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Welcome back to prestressed concrete structures. This is the sixth lecture of Module 5 on 

analysis and design for shear and torsion. 
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In this lecture, we shall study about design for torsion. First, we shall study the detailing 

requirements; next, we shall move on to some general comments; and then we shall learn 

about the design steps. 
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The detailing requirements for torsional reinforcement in Clause 22.5.5, IS: 1343-1980 

are briefly mentioned.  
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1) The stirrups should be bend close to the compression and tension surfaces, 

satisfying the minimum cover.  There should be at least one longitudinal bar in 



each corner. The minimum diameter of the longitudinal bars is 12 mm. Thus, we 

are trying to have the stirrups as close to the periphery as possible. 

We have to satisfy the minimum cover requirements and we have to hold the stirrups by 

the longitudinal bars. The longitudinal bars have to be stiff enough to keep the stirrups in 

position. Hence, the minimum diameter of the longitudinal bar is recommended. 
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2) The closed stirrups should be perpendicular to the axis of the beam. Closed 

stirrups should not be made of pairs of U-stirrups lapping one another. As we had 

known earlier, for torsion we need close stirrups, to resist the circulatory shear. 

The closed stirrups should be made of only one piece of steel bar. We cannot make close 

stirrups by overlapping two U-bars, although that is more convenient in construction. The 

figure on the left is an incorrect detail because it is showing two U-bars overlapping each 

other. The correct detailing is to have one piece of stirrup with proper anchorage at the 

ends, as shown in the figure on the right. 
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3) The maximum spacing of the stirrups is (x1 + y1)/4 or 200 mm, whichever is 

smaller. Here, x1 and y1 are the short and long dimensions of the stirrups, 

respectively.  

This requirement has come from the space truss analogy, that the stirrups should traverse 

all the inclined cracks. Based on that requirement, the maximum spacing is (x1 + y1)/4. 

There is in upper limit to the spacing which is 200 mm. 
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4) The ends of the stirrups should be anchored by standard hooks. Unless the stirrup 

is properly anchored at the ends, it will not develop its yield stress. Hence, proper 

anchorage is necessary at the ends of the closed stirrups. 

It is recommended to bend the ends of a stirrup by 135° and have 10 times the diameter 

of the bar, which is represented as db, as extension beyond the bend. One end of the bar 

has been bent by 135° and it has been inserted within the core concrete. The other end of 

the bar is also bent by 135° and inserted within the core concrete. The extension of the 

bars beyond the bends should be 10 times the diameter of the bars. This detailing helps to 

retain the shape of the stirrups, under torsion. The stirrups have to be in the original form 

when the torsion is acting, and they should not open up in presence of torsion. To 

maintain this shape, the ends of the bars are provided with 135° hooks, and the extensions 

beyond the hooks are placed within the core concrete. 
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5) The stirrups should be continued till a distance D + bw beyond the point at which 

it is no longer required. Here, D is the overall depth and bw is the breadth of the 

web. 

This requirement has also come from the space truss analogy. After the concrete forms 

struts and the steel bars form the ties tying the concrete struts, the stresses that we 

calculate at one particular section is shifted due to the formation of the struts. Based on 

this, it is recommended that the stirrups have to be continued beyond the point of 

calculation by a distance D + bw. This is to maintain the truss action in the resistance for 

torsion.  



(Refer Slide Time 07:55) 

 

Next, we shall be discussing some general comments in the design for torsion. The 

restraint to torsion is provided at the ends of a beam. For beams in a building frame, the 

restraint is provided by the columns. Precast beams are connected at the ends by 

additional elements like angles to generate the torsional restraint.  

In bridges, transverse beams at the ends provide torsional restraint to the primary 

longitudinal girders. Box girders are provided with diaphragms at the ends. 

