely affected. The limits of 

deflection are summarized next. 
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1) The total deflection due to all loads, including the effects of temperature, creep and 

shrinkage, should not exceed span divided by 250.  
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2) The next requirement is that the deflection after erection of partitions or application of 

finishes, including the effects of temperature, creep and shrinkage, should not exceed 

span divided by 350 or 20 mm, whichever is less. Thus, if there are partitions or finishes 

we may need to calculate deflections before the finishes or partitions are applied, because 

we are calculating the additional deflection after the partitions or finishes are placed.  

3) The third limit is that if finishes are applied at the top of a beam, then the total upward 

deflection due to the prestressing force should not exceed span divided by 300.  

These are the limits that the code specifies. For special structures, additional limits may 

be considered depending upon the situation. Next, we are moving on to the determination 

of moment of inertia. 
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For Type 1 and Type 2 members, since they are designed to be uncracked under service 

loads, the gross moment of inertia which is represented as Ig can be used to calculate 

deflections. That means, the moment of inertia can be calculated from the total section 

and it can be substituted in the expressions of deflection. 
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Type 3 members are expected to be cracked under service loads. Strictly, the gross 

moment of inertia cannot be used in the calculations. IS: 1343 – 1980, Clause 22.6.2, 

recommends the following: 
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1) When the permanent load is less than or equal to 25% of the live load, the gross 

moment of inertia can be used. If the permanent component of the live load is very small, 

then most of the time the section will remain under compression. Hence we can use the 

gross moment of inertia.  

2) If the permanent component of the live load exceeds 25%, then the code recommends 

that the span-to-effective depth ratio, which is denoted as L/d, should be limited to bypass 

the calculation of deflection. 

Thus, if the span-to-depth ratio is limited to a certain value, which we shall learn next, 

then we can bypass the calculation of deflection, because it is considered that the 

deflection will not be of any problem. 
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If the L/d ratio exceeds the limit, then the gross moment of inertia can be used, when the 

tensile stress under service loads is within the allowable value. The calculation of gross 

moment of inertia is simpler as compared to an effective moment of inertia.  

In reinforced concrete, we use an effective moment of inertia to consider the variation of 

moment of inertia along the span. For prestressed concrete, even for a Type 3 member if 

the tensile stress is limited to the allowable value, then we may use the gross moment of 

inertia.  

Next, we are learning about the limits of span-to-effective depth ratio. 
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The calculation of deflection can be bypassed if the span-to-effective depth ratio, which 

is represented as L/d, is within the specified limit. The limits of L/d ratio, as per Clause 

22.6.2 of IS: 1343 ‒ 1980 are as follows. For span (L) less than 10 m, for cantilever 

beams L/d should be less than 7; for simply supported beams the ratio should be less than 

20; for continuous beams the ratio should be less than 26. 
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If the span exceeds 10 m, then we have to modify these limits as follows. For simply 

supported beams, L/d should be less than 20 × 10/L. For continuous beams, L/d should be 

less than 26 × 10/L. Here, L is in meters. Deflection calculations are necessary for 

cantilevers with L greater than 10 m. 

Next, we are moving on to the second serviceability check, which is the calculation of 

crack width. 
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The crack width of a flexural member is calculated to satisfy a limit state of 

serviceability. Among prestressed concrete members, there is cracking under service 

loads only for Type 3 members. Hence the cracking and the calculation of crack width is 

relevant only for Type 3 members.  

We have learnt earlier that Type 1 member is designed such that, there is no tensile stress 

in the member under service loads. Type 2 member is designed such that, there can be 

tensile stress in the member but the tensile stress is less than the cracking stress at service 

loads. For Type 3 member cracking is allowed, but it is limited by limiting the crack 

width. Thus, the calculation of crack width is relevant only for Type 3 members and the 

crack widths are calculated for the service loads. 
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Type 3 members have regular reinforcing bars which are non-prestressed, in the tension 

zone close to the surface, in addition to the prestressed tendons. This is to limit the crack 

width and to distribute the cracking. 
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The crack width is calculated for the flexural cracks. The flexural cracks start from the 

tension face and propagate perpendicular to the axis of the member. This type of cracks is 



mentioned in the module of “Analysis for Shear”. If these cracks are wide, it leads to 

corrosion of the reinforcing bars and prestressed tendons. Also the appearance becomes 

bad. The crack width calculation is related to the width of the flexural cracks. 
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The surface crack width of a flexural crack depends on the following quantities:  

1) Amount of prestress,  

2) Tensile strength in the longitudinal bars,  

3) Thickness of the concrete cover,  

4) Diameter and spacing of longitudinal bars,  

5) Depth of member and location of neutral axis,  

6) Bond strength and  

7) Tensile strength of concrete. 
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The crack width calculation is a difficult process. There is a fracture mechanics based 

approach to calculate the crack width. But the recommendations in reinforced concrete 

design are simpler for our day-to-day use in design checks. We have to appreciate that the 

crack width depends on several factors, and the expression provides only an estimate of 

the crack width. When we are experimentally investigating the crack width, we may find 

variations in the observed crack width.  
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IS: 456 – 2000, Annex F, gives a simplified procedure to determine crack width. The 

design surface crack width (which will be represented as Wcr) at a selected location in the 

section with maximum moment, is given as follows. For that particular section, we can 

select any location along the periphery in the tensile region.  

