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Module - 5: Analysis and Design for Shear and Torsion
Lecture-25: Design for Shear (Part 2)

Welcome back to prestressed concrete structures. This is the third lecture of Module 5 on

analysis and design for shear and torsion.
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Module 5-¢ (3" Hour)

Design for Shear
General Comments
Design Steps
Design of Stirrups for Flange

In this lecture, we shall study the design for shear. First, we shall study some general
comments. Next, we shall move on to the design steps. Then, we shall study the design of

stirrups for flange.
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Design for Shear

Calculation of Shear Demand

The cbjective of design is to provide uitimate resistance
for shear [V ;) greater than the shear demand under
ubtimate loads (V).

General comments: The objective of design is to provide ultimate resistance for shear,
which we shall denote as Vg, greater than the selected shear demand under the ultimate

loads, which we shall denote as V.
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Design for Shear

Calculation of Shear Demand

For simply supported prestressed beaams, the maximum
shear near the support is given by the beam theory, For

comtinuous prestressed beams, a rigorous analysis can
b done by the moment distribution method.

The shear coeiMclents in Table 13 of 15:456 - 2000 can
b used under conditlons ol uniform cross-section of
the beams, uniform loads and similar lengths of span.

Thus, first we need to know the shear demand V,. For simply supported prestressed

beams, the maximum shear near the support is given by the beam theory. For continuous



prestressed beams, a rigorous analysis can be done by the moment distribution method.
Or else, the shear coefficients of Table 13 of IS: 456-2000 can be used under conditions
of uniform cross-section of the beams, uniform loads, and similar lengths of span. Thus,
at the beginning, we have to do a structural analysis to get the design ultimate shear.
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Design for Shear

Dasign of Stirmups

The design s done for the critical section. The critical
section |s defined in Clause 22.6.2 of 15:456 - 2000. In
gencral cases, the lace of the support is considered as the
critical section.

When the reaction at the support infroduces compression
at the end of the beam, the critical section can be selected
at a distance effective depth from the face of the support.

The design is done for the critical section. The critical section is defined in Clause 22.6.2
of 1S: 456-2000. In general cases, the face of the support is considered as the critical
section. Once we traverse from the middle of the beam towards the support, for a
uniformly distributed load, the shear increases. Now, the shear at the face of the support
can be used for the design, because once we enter the support, then the depth of the
section is large. Hence, we do not expect a shear failure.

When the reaction at the support introduces compression at the end of the beam, the
critical section can be selected at a distance effective depth from the face of the support.
The reason is, when the concrete is under compression the strength of concrete to resist
shear increases. A simple way to consider the increase in the shear capacity of concrete is

to design for a section, which is at a distance effective depth from the face of the support.
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Design for Shear

Design of Stirmups

The effective depth is selected as the greater of d, or o
ﬂ'n = dpih of CGS from the exireme compression fiber
o, =depth of centroid of non-prestressed stoed.

Since the CGS |s at a higher location near the support, the
effective depth will be equal to d,.

The effective depth is selected as the greater of d, or ds, where d, is the depth of CGS
from the extreme compression fiber, and ds is depth of centroid of non-prestressed steel.
Since the CGS is at a higher location near the support, the effective depth will be equal to
ds

We have two depths for the two types of steel. One is for the prestressing steel and
another is for the non-prestressed steel. Usually, at the supports, the depth of the non-
prestressed steel is larger than the depth of the prestressing steel. Hence, the effective
depth can be considered as the depth of the non-prestressed steel. To vary the spacing of

stirrups along the span, other sections may be selected for design.
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Design for Shear

Dursign of Stirrups

To vary the spacing of stirrups along the span, other
sections may be selecled lor design. Usually the following
scheme is selected for beams under uniform load.

1) Close spacing for quarter of the span adjacent to the
SUpports,

Z) Wide spacing lor half of the span at the middle.

For large beams, more variation of spacing may b selocted.