Thus, the beams that are subjected to torsion need to have some restraint at the ends to 

resist the torsion. For an individual beam, like precast beams, torsional restraint is 

provided by some attachment at the ends like angle attachments. In bridges, transverse 

beams are provided or in a box girder, diaphragms are provided at the ends to provide the 

torsional restraint. Thus, when there is torque acting along the length of the beam, the 

restraint comes from the two ends of the beam. 
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For equilibrium torsion in a straight beam with distributed torque tu, the maximum 

torsional moment Tu is near the restraint at the support. This figure shows a beam, which 

is statically determinate and it is subjected to a distributed torque tu per unit length. In this 

beam, the maximum torque comes at the two ends near the restraints at the supports and 

is denoted as Tu. 
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The torsional moment near the support is given by the following expression.  

Tu = tuL/2 

Here, L is the clear span of the beam and tu is the distributed torque per unit length of the 

beam. 
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For a straight beam with a point torque, the maximum torsional moment Tu is near the 

closer support. If the location of the point torque is variable, Tu is calculated for the 

location closest to a support.  

The analogy can be drawn from shear. When there is a point load whose location is 

variable, the shear is designed for the location of the load which generates the maximum 

value of the shear. Similarly for torsion, if it is generated due to a point load whose 

location is variable, such as the vehicle load in a bridge, then the torque is calculated by 

placing the load at the position which generates the maximum value of the torque. Hence, 

the load has to be placed closest to the support to generate the maximum torsion in the 

beam. 

In a curved beam, the calculation of Tu is more involved. It is calculated based on 

structural analysis. 
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The design is done for the critical section. The critical section is defined in Clause 41.2 of 

IS: 456-2000. In general cases, the face of the support is considered as the critical section. 

When the reaction at the support introduces compression at the end of the beam, the 

critical section can be selected at a distance effective depth from the face of the support.  

Thus, although the maximum torque occurs at the face of the support, if the beam near 

the support is under compression, then we can select a section which is at the distance 

effective depth from the face of the support as the critical section. The capacity of the 

concrete in the beam in between the critical section and the face of the support is larger as 

compared to the rest of the beam. Hence, the critical section can be selected at a distance 

effective depth from the face of the support. 
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To vary the amount of reinforcement along the span, other sections may be selected for 

design. Usually, the following scheme is selected for the stirrup spacing in beams under 

uniformly distributed load: close spacing for quarter of the span adjacent to the supports; 

wide spacing for half of the span at the middle. For large beams, more variation of 

spacing may be selected. 
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Let us understand this by a sketch. In this figure, you can see that the spacing of the 

stirrups at the two ends is close; whereas, the spacing at the middle half of the beam is 

large. Hence, if we want to vary the spacing of the stirrups, then we have to select more 

than one section for design. In this situation, we need at least two sections: one is the 

section which is at the effective distance from the face of the support, and another section 

which is at a distance quarter of the span of the beam. 

(Refer Slide Time 14:30) 

 

Next, an equivalent flexural moment Mt is calculated from Tu. For the design of primary 

longitudinal reinforcement, including the prestressed tendon, the total equivalent ultimate 

moment Me1 is calculated from the flexural moment Mu and Mt. 

We have the flexural moment Mu and we have the equivalent flexural moment Mt due to 

the torsion. We add these two to get the total equivalent moment which is Me1, and with 

that we design the primary longitudinal reinforcement including the prestressed tendon. 

The design of the longitudinal reinforcement for other faces based on equivalent ultimate 

moments Me2 and Me3 is necessary when the equivalent moment Mt is larger than Mu. 

Thus, if the torsion is substantially high, then we may need to design for the other two 

equivalent moments Me2 and Me3. 
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This figure shows the three design moments. The first one is Me1, which is in the same 

sense as that of the flexural moments. If the flexural moment causes compression at the 

top, Me1 will also cause compression at the top. The value of Me1 is larger than the 

flexural moment due to the effect of torsion. Second, if the torsional moment is 

substantially high, then the failure may occur by the crushing of concrete at the bottom 

and yielding of the steel at the top. To check such a case, we design for a moment Me2. 