Wcr = 3acr εm/ (1 + 2(acr ‒ Cmin)/(h ‒ x) 
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To summarize the notations: 

acr = shortest distance from the selected location on the surface to a longitudinal bar,  

Cmin = minimum clear cover to the longitudinal bar,  

h = total depth of the member,  

x = depth of the neutral axis,  

εm = average strain at the selected location.  

The zone below the neutral axis is the zone under tension. Thus, h ‒ x is the depth of the 

zone of concrete under tension. 

We shall discuss later what is meant by an average. The values of Cmin and h are obtained 

from the section of the member. Next, we need to calculate acr and then we need to 

calculate x and εm. 
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Evaluation of acr:  

The location of the crack width calculation can be at the soffit or the sides of the beam. 

The value of acr depends on the selected location. The following sketch shows the values 

of acr at a bottom corner (A), at a point in the soffit of the beam (B) and at a point at the 

side (C). For these three points, the distance to the nearest longitudinal bar has been 

represented by acr. Thus, the value of acr can be found out from the design section, based 

on the location of calculation of crack width. 
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Usually, the crack width is calculated at a point in the soffit, which is equidistant from 

two longitudinal bars. This point is the location of maximum estimated crack width. 

Hence, first we calculate the crack width at the soffit, which is in between two 

longitudinal bars.  

In this sketch of the cross section of the beam, Cmin is the clear cover, s is the spacing of 

the longitudinal bars, db is the diameter of the longitudinal bars, acr is the distance from 

the point of investigation to the nearest longitudinal bar and dc is the effective cover to 

the reinforcing bars. 
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The value of acr is obtained from the following equation based on the Pythagorean 

theorem. It is the radial distance from the point of investigation to the center of the 

nearest bar.  

acr = √[(s/2)2 + dc
2] ‒ (db/2) 

In this expression,  

db = diameter of a longitudinal bar  

dc = effective cover = Cmin + db/2  

s = center-to-centre spacing of longitudinal bars.  

The values of db, dc and s are obtained from the section of the member. Thus, once the 

member has been designed for flexure, these variables are available and we can calculate 

the distance acr. 



(Refer Slide Time 44:16) 

 

Next, we are evaluating the depth of the neutral axis and the average strain at the level of 

investigation of crack width. The values of x and εm are calculated based on a sectional 

analysis under service loads. 
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The sectional analysis should consider the tension carried by the uncracked concrete in 

between two cracks. The stiffening of a member due to the tension carried by the 



concrete is called the tension stiffening effect. The value of εm is considered to be an 

average value over the span. This is a new concept which we are observing. For flexure, 

usually we do a sectional analysis at the critical section, which is a cracked section. But 

when we are trying to find out the crack width, if you do a cracked section analysis, then 

the crack width is over estimated. The reason behind this is that, if we just do a cracked 

section analysis then we are neglecting the effect of concrete, which is in between the 

cracks. The concrete in between the cracks has some tensile strength, and that tensile 

strength reduces the crack width if we just calculate it based on a cracked section. The 

effect of tension in the concrete in between two cracks is called the tension stiffening 

effect. It reduces the crack width, and it also reduces the deflection from the value 

calculated based only on cracked section.  

In this figure you can see that the cracked section is at the location of a crack, whereas 

the uncracked concrete is in between two cracks, which helps the beam to reduce 

deflection. The contribution of uncracked concrete is called the tension stiffening effect. 

When we are calculating εm at the soffit of the beam, since εm various along the length of 

the span, we are calculating an average value, which should include the tension stiffening 

effect. 
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IS: 456 - 2000 recommends two procedures for the sectional analysis, considering the 

tension stiffening effect. The first one is a rigorous procedure with explicit calculation of 

tension carried by the concrete. 
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The second one is a simplified procedure based on the conventional analysis of a cracked 

section, neglecting the tension carried by concrete. An approximate estimate of the 

tension carried by the concrete is subsequently introduced.  

Thus, IS: 456 gives us two procedures to do the sectional analysis to calculate x and εm. 