Usually, the following scheme is selected for beams under uniform load: close spacing
for quarter of the span adjacent to the supports, wide spacing for half of the span at the
middle. For large beams, more variation of spacing may be selected. Let us understand

this from the following sketch.
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Design for Shear

Design of Stirmups
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Under a distributed load, the shear varies along the length of the span. We may vary the
spacing of stirrups to economize the amount of steel used for stirrups. For a beam with a
uniformly distributed load, the convention is that to provide a close spacing of the
stirrups in the two ends of the beam; the lengths of the two ends are about the quarter of
the span. For the middle half, the spacing of the stirrups is wider than the spacing at the
two ends. In the above sketch, the two ends have closer spacing of stirrups; whereas, the
middle half of the beam has wider spacing of stirrups. Of course the spacing should
satisfy the maximum spacing requirement. When we design the stirrups in this fashion,
we have two design sections; one at a distance d from the face of the support, and another

at a distance L/4 from the centre line of the support, where L is the span of the beam.
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Design for Shear

Design of Stirrups

The following quantities are known.
¥, = tactored shear at utimate loads. This s calculated
from Vi, and V,,.

Wy = shear due fo dead load
¥, = shear due to live load.

After 3 member is designed for Mexure, the sell-weight is
known, It is included as doad load.

For the design of stirrups, the following quantities are known: first, V, which is the
factored shear at ultimate loads. This is calculated from Vp_ and V.. Vp_ is the shear
due to the dead load and V| is the shear due to live load. After a member is designed for
flexure, the self-weight is known and it is included as dead load. Thus, for gravity load
design, once we know the shear due to dead load and live load, we can calculate the

ultimate shear due to the factored loads by placing the suitable load factors.
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Design for Shear

Design of Stirmups

The grade of concrete is known from Rexure design. The
grade of steed for stirrups is selected before the design for
shear. As peri8: 1343 - 1980, the grade of stesd is limibed

o Fe 416. X

If we have other types of loads such as lateral loads, then we have to calculate V, as per
the load combinations specified in 1S: 456-2000. The grade of concrete is known from
flexure design. The grade of steel for stirrups is selected before the design for shear. As

per IS: 1343-1980, the grade of steel is limited to Fe 415.

Thus, before we embark into the shear design, we know the material properties. The
grade of steel is limited such that there is adequate ductility in the stirrups. With this, we

start to calculate the unknown quantities.
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Design for Shear

Design of Stirrups
The following quantities are unknown.

V. = shear carried by concreto
A__ = total area of the legs of stirrups within a distance &
s, = spacing of stirrups.

The following quantities are unknown: V. which is the shear carried by concrete, Ay IS
the total area of the legs of stirrups within a distance sy, and sy is the spacing of the

stirrups. Next, we are moving on to the steps for shear design of a member.
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Design for Shear
Design Sleps

The steps for designing stirrups along the length of a
beam ane given below.

1) Calculate V, at the critical location.

2) Check (V! bd) < r, .. The valueof . Is given in
Table T, 15:1343 - 1980, If it is not satisfied, increase
thi depth of the section.

Hare, b is the breadth of the web (b_) and d, is larger of
o, and d,.

The steps for designing stirrups along the length of a beam are given below: first,

calculate V, at the critical location. This can be calculated from the structural analysis or



by using coefficients given in IS: 456. Second, check V,/bd; to be less than t¢max. The
value of t¢max IS given in Table 7, IS: 1343-1980. If it is not satisfied, increase the depth
of the section. Here, b is the breadth of the web which we had earlier denoted as by, and
de is larger of d, and ds, which are the depths for the prestressing steel and the non-

prestressed steel, respectively.
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Fig. Sc-1 Variation of mamimum shear siress in concrele

As was mentioned earlier, the design for shear involves not only the design of stirrups,
but also makes sure that the different modes of shear failure are restricted. The purpose of
checking the maximum shear stress to be within a certain value is to ensure that the
concrete does not crush under the shear compression failure. Hence, we need to make
sure that the average shear stress at the critical location, which is given as V,/bd; is less
than the maximum permissible shear stress, which is t.max given in the code. The values
of 1. max are given for different grades of concrete. If we plot the values, then we observe
that there is an increase of tcmax from Grade 30 to Grade 60 concrete, but roughly, the

value of ¢ max is around 4 N/mm?.
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Design for Shear

Design Sleps

3) Calculate V¥, from the lower of ¥V and V.

V., =0.6ThD. f + 081 f,

: r n
V. =/ 1-0.55 = r b+ M,

! | ]

- 0.1bd, 1,

The third step is to calculate V. from the lower of V¢ and V. In our previous lecture, we
studied that there are two expressions of capacity of concrete to resist shear. One is for
uncracked section, which is denoted as V. and another is for a cracked section, which is
denoted as V.. Usually, near the supports V¢, will govern the value of V. whereas near
the middle of the span, V¢ will govern the value of V.. Whichever is lower, out of Vg
and V., that we are selecting as V..

