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Welcome back to prestressed concrete structures. This is the third lecture of Module 5 on 

analysis and design for shear and torsion. 
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In this lecture, we shall study the design for shear. First, we shall study some general 

comments. Next, we shall move on to the design steps. Then, we shall study the design of 

stirrups for flange. 
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General comments: The objective of design is to provide ultimate resistance for shear, 

which we shall denote as VuR, greater than the selected shear demand under the ultimate 

loads, which we shall denote as Vu. 
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Thus, first we need to know the shear demand Vu. For simply supported prestressed 

beams, the maximum shear near the support is given by the beam theory. For continuous 



prestressed beams, a rigorous analysis can be done by the moment distribution method. 

Or else, the shear coefficients of Table 13 of IS: 456-2000 can be used under conditions 

of uniform cross-section of the beams, uniform loads, and similar lengths of span. Thus, 

at the beginning, we have to do a structural analysis to get the design ultimate shear.  
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The design is done for the critical section. The critical section is defined in Clause 22.6.2 

of IS: 456-2000. In general cases, the face of the support is considered as the critical 

section. Once we traverse from the middle of the beam towards the support, for a 

uniformly distributed load, the shear increases. Now, the shear at the face of the support 

can be used for the design, because once we enter the support, then the depth of the 

section is large. Hence, we do not expect a shear failure. 

When the reaction at the support introduces compression at the end of the beam, the 

critical section can be selected at a distance effective depth from the face of the support. 

The reason is, when the concrete is under compression the strength of concrete to resist 

shear increases. A simple way to consider the increase in the shear capacity of concrete is 

to design for a section, which is at a distance effective depth from the face of the support. 
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The effective depth is selected as the greater of dp or ds, where dp is the depth of CGS 

from the extreme compression fiber, and ds is depth of centroid of non-prestressed steel. 

Since the CGS is at a higher location near the support, the effective depth will be equal to 

ds. 

We have two depths for the two types of steel. One is for the prestressing steel and 

another is for the non-prestressed steel. Usually, at the supports, the depth of the non-

prestressed steel is larger than the depth of the prestressing steel. Hence, the effective 

depth can be considered as the depth of the non-prestressed steel. To vary the spacing of 

stirrups along the span, other sections may be selected for design. 
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Usually, the following scheme is selected for beams under uniform load: close spacing 

for quarter of the span adjacent to the supports, wide spacing for half of the span at the 

middle.  For large beams, more variation of spacing may be selected.  Let us understand 

this from the following sketch. 
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Under a distributed load, the shear varies along the length of the span. We may vary the 

spacing of stirrups to economize the amount of steel used for stirrups. For a beam with a 

uniformly distributed load, the convention is that to provide a close spacing of the 

stirrups in the two ends of the beam; the lengths of the two ends are about the quarter of 

the span.  For the middle half, the spacing of the stirrups is wider than the spacing at the 

two ends. In the above sketch, the two ends have closer spacing of stirrups; whereas, the 

middle half of the beam has wider spacing of stirrups. Of course the spacing should 

satisfy the maximum spacing requirement. When we design the stirrups in this fashion, 

we have two design sections; one at a distance d from the face of the support, and another 

at a distance L/4 from the centre line of the support, where L is the span of the beam. 
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For the design of stirrups, the following quantities are known: first, Vu which is the 

factored shear at ultimate loads. This is calculated from VDL and VLL. VDL is the shear 

due to the dead load and VLL is the shear due to live load. After a member is designed for 

flexure, the self-weight is known and it is included as dead load. Thus, for gravity load 

design, once we know the shear due to dead load and live load, we can calculate the 

ultimate shear due to the factored loads by placing the suitable load factors. 
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If we have other types of loads such as lateral loads, then we have to calculate Vu as per 

the load combinations specified in IS: 456-2000. The grade of concrete is known from 

flexure design. The grade of steel for stirrups is selected before the design for shear. As 

per IS: 1343-1980, the grade of steel is limited to Fe 415. 