We generate compression at the bottom and tension at the top. This is in an opposite 

sense to that of the flexural moment Mu. Third, which is usually required in a flanged 

section with thin web, that we may have to design for a moment which occurs about a 

vertical axis to cause transverse bending. This moment Me3 generates compression at one 

side face and tension in the opposite side face. Thus, the axes about which Me3 acts is 

vertical, unlike that of Me1 and Me2. Observe the orientation of the three moments for the 

design of torsional reinforcement. 



(Refer Slide Time 18:00) 

 

The design for Me1 is similar to the design of a prestressed section for flexure. Earlier in 

the chapter of design of members, we had studied in details, the design of members for 

flexure. In presence of torsion, once we calculate Me1 the design is exactly similar to 

what you have studied for flexure. 

The design for Me2 is similar to the design of a prestressed concrete or reinforced 

concrete section. Me2 is the negative bending. We can design the section as a 

reinforcement concrete section, if there is no prestressing steel at the top, or we can 

design the section as a prestressed concrete section if there is some prestressing steel at 

the top.  

The design for Me3 is similar to the design of a reinforced concrete section. For the 

transverse bending, we design it like a reinforced concrete section. 
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The design of stirrups including torsion is similar to the design of stirrups in absence of 

torsion. In the design for shear, we had studied how to calculate the steel and provide the 

spacing. When there is torsion, the design is similar to the procedure that for shear, 

except for the amount of torsional reinforcement and the spacing. 
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The following quantities are known at the selected section: Mu which is the factored 

flexural moment; Vu is the factored shear; Tu is the factored torsional moment. For 

gravity loads, these are calculated from the dead load and live load. 

Thus, before we start the design, from structural analysis we have calculated the three 

actions acting in the particular section: one is the flexural moment Mu, next is the shear 

Vu and the torsional moment Tu. These are the known quantities before the design of the 

section. 
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The grades of concrete and steel have to be selected before design. As per IS: 1343-1980, 

the grade of steel for stirrups is limited to Fe 415. 

The selection of the material properties depend on what material will be supplied and on 

the type of structure that is being built. Before we start the design calculations, the 

material properties should be known to us, so that we can use those properties in the 

design equations. 
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For the design of longitudinal reinforcement, the following quantities are unknown: the 

member cross-section; Me1, Me2, Me3 are the total equivalent flexural moments; Ap is the 

amount of prestressing steel; Pe is the effective prestress; e the eccentricity of CGS with 

respect to CGC; As is the area of longitudinal reinforcement; As
/ is the area of 

longitudinal reinforcement in opposite face.  Prestressing steel Ap
/ may be provided in the 

opposite face. 

If Me2 is large, then we may provide prestressing steel at the top also, and design the 

section as a prestressed section. Thus, before the design we know what are the unknown 

quantities that we need to solve to come to the designed section. 
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For the design of stirrups, the following quantities are unknown: Vc1 is the shear carried 

by concrete; Tc1 is the torsion carried by concrete; Asv is the total area of the legs of 

stirrups within a distance sv; and sv is the spacing of stirrups. Remember that Tc1 and Vc1 

are the reduced values from the capacities of concrete under the individual actions. 

Next, we shall discuss about the design steps of the torsional reinforcement. 
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The steps for designing longitudinal and transverse reinforcement for beams subjected to 

torsion are given. First, calculate Mu, Vu and Tu at a selected location. Select the suitable 

cross-section. For high value of Tu, as in bridges, a box section is preferred. 

The selection of sections was discussed when we studied the design of members for 

flexure. The selection depends on the application and on the relative values of the forces. 

In buildings, usually we have rectangular section, or we can have flanged section for 

precast joists. For bridges, we can have rectangular section for small spans; but as the 

span increases, flanged section is preferred, or if the torsion is high then we select box 

section. Thus, the selection of a section is important as per the application and the design 

forces acting on the section. 
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The next step is to calculate the equivalent moment Me1. Me1 is equal to Mu + Mt, where 

Mt is calculated from the following expression.  