Vo is given as 0.67bD V(f + 0.8 feoft), where D is the total depth, f; is the direct tensile
strength of concrete, and f¢, is the prestress at the level of CGC. We have 0.8 times the

prestress to be on the conservative side.

V. has two terms: the first term on the left represents the shear required to change a
flexural crack to a flexure shear crack. It is dependent on the value of . and the amount
of prestressing force. The second term is the shear that corresponds to the moment
causing a flexural crack at that critical location. The value of V¢ need not be less than
0.1bd V.
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Design for Shear

Design Sleps
3} Calculate V, from the lower of ¥V and V__[continued. ..},

In presence of inclined tendons or vertical prestress,

the vertical component of the prestressing force (V)
can be added to V.

In presence of inclined tendons or vertical prestress, the vertical component of the
prestressing force, which is denoted as V, can be added to V. Thus, the code allows us
to take advantage of the curved profile of a tendon in a post-tensioned beam because the
vertical component of the prestressing force adds up to the shear resistance and it can be
added to the contribution from concrete. The code says that V, can be added to Vqy,
which is expression for uncracked concrete, but V, cannot be added to V¢, which is an

expression for cracked concrete. This is because after cracking, the effect of prestressing

is not significant.
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Design for Shear

Design Slops

4) Caleulate A, | 5,

WV 12<WV, <V, minimum amount of stirrups is

satisfactory. The minimum amount of stirrups s given
by the following eguation.

A 0.4

bs, 0.7,

The fourth step is to calculate Aq/sy, where A, is the area of the stirrups and s, is the
spacing. If V, is less than V. but greater than V/2, that is the shear demand is less than
the shear capacity of concrete, but is greater than half the capacity of concrete, then, the
minimum amount of stirrups needs to be provided. The minimum amount of stirrups is

given by the following equation.
As/bs, = 0.4/0.87f,

This equation is based on the consideration that the stirrups must have a minimum stress
of 0.4 N/mm?.
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Design for Shear

Design Steps

Another provision for minimum amount of stirmps (A
is as follows.

In presence af dynamic load,
Atl‘_mll - n-m Aiﬁ
=0.2%A_,, when h 5 4b_

With high sirength hars,
A= 0I%A,,
=0,15% A_,, when hs4b_

Another provision for minimum amount of stirrups, which we shall denote as Ay min IS as
follows: in presence of dynamic load, Asymin = 0.3% Awh Or Agymin = 0.2% Awn When the
total height h is less than or equal to 4b,,. With high strength bars, Asymin = 0.2% Awn OF
Asvmin = 0.15% Awn, When h is less than or equal to 4b,,.
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Design for Shear
Design Steps

In absence of d?l‘II.I'I'HI: I, 'lihﬂﬂ > l.-ﬂ'
A =01%A,

i

There is no specification for A____ when h <




In absence of dynamic load, when h is greater than 4by, Asymin = 0.1% Awh. There is no
specification for Asy min, When h is less than or equal to 4b,,. Thus, the second requirement
of minimum amount of stirrups is based on the horizontal area of the web. The expression

for the minimum amount of stirrups is given as a certain percentage of that area.

(Refer Slide Time 19:41)

Design for Shear

Design Sleps

4) Calculate A, | 5, [continued...).

Y, =W, the amount of stirrups s based on the
foliowing equation.

A, W-¥
s, 08714,

If V, is greater than V., that means the shear demand exceeds the shear capacity of

concrete, the amount of stirrups is based on the following equation.

ASV/SV = (Vu - Vc)/0.87fydt

Thus, this expression is used to calculate the amount of stirrups when the shear demand

exceeds the shear capacity of concrete. This expression is based on the truss analogy for

the study of shear.
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Design for Shear

Design Stops

5] Calculate maximum spacing and round it off to a
rrultiple of 10 mm.

The maximum spacing s 0.75d, or 4b_, whichever is
smalber.

When V, |s larger than 1.8V, the maximum spacing (s
0.5d, "

The fifth step is to calculate maximum spacing and round it off to the multiple of 10 mm.
The maximum spacing is 0.75d; or 4b,,, whichever is smaller. When V, is larger than 1.8

V., the maximum spacing is 0.5d.

The purpose of having a maximum spacing is that, a diagonal crack should be intercepted
by at least one stirrup. If the shear demand is high, then the maximum spacing is further
restricted.

