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Welcome back to prestressed concrete structures. This is the fifth lecture of Module 5 on 

analysis and design for shear and torsion. In this lecture, we shall study the design for 

torsion. First we shall study about the limit state of collapse for torsion. Next, we shall 

learn about the design of longitudinal reinforcement and transverse reinforcement. 
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The design for the limit state of collapse for torsion is based on the skew bending theory. 

For a beam subjected to simultaneous flexure and torsion, an equivalent ultimate bending 

moment at a section is calculated. 

Last time, when we discussed about the analysis for torsion, we learnt that for the skew 

bending theory three modes of failure are defined at ultimate. These modes of failure are 

based on a concept of a resultant moment which comes from the flexural moment and the 

torsional moment. Based on this concept, an expression of equivalent ultimate bending 

moment is developed for the design for torsion.  
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The design for torsion involves the design of longitudinal reinforcement as well as the 

transverse reinforcement. The resistance to torsion comes from a space truss action, 

where the concrete struts, the longitudinal steel and transverse reinforcement all take part 

in resisting the torsion. Hence, the design targets both the steel: longitudinal and 

transverse. For concrete, the design considers its capacity.  

The longitudinal reinforcement is designed based on the equivalent ultimate bending 

moment that is defined based on the skew bending theory. The transverse reinforcement 

is designed based on the skew bending theory and a total shear requirement. For the 

capacity of concrete, to consider the simultaneous occurrence of flexural and torsional 

shears an interaction between the two is considered. 
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The equations in IS: 1343-1980 are applicable for beams of the following sections.  

1) Solid rectangular, with D, which represents the depth, is greater than b, which 

represents the breadth. Incase if a member has a larger breath than the depth, then 

D will be equated to the larger breath and b will be equated to the smaller depth. 

Hence, D is always larger than b in the expressions that we shall see.  

2) The expressions are also applicable to hollow rectangular sections, where the 

thickness is greater than one quarter of the breath; that means the hollow 

rectangular section should have adequate thickness for the resistance to the 

torsion.  

3) Finally, the equations are also applicable to flanged sections like T-beams and I-

beams. 
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These are the three types of sections for which the equations are applicable. For a solid 

rectangular section D is larger than b. Similarly, for a hollow rectangular section, D is 

larger than b, and the thickness is greater than or equal to one quarter of b. For a flanged 

section, b has to be substituted by the breath of the web for most of the expressions. 
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The variables are thus, b is the breath of the section which is equal to bw for flanged 

section; D is the total depth of the section; t is the thickness of the section for a hollow 

section. The average prestress in a section at the level of CGC is limited to 0.3 fck. 
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First, we are moving on to the design of longitudinal reinforcement. There are three 

expressions of the equivalent ultimate bending moment for the three modes of failure. We 



had seen these three modes of failure in our last lecture, and these are modeled by three 

expressions of the equivalent ultimate bending moment. The background of the codal 

provisions is given in a paper written by Professors Rangan and Hall. The title of the 

paper is “Design of Prestressed Concrete Beams subjected to Combined Bending, Shear 

and Torsion”. It was published in the ACI Journal, American Concrete Institute, in March 

1975. The volume number is 72, issue number is 3 and the pages are from 89 to 93. 
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In the first mode of failure, there is an influence of the torsion on the bending. The plane 

of failure is skewed with the axis of the beam, but the zone of compression and the 

tension remain similar to conventional flexure. This is modeled by an equivalent moment 

which creates compression in the same face as that of the flexure, and it creates tension in 

the same phase as that of the flexure. 
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The equivalent ultimate bending moment for Mode 1 failure is denoted as Me1. Me1 = Mu 

+ Mt, where Mu is the ultimate flexural moment and Mt is the equivalent bending moment 

for the ultimate torsion. Mt = Tu √(1 + (2D/b)). 