Mt = Tu √(1 + 2D/b)  

Mt is the equivalent flexural moment corresponding to the torsional moment Tu. We add 

that to the flexural moment Mu to get the total equivalent moment at ultimate, which is 

represented as Me1. 
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The geometric variables are defined for the different types of section as follows: b is the 

breadth which is the smaller dimension; D is the depth which is the longer dimension. For 

a hollow rectangular section, the thickness should be at least quarter of the breadth so that 

we have adequate shear flow zone. For a flanged section, the breadth of the web bw 

substitutes b in the previous expression. 
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In the next step, we have to design Ap and As. Ap is the amount of prestressing steel and 

As is the amount of longitudinal steel. The design procedure involves preliminary design 

and final design, which were explained under the module of “Design of Members”. 

The flexural design is a systematic procedure to select the maximum eccentricity of the 

prestressing steel so as to have an economical amount of the steel. We do this by having 

the maximum possible lever arm at service loads. The design steps are divided into two 

stages: first, is the preliminary stage; second, is the final stage. Thus, when the member 

has torsion, the design of the primary longitudinal reinforcement is similar to the design 

of members for flexure. The only difference is that we are substituting the total 

equivalent moment Me1 in place of the flexural moment Mu. 
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The third step is to calculate the other equivalent moment Me2, if Mu is less that Mt.  

Me2 = Mt ‒ Mu  

Thus, if the torsion is substantially high, there is a chance of the negative bending failure. 

In that situation, we need to calculate Me2 and design for Me2. 



(Refer Slide Time 28:20) 

 

Design As
/ for Me2. The design procedure is similar for a reinforced concrete section. If 

Ap
/ is provided, the design is similar to a prestressed concrete section. Once we have Me2, 

we can design the section as a reinforced concrete section where we do not provide any 

prestressing steel at the top near the tension zone. If we provide prestressing steel at the 

tension zone, then we have to design the section as a prestressed section. The design 

procedure is similar to the design for flexure. 
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The fourth step is to calculate the third equivalent moment Me3 for transverse bending, if 

Mu is less than Mt. The expression of Me3 is given as follows. 

Me3 = Mt (1 + (x1/2e))2 ((1 + 2b/D)/(1 + 2D/b))  

The moment acts about the vertical axis causing transverse bending. We need to design 

for the side face reinforcement.  
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In the previous expression, e = Tu/Vu. Note that, this e is not the eccentricity of the 

prestressing steel. Here, e is the ratio of the ultimate torsional moment to the ultimate 

shear. For a closed stirrup, we are representing x1 as the smaller dimension and y1 as the 

larger dimension. 
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Once we have calculated Me3, we need to check the adequacy of transverse bending 

based on the corner bars. If inadequate, design the side face reinforcement As,sf. As,sf 

includes the corner bars. The design is similar to that for a reinforced concrete section. 
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For a singly reinforced rectangular section, the amount of longitudinal reinforcement As 

is solved from the following equation. 



0.87 fy As d (1 ‒ fyAs/fckbd) = Mu  

The values of the breadth b, effective depth d and design moment Mu are appropriately 

substituted. Here, b will be the vertical dimension of the beam and d will be the 

horizontal effective depth of the reinforcement. Substituting the variables, we can find 

out the value of As. 
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Next, we are moving on to the design of transverse reinforcement. The first step is to 

calculate the capacity of concrete to resist torsion.  

Tc = Σ0.15b2D (1 ‒ b/3D) λp√fck  

λp = √(1 + 12 fcp/fck) 

In the last lecture, we saw that the capacity of concrete is based on the generation of a 

torsional crack at the mid-depth of the longer side. If it is a flanged section, then the 

expression considers the flanged section as a compound section made up of several 

rectangles, and we use the summation symbol. The effect of prestressing is considered by 

the factor λp, which shows that by increasing the prestress the strength of concrete will 



increase. This expression of Tc helps us to calculate the capacity of concrete to resist pure 

torsion. 
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Calculate Vc, the capacity of concrete for shear in absence of torsion, from the lower of 

Vc0 and Vcr. To recollect, Vc0 is the capacity of concrete for an uncracked section. Vc0 

corresponds to the shear corresponding to web shear crack. Vcr is the capacity of concrete 

for a cracked section. It is equal to the shear that causes a flexure‒shear crack. The 

expressions of these two quantities Vc0 and Vcr are as follows.  