Sixth is to calculate the size and number of legs of the stirrups based on the amount
required. We have to do the proper detailing of the stirrups. We have to provide standard
hooks at the ends. We have to make sure that there are longitudinal bars at their bends.
This will complete the shear design at the critical location.

Repeat the calculations for other locations of the beam, if the spacing of the stirrups
needs to be varied. As we had mentioned earlier, to economize the amount of stirrups, we
may vary the spacing along the length of the beam. In such a situation, we need to repeat
design steps 1 to 6 for the other selected locations. It is left up to the designer to select the
number of stirrup spacings along a beam. A simple convention has been suggested here,
to have a close spacing at the two ends and a wider spacing at the central half of the

beam.



There is another consideration, which is the design of stirrups for flanges. For a flanged
section, although the web carries the vertical shear stress, there is shear stress in the
flanges due to the effect of shear lag. Horizontal reinforcement in the form of a single leg,
or closed stirrups are provided in the flanges. The effect of shear lag can be explained
based on theory of elasticity. When a beam bends, the total flange does not bend equally
throughout the width of the flange. There is a shear lag effect, that means portions of the
flange which are closer to the web have higher flexural stress; whereas, the portions away
from the web have lower stress. This variation of the normal stress in the flange generates

an in-plane shear stress within the flange, which is called the *shear-lag effect’.

Stirrups need to be provided in the flanges for the shear lag effect. In conventional
reinforced concrete design, the transverse reinforcement in the slabs is adequate enough
for the shear-lag effect. But for prestressed concrete beams, we need to provide separate

stirrups in the flanges to take care of the shear-lag effect.
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Design for Shear

Design of Stirrups for Flanges

The sketches show the following quantities in an |-
secfion (with llanges of constant widths) based on
elastic analysis.,

1) Shear flow (shear stress = width)

Z) Variation of shear siress in a lange (r,)
J) Shear forces in flanges (V]

4) Ubtimate verthical shear force (V]

The sketches below show the following quantities in an I-section (with flanges of
constant widths) based on elastic analysis. We shall see the shear flow diagram. Shear
flow refers to the product of the shear stress times the width of the flange or the web. We

shall see the variation of shear stress in the flange which will be represented as 1. We



shall see the shear force in the flanges, which will be represented as V:. We shall
calculate the ultimate vertical shear force, which is represented as V. In this sketch, on
the left hand side, we see the shear flow diagram in an I-section with constant width of
the web and constant depth of the flange.
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Design for Shear

Design of Stirrups for Flanges

Ey U sman

The shear flow increases from the end and it becomes maximum at the centre of the
flange. Correspondingly, the shear stress which is the shear flow divided by the width of
the flange increases from zero to a maximum value at the centre of the flange. On the
other side of the flange, the variation is similar but the sign is in opposite direction. Then,
the shear flow goes down vertically and it spreads out in the bottom flange in the same
way as we have seen in the top flange. Vs is the shear force acting in the flange, V, is the
vertical shear which is acting in the section. We shall calculate V; from the linear
variation of the shear stress in the flange. Here, by is the breadth of the flange and Ds is
the depth of the flange.
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Design for Shear

Design of Stirmrups for Flanges

The design shear force in a flange is given as follows.

v, -} D, [5e-1)

2 2

Here,

b, = breadth of the flange

O, = depth of the Nange

Ty g = TTULEIMYUM Shear stress in the flange.

The design shear force in a flange is given as follows.

Vf = (Tf,maX/Z) (bef/Z)

This expression is obtained from the average value of 1; and half the area of the flange.
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Design for Shear

Design of Stirrups for Flanges

The maximum shear siress in the flange is given as
folbows.

L
el (5¢-2)

-
skl T T

Here,

V', = ultimate vertical shear force
I'= moment of inertia of the section.




Next, we have the expression of the shear stress. Based on elastic analysis, the maximum

shear stress in the flange is given as follows.
Tf,max — VuAlY/ IDys.
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Design for Shear

Design of Stirrups for Flanges
A, = area of haif of the flange

¥ = distance of centroid of half of the flange from the
neutral axis at CGC.