First, we calculate the ultimate torsional demand; from that we are calculating an 

equivalent bending moment. Then we are adding the equivalent bending moment to the 

flexural moment to get the total equivalent bending moment for Mode 1 failure. 
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In this expression, Mu is the applied bending moment at ultimate; Mt is the additional 

equivalent bending moment for torsion; Tu is the applied torsion at ultimate. Since, the 

torsion generates tension in the reinforcement irrespective of the sign; the sign of Mt is 

same as that of Mu.  

Remember that, whether the torsion acts clockwise about the beam axis or anti-clockwise 

about the axis, it always generates tension in the longitudinal steel. To account for this 

addition of stress due to torsion in the longitudinal steel, the sign of Mt is taken as the 

same as that of Mu. Thus, we have an increased demand in the longitudinal steel, due to 

flexure and the torsion. 



(Refer Slide Time 10:58) 

 

For the Mode 2 failure, the amount of torsion is significantly high and this type of failure 

is for beams with thin webs. Here, the compression of concrete is at one side face and the 

tension is in the other opposite side face. To model Mode 2 failure, the equivalent 

bending moment is considered to act about the vertical axis, which creates compression 

in one side face and tension in the other side face. For Mode 2 failure, the notation used 

in the codal expression is Me3. 
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The equivalent ultimate transverse bending moment for Mode 2 failure is: 

Me3 = Mt (1 + (x1/2e))2 ((1 + 2b/D)/(1 + 2D/b)).  
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In this expression, e = Tu/Vu, ratio of ultimate torsion and ultimate shear force at a 

section, x1 is the smaller dimension of a closed stirrup. For a rectangular section, let x1 

and y1 be the smaller and larger dimensions of the closed stirrup, respectively. 
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The transverse bending moment Me3 is considered when the numerical value of Mu is less 

than Mt. Me3 acts about a vertical axis. 

The third mode of failure is generated when the torsion is substantial and the top steel is 

small. In that case, we may observe crushing in the bottom and substantial yielding in the 

top steel. 
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In this sketch, we can observe that the compression is occurring at the bottom and tension 

is at the top, which is in an opposite sense as that created by flexure. This is bending in an 

opposite sense to that of the flexural moment. This way, we check the requirement of the 

steel at the top. 

(Refer Slide Time 15:11) 

 

The equivalent ultimate bending moment for Mode 3 failure is denoted as Me2 in the 

code. Me2 = Mt – Mu. The expression of Mt is same as that for Mode 1 failure, given 

before. Mode 2 failure is checked when the numerical value of Mu is less than that of Mt.  

Thus, when Mu generates compression at the top, Me2 will generate compression at the 

bottom. The top steel which is under compression due to flexure, may come under 

tension, when both flexure and torsion are occurring together. 
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The longitudinal reinforcement is designed for Me1 similar to the flexural reinforcement 

for a beam. When Me2 and Me3 are considered, longitudinal reinforcement is designed for 

these two moments also. 

Thus, the essence of design of longitudinal reinforcement for a beam under combined 

flexure and torsion is that we have defined an equivalent moment (Me1) which is larger 

than the flexural moment (Mu) and acts in the same sense as that of Mu. We may also 

define two other equivalent moments (Me2 and Me3) if the torsional moment is 

substantially high. Me3 is for the lateral bending. Me2 is for negative bending, which is in 

the opposite sense of the bending due to the flexural moment. 
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For a singly reinforced section, the amount of longitudinal reinforcement As is solved 

from the following equation.  

0.87 fy As d (1 ‒ (fy As / fck bd) = Me 

This expression is available from reinforced concrete design, for an under-reinforced 

section. The moment is the force in the steel times the lever arm.  
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In this expression, d is the effective depth of longitudinal reinforcement, fy is the 

characteristic yield stress of longitudinal reinforcement, fck is the characteristic 

compressive strength of concrete, and Me is any of Me1, Me2 or Me3. 

When we are substituting Me1, we are designing the bottom steel; when we are 

substituting Me3, we are designing the steel at the side; when we are substituting Me2, we 

are designing the steel at the top. Hence, depending on the relative values of Mu, the 

flexural moment, and Mt, the equivalent moment due to torsion, we design for the 

longitudinal steel at the bottom, side or top. 
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Next, is the design for transverse reinforcement. For the design of the transverse 

reinforcement, the capacities of concrete to resist the torsion and shear need to be 

determined. To consider the simultaneous occurrence of flexural and torsional shears, a 

linear interaction between the two is considered. 