Vc0 = 0.67bD √(ft
2 + 0.8 fcp ft)  

In this expression, ft is the tensile strength of concrete and fcp is the average prestress at 

the level of the CGC.  

Vcr = (1 ‒ 0.55 fpe/fpk)τc bd + M0 (V/M) 

The expression of Vcr contains two terms: the first term, is the amount of shear that 

extends the flexural crack to a flexure‒shear crack. This term depends on τc which is the 

capacity of concrete to resist shear. The second term is the shear corresponding to 

flexural crack. The value of Vcr need not to be smaller than 0.1bd√fck. Thus, here we have 



two expressions of the capacity of concrete to resist the shear in absence of torsion, and 

whichever gives the smaller value, that value is assigned to Vc. 
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Next, we are calculating the parameters e and ec, which are the ratios of the torsion and 

shear. e is the ratio of the ultimate torsion to the ultimate shear and ec is the ratio of the 

capacity of concrete to resist torsion to the capacity of concrete to resist shear. Note that e 

is not the eccentricity of the CGS. 
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The parameters e and ec are used in the interaction equation of the torsion and shear, from 

which we calculate the capacity of concrete to resist torsion and shear when both of them 

are acting together. In this step, we are calculating Tc1 and Vc1.  

Tc1 = Tc e/(e + ec) 

Here, Tc is the capacity in absence of shear. Tc1 is limited to half of the ultimate torque.  

Vc1 = Vc ec/(e + ec)  

Now, we have got two capacities of concrete, one to resist torsion and other to resist 

shear, when both of them are acting together. 
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Now we are calculating the amount of transverse reinforcement from the greater of the 

two expressions of Asv/sv. The first expression is based on the skew bending theory, 

where Mt is the equivalent flexural moment. 

Asv/sv = Mt/(1.5b1d1fy) 

The second expression of Asv/sv is from the requirement of total shear. 

Asv/sv = Av/sv + 2AT/sv  

The first term is the requirement based on flexural shear.  The second term is the 

requirement based on torsional shear. They are considered to be additive in both the 

vertical sides of the shear flow zone. 
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In the previous expression Av/sv is calculated from the shear to be carried by the steel 

which is (Vu ‒ Vc1). AT/sv corresponds to the torsional shear that is to be carried by the 

steel which is (Tu ‒ Tc1). 

Av/sv = (Vu ‒ Vc1)/0.87fyd1  

AT/sv = (Tu ‒ Tc1)/0.87fyb1d1  

The two amounts are combined to get the value of Asv/sv. 
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In the previous expression, b1 is the distance between the corner longitudinal bars along 

the short side, and d1 is the distance between the corner longitudinal bars along the long 

side. At the beginning, these values are not available exactly, but are estimated based on 

the cover requirement and estimated size of the transverse reinforcement. 
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We have to satisfy the minimum amount of transverse reinforcement. The minimum 

amount of stirrups is given by the following equation.  

Asv/bsv = 0.4/0.87fy  

Minimum transverse reinforcement is required to check a sudden failure due to shear. 
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The seventh step is to calculate the maximum spacing of the stirrups, and round it off to a 

multiple of 5 mm. The maximum spacing is governed by both shear and torsion. It is 

0.75dt or 4bw for shear, and (x1 + y1)/4 or 200 mm, for torsion. Select the smallest value. 

Thus, there are two requirements of maximum spacing. The first one is based on the 

plane truss analogy for shear; there is a maximum limit of 4bw to that. The second 

requirement is based on the space truss analogy for torsion; there the maximum limit is 

200 mm. Once we calculate these four values, the smallest value gives the maximum 

spacing for the transverse reinforcement. 
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The eighth step is to calculate the size of the stirrups based on the amount required. Once 

we know sv, we can calculate Asv from the value of Asv/sv. From there, we calculate the 

size of the stirrups and the number of legs that will satisfy the value of Asv.  