¥

Here, V, is the ultimate vertical shear force, | is the moment of inertia of the section, A;
is area of half of the flange, Y is the distance of centroid of half of the flange from the
neutral axis at CGC. The above expression is analogous to the expression of shear stress
at a level of the web. Thus, we calculate tfmax from V, . From t;max We can calculate Vs,

and we can design the stirrups in the flange for Vz.
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Design for Shear
Design of Stirrups for Flanges
The amotnt of horizontal reinforcemant in the Manga

(A, is calculated from V.

v,
- (5e-3)

a
™ OETE

Thee yield stress of the reinforcement |s denoted as £,

The amount of horizontal reinforcement in the flange, which we shall denote as Aqs, IS

calculated from Vs as follows.
Asvf = Vf/0.87fy

Here, we are not considering any contribution of the concrete. Given the maximum
permissible stress in the stirrups, we are able to find out the amount of stirrups that is
needed in the flanges. The yield stress of the reinforcement is denoted as fy.

Next, let us understand the design of stirrups with the help of an example.
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Example Sc-1

Design the stirrupa for the Type 1 prestressed beam with
the following section (location of tendons shown at mid

span).

110 T-wire stramds
with P, = 826 kN

Longitudinal reinforcement of 12 mm diametar is
providied 1o hold the stirmips.

Design the stirrups for the Type 1 prestressed beam with the following section. The
location of tendons is shown at the mid-span of the beam. This is a symmetric | section;
the breadth of the flange is 435 mm, the depth is 100 mm, the width of the web is 100
mm, the prestressing is done by 10 number of 7-wire strands with an effective prestress
of P, = 826 kN. They are provided in two ducts with the CGS located at 290 mm below
the CGC. This is the section we had designed earlier, under the design of Type 1 section.

Longitudinal reinforcement of 12 mm diameter bars is provided to hold the stirrups.



(Refer Slide Time 32:15)

Example 5c-1 (continued...)

The properties of the sections ane a8 follows.

A = 159,000 mm?,

I=1.TB08 = 10" mm*

A_ =980 mm?

Tha grade of concrete is M 35 and the characteristic
strength of the prestressing steel is 1470 Mmm®. The

affective prestress (4 BE0 Nimime,

The uniformiy distributed load including self weight, is
W= 30,2 kiNim.

The span of the beam (L) is 10.T m. The width of the
bearings (s 400 mm. The clear cover to longitudinal
reinforcemeant is 30 mm.

The properties of the sections are as follows:

Area A = 159,000 mm? moment of inertia | = 1.7808 x 10" mm?* area of the
prestressing steel A, = 960 mm?, the grade of concrete is M 35 and the characteristic
strength of the prestressing steel fy = 1470 N/mm?. The effective prestress foe = 860
N/mm?. The uniformly distributed load including the self-weight is wr = 30.2 kN/m. The
span of the beam L = 10.7 m, the width of the bearings is 400 mm. The clear cover to

longitudinal reinforcement is 30 mm.

Thus, the variables after the flexure design of the beam are given, and now we are

designing the stirrups for this beam.
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Solution

1) Caiculate V, at the face of the support [neglecting the
effect of compression in concrete),

\r_-_i.a-.-,i"';-;'i

2|

(10.7 )
=1.5= 302« -0
|2
= 2333 kN

Hera, X denctes half of the width of bearing. ¥ = 200 mm.

The first step is to calculate the shear demand V, at the critical section. Here, neglecting
the effect of compression in concrete, we are calculating V, at the face of the support.
The expression of V, is equal to 1.5 x wr (L/2 — x), where x is the distance of the face of
the support from the centre-line of the support. Since the supports are 400 mm wide, the

value of x is half of 400 mm, which is 200 mm.

Once we substitute the values of wr, L, and x in the expression, we get V, = 1.5 x 30.2 x
(10.7/ 2 — 0.2) = 233.3 kN. Thus, the shear demand for this beam is 233.3 kN at the

critical section.
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Salution

2) Check [V, | bd) < r, .-

Effective depth d, = total depth - cover — diameter of
stirrups — % diameter of longitudinal bar.

Assume the diameter of Stirfups 1o be B mim.

- d -|920-30-8 ;.11':

BTE mim

Next, we are checking the average shear stress to be within the maximum permissible
value. To do that, we need to calculate the effective depth d; which will be governed by
the depth of the non-prestressed steel. We are estimating the effective depth equal to the
total depth minus cover, minus diameter of the stirrups, minus half the diameter of the
longitudinal bars. The cover is 30mm. We are assuming the diameter of the stirrups to be
8 mm. The diameter of the longitudinal bars is given as 12 mm. Thus, d;=920-30-8 —
12/2 = 876 mm.
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Salution

2) Check [V, / bd)) < r, . [continued. . ).

v,  233.3.10°
b_d, 100876

2.7 Nimm'

Ty e 1OF M 3515 3T Nimim®, Hence, (V,/ bd) < ..