Thus, before we embark into the shear design, we know the material properties. The 

grade of steel is limited such that there is adequate ductility in the stirrups. With this, we 

start to calculate the unknown quantities. 
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The following quantities are unknown: Vc which is the shear carried by concrete, Asv is 

the total area of the legs of stirrups within a distance sv, and sv is the spacing of the 

stirrups. Next, we are moving on to the steps for shear design of a member. 
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The steps for designing stirrups along the length of a beam are given below: first, 

calculate Vu at the critical location. This can be calculated from the structural analysis or 



by using coefficients given in IS: 456. Second, check Vu/bdt to be less than τc,max. The 

value of τc,max is given in Table 7, IS: 1343-1980. If it is not satisfied, increase the depth 

of the section. Here, b is the breadth of the web which we had earlier denoted as bw, and 

dt is larger of dp and ds, which are the depths for the prestressing steel and the non-

prestressed steel, respectively. 
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As was mentioned earlier, the design for shear involves not only the design of stirrups, 

but also makes sure that the different modes of shear failure are restricted. The purpose of 

checking the maximum shear stress to be within a certain value is to ensure that the 

concrete does not crush under the shear compression failure. Hence, we need to make 

sure that the average shear stress at the critical location, which is given as Vu/bdt is less 

than the maximum permissible shear stress, which is τc,max given in the code. The values 

of τc,max are given for different grades of concrete. If we plot the values, then we observe 

that there is an increase of τc,max from Grade 30 to Grade 60 concrete, but roughly, the 

value of τc,max is around 4 N/mm2. 
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The third step is to calculate Vc from the lower of Vc0 and Vcr. In our previous lecture, we 

studied that there are two expressions of capacity of concrete to resist shear. One is for 

uncracked section, which is denoted as Vc0 and another is for a cracked section, which is 

denoted as Vcr. Usually, near the supports Vc0 will govern the value of Vc whereas near 

the middle of the span, Vcr will govern the value of Vc. Whichever is lower, out of Vc0 

and Vcr that we are selecting as Vc.  

Vc0 is given as 0.67bD √(ft
2 + 0.8 fcpft), where D is the total depth, ft is the direct tensile 

strength of concrete, and fcp is the prestress at the level of CGC. We have 0.8 times the 

prestress to be on the conservative side.  

Vcr has two terms: the first term on the left represents the shear required to change a 

flexural crack to a flexure shear crack. It is dependent on the value of τc and the amount 

of prestressing force. The second term is the shear that corresponds to the moment 

causing a flexural crack at that critical location. The value of Vcr need not be less than 

0.1bd√fck. 
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In presence of inclined tendons or vertical prestress, the vertical component of the 

prestressing force, which is denoted as Vp can be added to Vc0. Thus, the code allows us 

to take advantage of the curved profile of a tendon in a post-tensioned beam because the 

vertical component of the prestressing force adds up to the shear resistance and it can be 

added to the contribution from concrete. The code says that Vp can be added to Vc0, 

which is expression for uncracked concrete, but Vp cannot be added to Vcr, which is an 

expression for cracked concrete. This is because after cracking, the effect of prestressing 

is not significant. 
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The fourth step is to calculate Asv/sv, where Asv is the area of the stirrups and sv is the 

spacing. If Vu is less than Vc but greater than Vc/2, that is the shear demand is less than 

the shear capacity of concrete, but is greater than half the capacity of concrete, then, the 

minimum amount of stirrups needs to be provided. The minimum amount of stirrups is 

given by the following equation. 

Asv/bsv = 0.4/0.87fy  

This equation is based on the consideration that the stirrups must have a minimum stress 

of 0.4 N/mm2.  
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Another provision for minimum amount of stirrups, which we shall denote as Asv,min is as 

follows: in presence of dynamic load, Asv,min = 0.3% Awh or Asv,min = 0.2% Awh when the 

total height h is less than or equal to 4bw. With high strength bars, Asv,min = 0.2% Awh or 

Asv,min =  0.15% Awh, when h is less than or equal to 4bw. 
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In absence of dynamic load, when h is greater than 4bw, Asv,min = 0.1% Awh. There is no 

specification for Asv,min, when h is less than or equal to 4bw. Thus, the second requirement 

of minimum amount of stirrups is based on the horizontal area of the web. The expression 

for the minimum amount of stirrups is given as a certain percentage of that area. 
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If Vu is greater than Vc, that means the shear demand exceeds the shear capacity of 

concrete, the amount of stirrups is based on the following equation.  