This whole procedure can be done for other sections, if you need to vary the spacing of 

the stirrups. It depends upon the designer, that how many sections we are designing for, 

in a particular beam. 
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Let us understand the design procedure by the help of an example. Design a rectangular 

section to carry the following ultimate loads: Tu = 44.5 kNm, Mu = 222.5 kNm including 

an estimate of self-weight, Vu = 89 kN. Note that here the value of Tu is substantially 

small than Mu. The material properties are as follows: fck = 35 N/mm2; fy = 250 N/mm2; 

fpk = 1720 N/mm2. The effective prestress after the losses is fpe = 1035 N/mm2.  
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The first step is to calculate the equivalent moment Me1. For the rectangular section, let 

the depth D divided by the breadth b is equal to 2; this gives an economical section. With 

this value of D/b we can calculate Mt from Tu. Mt = 99.5 kNm. Thus, Me1 = Mu + Mt = 

222.5 + 99.5 = 322 kNm. 

Thus, in presence of torsion, we are designing for a higher flexural moment as compared 

to the original flexural moment. The original flexural moment was 222.5 kNm, but in 

presence of the torsion we are designing for a moment which is 322.0 kNm. 
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The second step is to select the section, and design Ap and As. For the rectangular section, 

let b = 250 mm, D = 500 mm, the effective depth d = 450 mm. Based on the design steps, 

provide two numbers of 16 mm diameter corner bars. The flexural design results are as 

follows: As = 2 × 201 = 402 mm2. The required amount of prestressing steel with dp = d = 

450 mm is Ap = 484 mm2. The design has been done based on the steps that we do for a 

conventional flexural design. This is a partially prestressed section, where we are taking 

advantage of the longitudinal bars to provide flexural capacity. 
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Provide 11 mm diameter strands with area 70 mm2. At this stage, we are selecting what 

type of strands we shall use for prestressing. The required number of strands is equal to 

484 ÷ 70 = 6.8, which is rounded off to 7. Provided amount of prestressing steel is Ap,prov 

= 7 × 70 = 490 mm2. Thus, the amount of prestressing steel for the primary longitudinal 

reinforcement has been designed at the stage, and it is 7 of 11 mm diameter strands. 
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The third step is to calculate the next equivalent moment, Me2. In this example, Mu is 

larger than Mt and hence design for Me2 is not required. The fourth step is to calculate 

Me3. Here, Mu is larger than Mt and hence design for Me3 is not required.  

In most of the situations, we may not have to design for Me2 and Me3, because the 

flexural moment (Mu) will be substantially high compared to the equivalent moment due 

to torsion (Mt). But there may be cases where the equivalent moment is high and in that 

situation, we have to design for Me2 and Me3 as well. 
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Now, we are moving on to the design of the transverse reinforcement. Calculate Tc. First 

we are calculating fcp which is the average prestress in the section. The average prestress 

is calculated as Pe/A = fpe×Ap/bD. Substituting fpe = 1035 N/mm2, Ap = 490 mm2, b and D 

equal to 250 mm and 500 mm, respectively, Pe = 507,150 N and A = 125,000 mm2. Thus, 

the average prestress in the concrete is equal to 4.06 N/mm2. Since, we are interested in 

the numeric value we are not placing the sign in this expression. We have found that fcp is 

less than 30% of the characteristic strength. The characteristic strength is 35 and one-

third of it is about 12 N/mm2. 