For calculating the average shear stress at the critical section, we are substituting b = by, =
100 mm. Thus, V/byd; = 233.3 x 10° / 100 x 876 = 2.7 N/mm?. For M 35, Tcmax = 3.7
N/mm?, which is available from Table 7 in the Code. Thus, the average shear stress is

less than t¢ max. Hence, the depth of the section is adequate.
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Solistion
1) Calculate V_ from the lower of V__ and V.

W

]

0.67bD, f," + 0.871,

Here,

f, - 0.24.35

1.42 Bimm’




Third, calculate V. from the lower of V¢, and V. First, we estimate the cracking stress f;
= 0.24Vfy = 0.24V35 = 1.42 N/mm?. This is the direct tensile strength of the concrete.
The other term we are estimating is fcp, which is the compressive stress in concrete at the
level of the CGC. We are considering the numeric value, fo, = P/A = 826 x 10° / 159,000
= 5.19 N/mm? at the level of CGC.
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Salution

1) Caleulate V. from the lower of V_, and V,_ (continued...),

v, = 08780, 1 081

OLET « 1009200, 1.42° + 0.8 5,192 1.42

1734 kN

Substituting the values b = 100 mm, D = 920 mm, we get V¢ = 173.4 kN. We can add
the vertical component of the prestressing force to V.
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Saluetion
3] Caleulate V_ from the lower of V_, and V_ (continued...).

The vertical component of the presiressing force can be
found out from the equation of the parabolic tendon.

y - Tma gL x)

Since this is a post-tensioned beam with a parabolic tendon, we are taking advantage of
the vertical component of the prestressing force. The vertical component of the

prestressing force can be found out from the equation of the parabolic tendon.
y = (4yml L) X (L—X).

Here, yn is the vertical displacement of the CGS at mid-span, from the ends. To know the
vertical component of the prestressing force, we have to find out the slope of the

parabolic profile. The following is the expression of the slope at a point.

tan 6 = dy/dx = (4ym/ L?) (L — 2x)
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Salution

3) Calculate V, from the lower of V,_, and V., (continued. ..).

Atx=0.2 r;n.p=20n‘m. diyldy = 0,105 and & = 6.0™

" ¥, = P.sing
826 - 0.104

BE.OkN

V, +V, =173.4+ 86.0

259.4 kN

At x = 0.2 m, y =20 mm, dy/dx = 0.105 and 6 = 6°. The vertical component of the
prestressing force Vi, = Pe sin 6 = 826 x 0.104 = 86.0 kKN. Next, Vo + V, =173.4 + 86.0 =
259.4 kN. Thus, we have found that the shear capacity of concrete is equal to 259.4 kN.
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Salution

3) Calculate V_ from the lower of V_, and V. [continued...).

[ .l
Vo = 1-0.55 ™ v ba, + m, Y
I. r.i J "u

860 0.58

IIIr-'
rJ-

Second, we are calculating V., which is the shear to change a flexural crack to a flexure

shear crack. In the expression of V., we are first calculating foe/fpok, the ratio of the



effective prestress divided by the characteristic strength of the steel, which is equal to
860/1470 = 0.58.

(Refer Slide Time 42:57)

Salition
1) Caleulate V_ from the lower of V_ and V_ |(continued...).

1004 «960 "
Here, 100960 P

bd 100480 = 480 + 20

20 = 480 mm

From Table &, for M 35 concrete, r, = 0.86 Nimm?,

To calculate 7, we need to know the percentage of prestressing steel provided, which is
given as 100Ay/bd. The depth of the CGS at the critical location (d) is calculated as the
depth of the CGC, which is 460, plus the displacement of CGS from the CGC at the
critical location, which is given as y. Thus, d = 460 + 20 = 480 mm. The percentage of
the prestressing steel is 100 x 960/(100 x 480) = 2.0. From Table 6 for M 35 concrete, we

can find out t. = 0.86 N/mm?.