We have seen earlier in the design for shear that, before we can design the transverse 

reinforcement, we need to calculate the contribution of concrete to resist shear. Similarly, 

when torsion is present, we need to calculate the capacity of concrete to resist the 

torsional shear and flexural shear, simultaneously. To consider the occurrence of these 

two types of shear simultaneously, an interaction equation is assumed. 
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The capacity of concrete to resist torsion is reduced from Tc, the capacity under pure 

torsion. Similarly, the capacity of concrete to resist shear is reduced from Vc, which is the 

capacity in absence of torsion. 

The meaning of interaction is that we have an expression of the capacity of concrete 

under pure torsion; we have an expression of concrete to resist shear in absence of 

torsion; these two capacities are represented by Tc and Vc, respectively. When both shear 

and torsion are occurring simultaneously, the capacity of concrete to resist torsion will 

get reduced from Tc, similarly the capacity of concrete to resist shear will reduce from Vc. 
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Next, we are developing the equation for the capacity of concrete under pure torsion, 

which will be represented as Tc. The capacity of concrete is determined based on the 

plastic theory for torsion. The capacity is equal to the torque generating the first torsional 

crack, which is represented as Tcr.  

For a reinforced concrete beam, Tcr is estimated by equating the maximum torsional shear 

stress, which is τmax, caused by Tcr to the tensile strength of concrete, which is estimated 

as 0.2√fck. 

The estimated tensile strength is less than that under direct tension, because the full 

section does not plastify as assumed in the plastic theory. 

Thus, to get an expression for the torsional resistance of concrete, we refer to the plastic 

theory of the analysis of torsion. With that theory, we equate the expression of the 

maximum shear stress generated at the mid-depth of the longer face to a tensile strength 

of concrete, which is given as 0.2√fck. Now, this estimate of the tensile strength of 

concrete is lower than the direct tensile strength. Because, in the plastic theory it is 

assumed that the full section is plastifying at failure. Whereas, when concrete cracks the 

full section does not plastify as assumed in the plastic theory. Hence, the tensile strength 

of concrete is reduced. 
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The estimate of the cracking torque Tcr for a rectangular section is given below.  

Tcr ≈ 0.2√fck (b2D/2) (1 ‒ b/3D) 

When simplified,  

Tcr = 0.1b2D (1 ‒ b/3D)√fck.  

This is the expression of the torque that causes the first crack in the concrete member.  
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Now, the expression that we had seen was for a rectangular section. For a flanged section, 

the section is treated as a compound section. A compound section is a summation of 

rectangular sections.  

The cracking torque is estimated as a summation of the capacities of the individual 

rectangular sections. Since the interaction between the rectangular sections is neglected in 

the summation, the estimate of the cracking torque is a lower bound estimate. 
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To explain, let us see this idea of compound section for a flanged section. The following 

flanged section is shown as a compound section of five rectangles. For an individual 

rectangle, the short side is b and the long side is D. For each individual rectangle, we are 

finding out the capacity which is given for a rectangular section. We sum up these 

capacities to get the Tcr for the flanged section. In doing this summation we are not 

considering any interaction between these rectangles, and hence the summation is 

actually a lower bound of the true value of Tcr. That is, whatever we calculate, will 

always be lower than the actual value of Tcr which can be observed from an experiment. 
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The estimate of the cracking torque Tcr for a compound section is as follows.  