With the value of fcp we are calculating the value of λp, the multiplying factor to consider 

the effect of prestressing force. λp = √(1 + 12fcp/fck) = √(1 + 12×4.06/35) = 1.55. Thus, 



the effect of prestressing force is considered by a multiplying factor which is 1.55. That 

means the strength Tc has increased by 55 % due to the presence of the prestressing force. 
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Tc = 0.15b2D (1 ‒ b/3D) λp√fck = 0.15 × 2502 × 500 × (1 ‒ 1/3×2) × 1.55 × √35 Nmm = 

35.8 kNm. That is the capacity of concrete to resist torsion in absence of any shear force. 
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To calculate Vc, we are first calculating the value of Vcr. For that we need the amount of 

prestressing steel as a percentage. 100Ap/bd = 100×490/250×450 = 0.43% of prestressing 

steel. From Table 6, for M35 concrete, τc = 0.46 N/mm2. 
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The value of the prestress at the level of the CGS fpt = ‒ Pe/A ‒ Pee2/I. This expression is 

available from the stress concept, and once we substitute the value of Pe, A, e and I, we 

get the value of fpt = ‒11.85 N/mm2. Here, e has been estimated as the depth of the 

prestressing steel minus the depth of the CGC, e = 450 ‒ ½ 500 = 200 mm. I = bd3/12 = 

2.604 × 109 mm4. 
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M0 = 0.8fptI/y. Once we substitute the values of fpt, I and y, we get M0 = 123.43 kNm. 
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Thus, substituting the values of τc, M0, Vu and Mu we get Vcr = 84.0 kN. Thus, this is the 

amount of shear that will generate flexure‒shear crack. 
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Vc0 = 0.67bD√(ft
2 + 0.8fcpft) = 0.67 × 250 × 500 × √(1.422 + 0.8×4.06×1.42) = 215.6 kN. 

Vc0 is much higher than Vcr and hence, we are assigning the value of Vcr to Vc.  Thus, Vc 

= 84.0 kN. 
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We are calculating the parameters e and ec. e = Tu/Vu = 0.5 m. ec = Tc/Vc = 0.43 m. 
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From these we are able to calculate Tc1 and Vc1. Tc1 is the reduced value from Tc.  Tc1 = 

19.26 kNm. Similarly, we get a reduced value of Vc1 from Vc. Vc1 = 38.84 kN. Here, Tc1 

is less than Tu/2, and hence it is ok. 
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We are calculating Asv/sv from the equivalent moment Mt. Asv/sv = 3.3 mm2/mm. Here, b1 

is estimated as 250 ‒ 50 = 200 mm, and d1 is estimated as 500 ‒ 100 = 400 mm.  



The first term in the second expression of Asv/sv is based on the shear to be carried by the 

stirrups, and once we substitute the value of Vu and Vc1, we get Av/sv = 0.58 mm2/mm. 
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The second term in the second expression of Asv/sv is based on the torsion to be carried 

by the stirrups, and once we substitute the value of Tu and Tc1, we get Av/sv = 1.45 

mm2/mm. 
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Once we substitute the values in the expression of Asv/sv, we get a requirement of 3.48 

mm2/mm. This is higher than the previous requirement, and hence we are selecting this 

value. 
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We are checking the minimum amount of stirrups, which is given as Asv/sv = 0.4×250 / 

0.87×250 = 0.46 mm2/mm. The governing value of Asv/sv = 3.48 mm2/mm. This satisfies 

the minimum requirement. 
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We are calculating the maximum spacing sv. In this case, by estimating x1 and y1 we get 

maximum sv = 156 mm. The other values of sv do not govern. 
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We are selecting the size as two legs of 12 mm diameter stirrups. Asv = 2 × 113 = 226 

mm2, from which we get sv = 65 mm. 
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Thus, the designed section is shown here with 12 mm diameter stirrups at 65 mm on 

center. We are providing four corner bars of 16 mm diameter, and seven number of 11 

mm diameter strands with Pe = 507.15 kN. 
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Thus, today we covered the detailing requirements for torsional reinforcement. We 

studied the general comments on the torsional reinforcement. We also studied the design 



steps for torsional reinforcement. The design for the longitudinal reinforcement is similar 

to the flexural design for a prestressed section. The design for the transverse 

reinforcement is similar to the stirrup design that we had seen earlier. 

With this, we are ending the design for torsion. In our next module, we shall look into the 

serviceability requirements for prestressed concrete sections. 

Thank you. 