Asv/sv = (Vu ‒ Vc)/0.87fydt  

Thus, this expression is used to calculate the amount of stirrups when the shear demand 

exceeds the shear capacity of concrete. This expression is based on the truss analogy for 

the study of shear.  



 (Refer Slide Time 20:52) 

 

The fifth step is to calculate maximum spacing and round it off to the multiple of 10 mm. 

The maximum spacing is 0.75dt or 4bw, whichever is smaller. When Vu is larger than 1.8 

Vc, the maximum spacing is 0.5dt. 

The purpose of having a maximum spacing is that, a diagonal crack should be intercepted 

by at least one stirrup. If the shear demand is high, then the maximum spacing is further 

restricted. 

Sixth is to calculate the size and number of legs of the stirrups based on the amount 

required. We have to do the proper detailing of the stirrups. We have to provide standard 

hooks at the ends. We have to make sure that there are longitudinal bars at their bends. 

This will complete the shear design at the critical location.  

Repeat the calculations for other locations of the beam, if the spacing of the stirrups 

needs to be varied. As we had mentioned earlier, to economize the amount of stirrups, we 

may vary the spacing along the length of the beam. In such a situation, we need to repeat 

design steps 1 to 6 for the other selected locations. It is left up to the designer to select the 

number of stirrup spacings along a beam. A simple convention has been suggested here, 

to have a close spacing at the two ends and a wider spacing at the central half of the 

beam.  



There is another consideration, which is the design of stirrups for flanges. For a flanged 

section, although the web carries the vertical shear stress, there is shear stress in the 

flanges due to the effect of shear lag. Horizontal reinforcement in the form of a single leg, 

or closed stirrups are provided in the flanges. The effect of shear lag can be explained 

based on theory of elasticity. When a beam bends, the total flange does not bend equally 

throughout the width of the flange. There is a shear lag effect, that means portions of the 

flange which are closer to the web have higher flexural stress; whereas, the portions away 

from the web have lower stress. This variation of the normal stress in the flange generates 

an in-plane shear stress within the flange, which is called the ‘shear-lag effect’. 

Stirrups need to be provided in the flanges for the shear lag effect. In conventional 

reinforced concrete design, the transverse reinforcement in the slabs is adequate enough 

for the shear-lag effect. But for prestressed concrete beams, we need to provide separate 

stirrups in the flanges to take care of the shear-lag effect.  
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The sketches below show the following quantities in an I-section (with flanges of 

constant widths) based on elastic analysis. We shall see the shear flow diagram. Shear 

flow refers to the product of the shear stress times the width of the flange or the web. We 

shall see the variation of shear stress in the flange which will be represented as τf. We 



shall see the shear force in the flanges, which will be represented as Vf. We shall 

calculate the ultimate vertical shear force, which is represented as Vu. In this sketch, on 

the left hand side, we see the shear flow diagram in an I-section with constant width of 

the web and constant depth of the flange. 
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The shear flow increases from the end and it becomes maximum at the centre of the 

flange. Correspondingly, the shear stress which is the shear flow divided by the width of 

the flange increases from zero to a maximum value at the centre of the flange. On the 

other side of the flange, the variation is similar but the sign is in opposite direction. Then, 

the shear flow goes down vertically and it spreads out in the bottom flange in the same 

way as we have seen in the top flange. Vf is the shear force acting in the flange, Vu is the 

vertical shear which is acting in the section. We shall calculate Vf from the linear 

variation of the shear stress in the flange.  Here, bf is the breadth of the flange and Df is 

the depth of the flange.  
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The design shear force in a flange is given as follows. 

Vf = (τf,max/2) (bfDf/2)  

This expression is obtained from the average value of τf and half the area of the flange. 
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Next, we have the expression of the shear stress. Based on elastic analysis, the maximum 

shear stress in the flange is given as follows. 