Tcr = Σ0.1b2D (1 ‒ b/3D)√fck  

Thus, once we calculate the capacities of the individual rectangles, we can sum them up 

to get the total capacity for the compound section. 
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For a prestressed concrete beam, the strength of concrete is multiplied by the factor λp 

which is a function of the average effective prestress fcp. We have observed earlier that 

the effect of prestressing is to reduce the principle tensile stress that is developed at the 

mid-depth of the longer side. Hence, the cracking torque is much higher and even after 

cracking, the strength of the concrete is retained as the aggregate inter-lock is retained 

due to reduced crack width. Thus, in presence of prestressing force the strength of 

concrete is increased by multiplying by a factor λp, which is a function of the amount of 

prestressing force at the level of CGC. λp is given by the expression  

λp = √(1 + 12 fcp/fck) 

The value of fcp is taken as positive that is, only the numeric value is considered. It can be 

observed that the torsional strength of concrete increases with prestress.  
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The cracking torque and the capacity of concrete to resist torsion, which is given as Tc for 

a prestressed concrete beam is thus estimated as follows:  

Tc = Tcr = Σ0.15b2D (1 ‒ b/3D)λp√fck 



This is the expression given in the code for the torsional strength of concrete under pure 

torsion and in presence of prestressing force. 

(Refer Slide Time 30:20) 

 

In this expression, b is the breadth, and D is the depth of the individual rectangle in a 

compound section. 
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Next, we are finding out the capacity of concrete under shear. The following expressions 

we had seen in the analysis for shear, and the same expressions we are revising once 

again. There are two expressions of the capacity of concrete for shear: first for an 

uncracked section, which is the amount of shear generating web shear crack; second for a 

cracked section, which is the amount of shear that converts a flexural crack to a 

flexure‒shear crack. For an uncracked section, 

Vc = Vc0 = 0.67bD √(ft
2 + 0.8fcpft) 

Vc0 is the shear causing web shear cracking at CGC, ft is the tensile strength of concrete 

equal to 0.24√fck. Note that the tensile strength is larger than that used for finding out the 

torsional strength of concrete. 
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For cracked section,  

Vc = Vcr = (1 ‒ 0.55 fpe/fpk)τc bd + M0 (V/M) ≥ 0.1bd√fck. 

There are two terms: the first term denotes the shear which converts a flexural crack to a 

flexure‒shear crack, and the second term is the shear which generates a flexural crack.  
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The notation in the previous equation are as follows: fpe is an effective prestress in the 

tendon after all losses and it should be less than or equal to 0.6 fpk, where fpk is the 

characteristic strength of prestressing steel; τc is the ultimate shear stress capacity of 

concrete, obtained from Table 6 of IS: 1343 – 1980. It is given for values of Ap/bd, where 

d is the depth of CGS. 
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This is the plot of the variation of τc with the amount of prestressing steel. What we 

observe is that as the prestressing steel is increasing, the capacity of concrete to resist 

shear is also increasing. In presence of prestressing force, the cracking occurs at higher 

load and the resistance after cracking is retained because the aggregate inter-lock is 

retained, and the zone of concrete under compression is larger. Also, the dowel action is 

better in presence of prestressing force.  
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The other variables in the equation are: d is the distance from the extreme compression 

fibre to the centroid of the tendons at the section considered; M0 is the moment initiating 

a flexural crack which is estimated as 0.8fpt I/y; fpt is the compressive stress in concrete at 

the level of CGS due to prestress only; I is the gross moment of inertia; y is the depth of 

the CGS from CGC. 
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Mu is the moment due to ultimate loads at the design section, and Vu is the shear due to 

ultimate loads at the design section. 

Thus, given the expressions of Vc0 and Vcr, we can calculate Vc, which is the capacity of 

concrete to resist shear in absence of torsion. Now, we are reducing the capacities of 

concrete to resist torsion and shear, when both of them act together. This is done by the 

help of an interaction equation.  
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A linear interaction of the shear and torsion capacities of concrete is considered. In the 

graph, the ultimate shear Vu is normalized with the capacity of concrete to resist shear in 

the absence of torsion; this variable is in the x axis. In the y axis, the ultimate torsion Tu 

is normalized with respect to the capacity of concrete to resist torsion under pure torsion; 

this variable is plotted in the y axis.  