The first one is a rigorous procedure, where we consider a section with tension in the 

concrete below the neutral axis. The second procedure is the conventional cracked 

section analysis, where we neglect any tension in the concrete below the neutral axis. But 

then the strain is modified to take account of the tension in the concrete. In this lecture, 

we shall explain the simpler procedure which is based on a conventional cracked section 

analysis. 
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For a rectangular zone under tension,  

εm = ε1 ‒ [b (h ‒ x) (a ‒ x)]/[3 Es As (d ‒ x)] 

For a prestressed member, EpAp + EsAs is substituted in place of EsAs. We shall 

understand the notation of each of these terms in the next slide. 
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In the above expression, 

a = distance from the compression face to the location at which crack width is calculated, 

which is same as h when the crack width is calculated at the soffit  

b = width of the rectangular zone. In most of our applications we will have a rectangular 

zone at the bottom and hence this formula will be applicable, where b is the width of the 

rectangular zone.  

d = effective depth of the longitudinal reinforcement, that means it is the effective depth 

of the non-prestressed steel  

As = area of non-prestressed reinforcement  

Ap = area of prestressing steel. 
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Es = modulus of elasticity of non-prestressed steel,  

Ep = modulus of elasticity of prestressed steel.  

All these variables are available from the section and the material properties of the beam. 

The two variables ε1 and εs which are used in εm need to be calculated.  

ε1 = strain at the selected location. For the soffit, it is the strain at the soffit. By similarity 

of triangles, ε1 = εs(a ‒ x)/(d ‒ x). 



εs = strain in the longitudinal reinforcement, based on the cracked section analysis. 
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The cracked section analysis of a Type 3 member should be based on strain compatibility 

of concrete and prestressing steel. The depth of neutral axis (x) can be calculated by a 

trial and error procedure, till the equilibrium equations are satisfied. The equilibrium and 

compatibility equations are provided here. 
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The following sketch shows the beam cross section, strain profile, stress diagram and 

force couples under service loads. The contribution of non-prestressed reinforcement is 

also included. 
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In this figure, we see that for a rectangular section b is the breadth, dp is the depth of the 

prestressing steel, d is the depth of the non-prestressed reinforcement. In the strain 

diagram εc is the strain in the concrete at the top, εs is the strain in the non-prestressed 

steel and εdec is the strain at decompression. The total strain in the prestressing steel εp is 

the strain in the concrete at the level of the prestressing steel plus εdec. The strain diagram 

considers the strain compatibility of the concrete and the prestressing steel, at the level of 

the prestressing steel. The stress diagram in concrete is linear. The maximum stress in 

concrete is fc, and the stress in the prestressing steel and the non-prestressed steel are fp 

and fs, respectively. The resultant compression C occurs at one-third the depth of the 

neutral axis, and the tension are represented as Tp for the prestressing steel and Ts for the 

non-prestressed steel. 
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From the stress diagram and the force couples, we can write the expressions of the forces. 

C = 0.5Ecεcxb, which is the area of the stress triangle.  

Tp = ApEpεp  

Ts = AsEsεs.  
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The first equilibrium equation is the equilibrium of the axial forces. 



ΣF = 0 ⇒ Tp + Ts = C  

Here, we write the expressions of Tp, Ts and C. The value of x should be such that this 

equation is satisfied. 
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The second equilibrium equation is the moment equation. 

ΣM = 0  

Taking the moment about the prestressing steel, we have M is equal to Ts times the 

distance between the prestressing and the non-prestressed steel, plus C times the distance 

between the prestressing steel and the location of C. When we substitute the expressions 

of Ts and C, we get an expression of the moment. The value of the moment should be 

equal to the moment due to service loads. Thus, x should be such that we need to satisfy 

both this equilibrium equations. 
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Among the compatibility equations, the first equation relates the compatibility between 

the prestressing steel and the concrete.  

x/dp = εc/(εc + εp ‒ εdec) 

The second equation is for the non-prestressed steel. 

(d ‒ x)/x = εs/εc.  
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The constitutive relationships have been considered in the expressions of C, Ts and Tp 

and we have used the elastic relationships to calculate C, Ts and Tp from the respective 

strains.  

The equations have to be solved to evaluate x, which should be substituted in the 

expressions of εm and Wcr, to calculate the crack width for a Type 3 member. 
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The limits of crack width are as follows. Clause 19.3.2 of the code specifies the limits 

such that the appearance and durability of the structure elements are not affected.  
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The crack width should be less than 0.2 mm for moderate and mild environments, and 0.1 

mm for severe environment. The types of environment are explained in Table 9, 

Appendix A of IS: 1343 - 1980. Once we calculate the crack width, we should make sure 

that the crack width is within the limit, depending on the environment the structure is in. 
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Thus, in today’s lecture, we first went through the calculation of deflection. We knew the 

deflections due to gravity loads; we learned about the deflections due to prestressing 

force. Then, we studied how to calculate the total deflection, and the limits of deflection 

the member needs to satisfy. We learned about the determination of moment of inertia. If 

we satisfy the limit of span-to-effective depth ratio, then we can bypass the deflection 

calculations.  

Next, we studied the calculation of crack width. First we studied the method of 

calculation and next, we found out the limits of crack width. The calculations of 

deflection and the crack width help us to satisfy the limits state of serviceability.  

Thank you. 