(Refer Slide Time 44:23)

Salution

3) Cadculate V, from the lower of V_, and V., (continued...).

i
M, - 087,
o™

L
o A r"r

826-10" 826-10"-20

« 20
159,000 1.7808-10"

519-0.02

§.21 Nfmm”

Next, we are calculating the term My, which is the moment that generates a flexural crack
at the location of the design for shear. Mo = 0.8fyl/y; this is equal to 80% of the moment
that decompresses the CGS at the location of our study. The value of fy is the
compressive stress in the concrete at the level of the CGS, which is given as — PJ/A —
(Pey/l)y. Here, y is the eccentricity of the CGS with respect to CGC. P, = 826 kN, A =
159,000 mm?, y = 20 mm and | = 1.7808 x 10' mm?*. Once we substitute the values, we

find f,r = — 5.21 N/mm”.



(Refer Slide Time 46:00)

Salution

1) Calculate V, from the lower of V,, and V_, (continued...).

1.7808 10"
i

M, -0.8:5.21

IT1.210"Nmm

IT11.2 kNm

From this, we calculate My = 0.8 x 5.21 x 1.7808 x 10'%20 = 3711.2 kNm.

(Refer Slide Time 46:45)

Salistion
1) Caleulate V_ from the lower of V_ and V_ (continued...).

At the critical section,

M, 1.5-,:[1_ x)

1.8 0.2 EI:_‘ [10.7 - 0.2}

47.6 kNm

We have to also calculate M, at the critical section. M, at the critical section is given as

1.5w; (X/2)(L — x). Once we substitute the values of wy, X, and L, we get M, = 47.6 KNm.



(Refer Slide Time 47:40)

Salution

3) Calculate V, from the lower of V,_, and V., (continued. ..).

BB 233.3
=100=878 + JIT11.2x=
o’ AT.6

V. =01 ﬂ.!!-ﬂ.il]-—-':

51.3-18204.8

(1BZ5E.0 KN

We are substituting the values of the calculated variables.
Ve = (1-0.55 x 0.58) x (0.86/10%) x 100 x 876 + 3711.2 x 233.3/47.6 = 18256 kN.

Here, V, = 233.3 kN and M, = 47.6 kNm at the critical location. V. is substantially high
because of the second term. This means, the shear corresponding to a moment that will
generate a flexural crack at the critical section, which is at the face of the support, is
extremely high. We do not expect to have a flexural crack near the face of the support.
Since V. is the lower of V¢ and V,, we select V¢ = V¢ = 259.4 kN.



(Refer Slide Time 48:24)

Salution

J) Calculate V. from the lower of W and V. (continued...).

The governing value of V_is 259.4 kN.
= 1.|"u < 'h"r ]

Thus we observe that at the face of the support, V¢ which is the shear required to
generate a web shear crack is much lower than the shear required to generate a flexural
crack and then to change that to a flexure shear crack. Thus near the support, the capacity
of concrete is governed by the web shear cracking and is given as 259.4 KN. We observe
that for this particular section, the shear demand V,, given as 232 kN is in fact less than
V..

(Refer Slide Time 49:22)

Salution
4) Caleulate A__ I 5_,
Provide minimum sheel.

A, 04
b.s, 0871,




The fourth step is to calculate Aq/s,. Since V, < V¢, we are providing minimum amount

of stirrups, which is given by the expression As,/bw Sy = 0.4/0.871,.

(Refer Slide Time 49:50)

Salistion

§) Calculate maximum spacing
8, =0.75 d, = 0.75 =« 876 = 656 mm
8 =d4b_=d4 «100 = 400 mm

Select 5, = 400 mm.

Next, we are calculating the maximum spacing. There are two expressions of maximum
spacing. When V, is not substantially high, s, = 75% of d; = 0.75 x 876 = 656 mm, or s,
= 4b,, = 4 x 100 = 400 mm. Out of this, we are selecting the lower one. Hence, s, = 400

mm.



(Refer Slide Time 50:30)

Salution

§) Calculate the size and number of legs of the stirrups

Select I, = 250 Mimm?.
o4

A 100400 =
0.87 = 250

738 mm’
Provide 2 legged stirmups of diameter § mm.
LI L

100,86 mm’

The sixth step is to calculate the size and number of legs of the stirrups. Select f, = 250
N/mm?. Ag, = busy x 0.4/0.87fy = 100 x 400 x 0.4/(0.87 x 250) = 73.6 mm>. Provide two

legged stirrups of diameter 8 mm. Thus, we are providing Ay, = 2 x 50.3 = 100.6 mm>.

(Refer Slide Time 51:32)

Salistion

Check minimum amount of stirrups.

A ~01%A,

0.1
=100 = 400
100

40 mm’

Provided amount of stirrups is langer. O#K.