τf,max = VuA1Ῡ/IDf. 
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Here, Vu is the ultimate vertical shear force, I is the moment of inertia of the section, A1 

is area of half of the flange, Ῡ is the distance of centroid of half of the flange from the 

neutral axis at CGC. The above expression is analogous to the expression of shear stress 

at a level of the web. Thus, we calculate τf,max from Vu .  From τf,max we can calculate Vf, 

and we can design the stirrups in the flange for Vf. 
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The amount of horizontal reinforcement in the flange, which we shall denote as Asvf, is 

calculated from Vf as follows. 

 Asvf = Vf/0.87fy  

Here, we are not considering any contribution of the concrete. Given the maximum 

permissible stress in the stirrups, we are able to find out the amount of stirrups that is 

needed in the flanges. The yield stress of the reinforcement is denoted as fy. 

Next, let us understand the design of stirrups with the help of an example. 
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Design the stirrups for the Type 1 prestressed beam with the following section. The 

location of tendons is shown at the mid-span of the beam. This is a symmetric I section; 

the breadth of the flange is 435 mm, the depth is 100 mm, the width of the web is 100 

mm, the prestressing is done by 10 number of 7-wire strands with an effective prestress 

of Pe = 826 kN. They are provided in two ducts with the CGS located at 290 mm below 

the CGC. This is the section we had designed earlier, under the design of Type 1 section. 

Longitudinal reinforcement of 12 mm diameter bars is provided to hold the stirrups. 
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The properties of the sections are as follows: 

Area A = 159,000 mm2, moment of inertia I = 1.7808 × 1010 mm4, area of the 

prestressing steel Ap = 960 mm2, the grade of concrete is M 35 and the characteristic 

strength of the prestressing steel fpk = 1470 N/mm2. The effective prestress fpe = 860 

N/mm2. The uniformly distributed load including the self-weight is wT = 30.2 kN/m. The 

span of the beam L = 10.7 m, the width of the bearings is 400 mm. The clear cover to 

longitudinal reinforcement is 30 mm.  

Thus, the variables after the flexure design of the beam are given, and now we are 

designing the stirrups for this beam.  
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The first step is to calculate the shear demand Vu at the critical section. Here, neglecting 

the effect of compression in concrete, we are calculating Vu at the face of the support. 

The expression of Vu is equal to 1.5 × wT (L/2 ‒ x), where x is the distance of the face of 

the support from the centre-line of the support. Since the supports are 400 mm wide, the 

value of x is half of 400 mm, which is 200 mm. 

Once we substitute the values of wT, L, and x in the expression, we get Vu = 1.5 × 30.2 × 

(10.7/ 2 ‒ 0.2) = 233.3 kN. Thus, the shear demand for this beam is 233.3 kN at the 

critical section. 
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Next, we are checking the average shear stress to be within the maximum permissible 

value. To do that, we need to calculate the effective depth dt which will be governed by 

the depth of the non-prestressed steel. We are estimating the effective depth equal to the 

total depth minus cover, minus diameter of the stirrups, minus half the diameter of the 

longitudinal bars. The cover is 30mm.  We are assuming the diameter of the stirrups to be 

8 mm. The diameter of the longitudinal bars is given as 12 mm. Thus, dt = 920 ‒ 30 ‒ 8 ‒ 

12/2 = 876 mm. 
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For calculating the average shear stress at the critical section, we are substituting b = bw = 

100 mm. Thus, Vu/bwdt = 233.3 × 103 / 100 × 876 = 2.7 N/mm2. For M 35, τc,max = 3.7 

N/mm2, which is available from Table 7 in the Code. Thus, the average shear stress is 

less than τc,max. Hence, the depth of the section is adequate. 
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Third, calculate Vc from the lower of Vc0 and Vcr. First, we estimate the cracking stress ft 

= 0.24√fck = 0.24√35 = 1.42 N/mm2. This is the direct tensile strength of the concrete. 

The other term we are estimating is fcp, which is the compressive stress in concrete at the 

level of the CGC. We are considering the numeric value, fcp = Pe/A = 826 × 103 / 159,000 

= 5.19 N/mm2 at the level of CGC. 