A straight line is joined from the point where Tu = Tc to a point where Vu = Vc. Thus, the 

two extreme points correspond to the cases of pure torsion, and shear in absence of 

torsion, respectively. When both of them occur, the capacity is reduced base along this 

straight line and this is a linear interaction. Thus, if the demand is somewhere within this 

straight line, in the green area, then the section will be safe; if the demand lies outside the 

interaction line, then it will be unsafe. 
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The interaction equation is given as follows:  

Tu/Tc + Vu/Vc = 1  

This is a linear interaction equation. It is the plot of the straight line that joins the two 

points in the axes, as we had seen in the graph. From this linear interaction, we are 

calculation the capacity of concrete to resist torsion and shear, when both torsion and 

shear are acting. 
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In this expression of the interaction equation: Tu is the applied torsion at ultimate; Vu is 

the applied shear at ultimate; Tc is the capacity of concrete under pure torsion; Vc is the 

capacity of concrete under shear. 
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Based on the interaction equation, the reduced capacity of concrete to resist torsion, 

which is denoted as Tc1, is given below:  



Tc1 = Tc (e/e+ec)  

The code recommends to limit Tc1 to half of the ultimate torsional moment. Thus, the 

concrete should not carry more than half of the torsional moment that acts in a beam. 
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The parameters e and ec are the ratios of torsion and shear demands at ultimate, and 

concrete capacities, respectively.  

e = Tu/Vu, which is the ratio of the torsion and shear demands at ultimate.  

ec = Tc/Vc, which is the ratio of the concrete capacities to resist torsion and shear. 

These are the two variables, which are used to write the expressions of the capacities of 

concrete to resist torsion and shear in a compact way. 
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The reduced capacity of concrete to resist shear is given below. 

Vc1 = Vc (ec/e+ec).  
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The transverse reinforcement is provided in the form of closed stirrups enclosing the 

corner longitudinal bars; this is the important requirement for the design for torsion. The 

torsion generates a circulatory shear, and hence the stirrups need to be closed. Open 



stirrup is not adequate for torsional resistance. The amount of transverse reinforcement 

Asv is equal to the higher value determined from two expressions. The first expression is 

based on the skew bending theory. Asv is given in terms of the equivalent moment 

generated due to torsion, which is denoted as Mt.  

Asv = Mt sv/1.5b1d1fy 
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In this expression, b1 is the distance between the corner longitudinal bars along the short 

side; d1 is the distance between the corner longitudinal bars along the long side. Thus, for 

the rectangular section b1 is the shorter distance between the longitudinal bars and d1 is 

the larger distance between the longitudinal bars. 
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Mt is the additional bending moment from torsion; sv is the spacing of the stirrups; fy is 

the characteristic yield stress of the stirrups. The grade of steel for stirrups should be 

restricted to Fe 415 or lower to have adequate ductility in the stirrups. Thus, we have 

found one expression of the transverse reinforcement, which is in terms of the equivalent 

moment due to torsion, and this is derived from the skew bending theory. 
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The second expression of Asv is based on a total shear requirement.  

Asv = Av + 2At  

The first component Av corresponds to the flexural shear to be carried by the stirrups, 

which we can calculate from conventional shear design. The second component At 

corresponds to the torsional shear to be carried by the stirrups. The factor 2 in front of At 

considers that the torsional shear is additive to flexural shear in both the legs. Let us try to 

understand this equation for different types of sections. 
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The following sketch shows the addition of flexural and torsional shears for a hollow 

section. Due to the flexural shear Vu there is vertically downward shear occurring in both 

the legs of the hollow section, whereas due to torsion there is a vertically downward shear 

in the left web and vertically opposite shear in the right web. Thus, when both shear and 

torsion are occurring then the left web will see a higher shear as compare to the value 

generated from Vu.  Similarly, the right web will observe a lower shear compared to the 

value generated due to Vu. 
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The two shears are additive in the left web whereas they are subtractive in the right web. 

Since, the stirrups have equal areas in the two legs, the torsional shear is considered 

additive to flexural shear in both the legs. 