Provide same spacing of stirrups throughout the span,

There is another provision of minimum amount of stirrups and we are checking that. In

absence of dynamic loads, Asymin = 0.1% of Aun, Where Ay is the area of the horizontal



section of the web in a distance of s,. The area is given as 100 x 400 mm?. From this we
get Agmin = 40 mm?. The provided amount of stirrups, which is 100.6 mm?, is larger than

Asvmin- Hence, it is okay.

Now, in this case, the amount of stirrups that is provided near the support is itself
minimum. Hence, the spacing of the stirrups along the length of the beam is not changed.

(Refer Slide Time 52:54)

Solution
Design of stirrups for Nange

1
A= 50,4,

:du.mu

ZITH0 mm'

¥ = 410 mm

Next, we are designing the stirrups for each flange. First, we are calculating the area of
half of the flange. A; = % bs Df = % x 435 x 100 = 21750 mm?. The distance of the

centroid of A; from CGC is equal to Y = 410 mm.



(Refer Slide Time 53:16)

Solution

Design of stirrups for Tange

!I’_A,r
L ;Dr

Tl E_ 18

2333107 « 29750 = 410
1.7B0E = 10" « 100

1.7 Nirmm”

The expression for the maximum stress in the flange is Trmax = VuALY/IDs = 233.3 x 10° x

21750 x 410/ 1.7808 x 10 x 100 = 1.17 N/mm?.

(Refer Slide Time 54:08)

Solution

Design of stirrups for Nange
Vi =2,
v & 2

1147 435
e

100

12724 N

The shear in the flange, Vi = (timax/2) x (bs/2) x Ds = (1.17/2) x (435/2) x 100 = 12724 N.



(Refer Slide Time 54:35)

Solution

Design of stirrups for fange

X
A = o7,

12724
0.BT = 250

58,0 mm’

The area of the stirrups in the flanges is calculated as Aqs = V/0.87fy, = 12724/(0.87 x
250) = 59.0 mm>.

(Refer Slide Time 55:02)

Salution

Dezign of stirrups for Nange

For minimum steed

0.4
e =4 0L.ATT,

11000 400 = 04
0.87 = 250

73.6 mm*

Provide 2 legged stirmups of diameter & mm.

For minimum steel, Ass = D¢ sy x 0.4/0.87 f,. When we substitute the values of Dy, s, and
fy, we get Aqs = 73.6 mm?. Thus, the minimum value is governing. Hence, we can

provide 2-legged stirrups of 8 mm diameter in each flange.



(Refer Slide Time 55:41)

Solution

Sectlon

A mm dismeter stirmups
@ 400 mm cic

The designed stirrups are shown in the sketch. We are providing the same amount of
stirrup in the web and in the flanges. It is 8 millimeter diameter stirrups at the maximum
spacing, which is 400 mm center-to-center. Note, that for each of the stirrups, we have
provided longitudinal bars at the bends. The selected size of the longitudinal bars is 12

mm, which is greater than 8 mm.

(Refer Slide Time 56:14)

Summary

Design for Shoar
General Comments
Design Steps
Design of Stirrups for Flange




Thus, in today’s lecture, we studied the design for shear. We first studied some general
comments. We also studied how to calculate the shear demand. For simply supported
beams, we can use the beam theory. For continuous beams, we can use the shear

coefficients. Then, we moved on to the design steps.

First, we are selecting the critical location and calculating V,, the shear demand at the
critical location. Next, we are making sure that the average shear stress in the critical
location is less than the maximum permissible value, this is to check shear compression
failure. Once we have done that, we are calculating the shear capacity of the concrete V..
The shear capacity of concrete is given by two expressions: one for the uncracked section
and another for the cracked section. The code recommends evaluating both the
expressions at every location. Once we have evaluated the two expressions, we are
picking up the smaller value of the two as the value for V.. If V, is less than V, then we
should provide minimum amount of stirrups. We have seen the expression for the
minimum amount of stirrups. There is also an additional requirement of minimum

amount of stirrups, which is in terms of the horizontal area of the web.

If V, is greater than V., then we have to design the stirrups. The design is based on the
amount of stress carried by the stirrups. We also learnt about the design of stirrups for
flanges. The flanges are subjected to shear due to the shear lag effect. We saw the
expressions for designing the stirrups in the flanges. We saw the design procedure with
the help of an example. With this, we are ending the analysis and design for shear.

In our next lecture, we shall move on to the analysis and design for torsion.

Thank you.