(Refer Slide Time 38:20) 

 

Substituting the values b = 100 mm, D = 920 mm, we get Vc0 = 173.4 kN. We can add 

the vertical component of the prestressing force to Vc0. 
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Since this is a post-tensioned beam with a parabolic tendon, we are taking advantage of 

the vertical component of the prestressing force. The vertical component of the 

prestressing force can be found out from the equation of the parabolic tendon.  

y = (4ym/ L2) x (L ‒ x).  

Here, ym is the vertical displacement of the CGS at mid-span, from the ends. To know the 

vertical component of the prestressing force, we have to find out the slope of the 

parabolic profile. The following is the expression of the slope at a point.  

tan θ = dy/dx = (4ym/ L2) (L ‒ 2x) 
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At x = 0.2 m, y = 20 mm, dy/dx = 0.105 and θ = 6°. The vertical component of the 

prestressing force Vp = Pe sin θ = 826 × 0.104 = 86.0 kN. Next, Vc0 + Vp = 173.4 + 86.0 = 

259.4 kN. Thus, we have found that the shear capacity of concrete is equal to 259.4 kN. 
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Second, we are calculating Vcr, which is the shear to change a flexural crack to a flexure 

shear crack. In the expression of Vcr, we are first calculating fpe/fpk, the ratio of the 



effective prestress divided by the characteristic strength of the steel, which is equal to 

860/1470 = 0.58.  
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To calculate τc, we need to know the percentage of prestressing steel provided, which is 

given as 100Ap/bd. The depth of the CGS at the critical location (d) is calculated as the 

depth of the CGC, which is 460, plus the displacement of CGS from the CGC at the 

critical location, which is given as y. Thus, d = 460 + 20 = 480 mm. The percentage of 

the prestressing steel is 100 × 960/(100 × 480) = 2.0. From Table 6 for M 35 concrete, we 

can find out τc = 0.86 N/mm2.  
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Next, we are calculating the term M0, which is the moment that generates a flexural crack 

at the location of the design for shear. M0 = 0.8fptI/y; this is equal to 80% of the moment 

that decompresses the CGS at the location of our study. The value of fpt is the 

compressive stress in the concrete at the level of the CGS, which is given as ‒ Pe/A ‒ 

(Pey/I)y. Here, y is the eccentricity of the CGS with respect to CGC. Pe = 826 kN, A = 

159,000 mm2, y = 20 mm and I = 1.7808 × 1010 mm4. Once we substitute the values, we 

find fpt = ‒ 5.21 N/mm2.  
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From this, we calculate M0 = 0.8 × 5.21 × 1.7808 × 1010/20 = 3711.2 kNm. 
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We have to also calculate Mu at the critical section. Mu at the critical section is given as 

1.5wt (x/2)(L – x). Once we substitute the values of wt, x, and L, we get Mu = 47.6 kNm. 
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We are substituting the values of the calculated variables. 

Vcr = (1 ‒ 0.55 × 0.58) × (0.86/103) × 100 × 876 + 3711.2 × 233.3/47.6 = 18256 kN. 

Here, Vu = 233.3 kN and Mu = 47.6 kNm at the critical location. Vcr is substantially high 

because of the second term. This means, the shear corresponding to a moment that will 

generate a flexural crack at the critical section, which is at the face of the support, is 

extremely high. We do not expect to have a flexural crack near the face of the support. 

Since Vc is the lower of Vc0 and Vcr, we select Vc = Vc0 = 259.4 kN. 
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Thus we observe that at the face of the support, Vc0 which is the shear required to 

generate a web shear crack is much lower than the shear required to generate a flexural 

crack and then to change that to a flexure shear crack. Thus near the support, the capacity 

of concrete is governed by the web shear cracking and is given as 259.4 kN. We observe 

that for this particular section, the shear demand Vu, given as 232 kN is in fact less than 

Vc. 
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The fourth step is to calculate Asv/sv. Since Vu < Vc, we are providing minimum amount 

of stirrups, which is given by the expression Asv/bw sv = 0.4/0.87fy. 
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Next, we are calculating the maximum spacing. There are two expressions of maximum 

spacing. When Vu is not substantially high, sv = 75% of dt = 0.75 × 876 = 656 mm, or sv 