In the expression Asv = Av + 2At, the assumption is that the torsional shear is additive to 

the flexural shear in both the webs of a hollow section. This is necessary because we are 

providing same area of the torsional reinforcement in the two webs of the hollow section. 
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In solid sections, the two shears are not additive throughout the web. The flexural shear is 

distributed and acts downwards in the web, whereas the torsional shear is restricted in the 

peripheral shear flow zone; in one side it acts downwards, in the other side it acts 

upwards. In the central region, the shear is insignificant due to torsion. Thus, when shear 

and torsion act together they are not additive throughout the width of the web. 
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Thus for solid sections, the expression of Asv is conservative. If the breadth of the web is 

large, the two shears can be designed separately. The stirrups for flexural shear can be 

distributed throughout the interior of the web. For torsional shear, closed stirrups can be 

provided in the peripheral shear flow zone. This is adopted to avoid clustering of the 

transverse reinforcement. 
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The expressions of Av and At are derived from the truss analogy for the ultimate limit 

state. Av is calculated from the shear that will be generated in the stirrups which is (Vu ‒ 

Vc1), where Vu is the shear demand and Vc1 is the concrete capacity.  

Av = (Vu ‒ Vc1)sv/0.87fyd1, where d1 is the larger depth between the longitudinal bars.  

In the expression for At, Tu is the torsion demand, Tc1 is the capacity of concrete to resist 

torsion, (Tu ‒ Tc1) is the torsion to be resisted by the transverse steel. 

At = (Tu ‒ Tc1)sv/0.87 fy b1 d1 



This expression is derived from the space truss analogy for torsion. Thus, once we know 

Av and At we are combining them to get the value of Asv, which is provided in the form of 

closed stirrups. Otherwise for a solid section, we can design for Av and At separately. 

(Refer Slide Time 51:25) 

 

The transverse steel should satisfy a minimum requirement. The minimum amount of 

transverse reinforcement is same as that of shear and it is given by the following 

equation:  

Asv/bsv = 0.4/0.87fy  

This equation considers a minimum stress in the transverse reinforcement equal to 0.4 

N/mm2. The minimum amount of transverse reinforcement needs to be provided to avoid 

any diagonal tension failure due to the combined effect of torsion and shear. 
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In today’s lecture, we first studied the background of the design equations for the limit 

state of collapse for torsion. We identified three modes of failure for a beam under 

combined flexure and torsion. Corresponding to each mode of failure, an equivalent 

ultimate bending moment was defined based on the skew bending theory.  

In Mode 1 failure, the equivalent ultimate moment acts in the same direction as that of 

the flexural moment, but the magnitude of the equivalent moment is higher than that of 

the flexural moment. We design the longitudinal reinforcement for the equivalent 

moment, which is given as Me1.  

If the torsional effect is large, which is measured as Mt greater than Mu, we should also 

design for the transverse bending and negative bending. The transverse bending is 

modeled by the expression Me3, and for that there is compression in one side face and 

tension in the other side face. The designed steel is for one side face and we provide a 

symmetric amount of steel in the other side face. For the negative bending moment, the 

equivalent moment Me2 acts in an opposite sense to that flexural moment. Thus, if the 

flexural moment causes compression at the top, then the equivalent moment will cause 

compression at the bottom, and we design for the steel at the top.  



Next, we moved on to the design of the transverse reinforcement. The area of transverse 

reinforcement is calculated based on two concepts, whichever gives the higher value is 

selected. The first expression is based on the skew bending theory, and is related with the 

equivalent torsional moment Mt. The second expression is calculated from the 

requirement of total shear. Before we design the transverse reinforcement, we should 

know the capacities of concrete to resist torsion and shear. The capacities get reduced in 

presence of torsion and shear acting together. The expressions are based on a linear 

interaction equation for shear and torsion.  

Once we know the capacities of concrete, we can deduct them from the torsion and shear 

demands to get the forces to be carried by the steel. Based on truss analogies, the 

expressions of Av and At are derived. Then we get the total amount of transverse 

reinforcement that is required for torsion design. 

In the next class, we will be looking into the design steps.  

Thank you  