= 4bw = 4 × 100 = 400 mm. Out of this, we are selecting the lower one. Hence, sv = 400 

mm. 
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The sixth step is to calculate the size and number of legs of the stirrups. Select fy = 250 

N/mm2. Asv = bwsv × 0.4/0.87fy = 100 × 400 × 0.4/(0.87 × 250) = 73.6 mm2. Provide two 

legged stirrups of diameter 8 mm. Thus, we are providing Asv = 2 × 50.3 = 100.6 mm2.  
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There is another provision of minimum amount of stirrups and we are checking that. In 

absence of dynamic loads, Asvmin = 0.1% of Awh, where Awh is the area of the horizontal 



section of the web in a distance of sv. The area is given as 100 × 400 mm2. From this we 

get Asvmin = 40 mm2. The provided amount of stirrups, which is 100.6 mm2, is larger than 

Asvmin. Hence, it is okay.  

Now, in this case, the amount of stirrups that is provided near the support is itself 

minimum. Hence, the spacing of the stirrups along the length of the beam is not changed.  
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Next, we are designing the stirrups for each flange. First, we are calculating the area of 

half of the flange. A1 = ½ bf Df = ½ × 435 × 100 = 21750 mm2. The distance of the 

centroid of A1 from CGC is equal to Ῡ = 410 mm. 
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The expression for the maximum stress in the flange is τfmax = VuA1Ῡ/IDf = 233.3 × 103 × 

21750 × 410 / 1.7808 × 1010 × 100 = 1.17 N/mm2. 
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The shear in the flange, Vf = (τfmax/2) × (bf /2) × Df = (1.17/2) × (435/2) × 100 = 12724 N. 
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The area of the stirrups in the flanges is calculated as Asvf = Vf/0.87fy = 12724/(0.87 × 

250) = 59.0 mm2. 
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For minimum steel, Asvf = Df sv × 0.4/0.87 fy. When we substitute the values of Df, sv and 

fy, we get Asvf = 73.6 mm2. Thus, the minimum value is governing. Hence, we can 

provide 2-legged stirrups of 8 mm diameter in each flange. 
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The designed stirrups are shown in the sketch. We are providing the same amount of 

stirrup in the web and in the flanges. It is 8 millimeter diameter stirrups at the maximum 

spacing, which is 400 mm center-to-center. Note, that for each of the stirrups, we have 

provided longitudinal bars at the bends. The selected size of the longitudinal bars is 12 

mm, which is greater than 8 mm. 
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Thus, in today’s lecture, we studied the design for shear. We first studied some general 

comments. We also studied how to calculate the shear demand. For simply supported 

beams, we can use the beam theory. For continuous beams, we can use the shear 

coefficients. Then, we moved on to the design steps.   

First, we are selecting the critical location and calculating Vu, the shear demand at the 

critical location. Next, we are making sure that the average shear stress in the critical 

location is less than the maximum permissible value, this is to check shear compression 

failure. Once we have done that, we are calculating the shear capacity of the concrete Vc. 
The shear capacity of concrete is given by two expressions: one for the uncracked section 

and another for the cracked section. The code recommends evaluating both the 

expressions at every location. Once we have evaluated the two expressions, we are 

picking up the smaller value of the two as the value for Vc. If Vu is less than Vc, then we 

should provide minimum amount of stirrups. We have seen the expression for the 

minimum amount of stirrups. There is also an additional requirement of minimum 

amount of stirrups, which is in terms of the horizontal area of the web.  

If Vu is greater than Vc, then we have to design the stirrups. The design is based on the 

amount of stress carried by the stirrups. We also learnt about the design of stirrups for 

flanges. The flanges are subjected to shear due to the shear lag effect. We saw the 

expressions for designing the stirrups in the flanges. We saw the design procedure with 

the help of an example. With this, we are ending the analysis and design for shear.  

In our next lecture, we shall move on to the analysis and design for torsion.  

Thank you. 


