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Welcome back to prestressed concrete structures. This is the second lecture of Module 5 

on analysis and design for shear and torsion. In this lecture, we shall study about the 

design for shear. First, we shall study about the limit state of collapse for shear; next, we 

shall move on to maximum permissible shear stress; then we shall move on to design of 

transverse reinforcement; finally, we shall look into detailing requirements for shear.  
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First, limit state of collapse for shear. In the last lecture, I mentioned that when we study 

shear, we study the strength at ultimate. We do not use the principles of compatibility of 

strains or the constitutive relationships for the stress-strain behaviour of concrete or steel. 

We use an equilibrium equation that is based on the ultimate strength of the concrete 



under flexural shear. The total shear capacity of the member is the summation of the 

capacity of concrete and that of steel.  
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The ultimate resistance of a section, which is represented as VuR consists of a concrete 

contribution Vc and the stirrup contribution Vs. Thus, VuR = Vc + Vs. Here, Vc includes 

Vcz which is the contribution from uncracked concrete, Va which is the aggregate 

interlock, and Vd which is the dowel action. Last time, when we studied the components 

of shear resistance, we found that for a prestressed concrete section, the components of 

shear resistance are Vcz, Va, Vd, and Vs. If the tendon is inclined, then we get a vertical 

component of the prestressing force, which is represented as Vp. Three of these 

components are grouped together under the contribution of concrete, which is represented 

as Vc. Thus, now we are having three components: one is Vc, another is Vs, and when the 

tendon is inclined we include Vp. 
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The value of Vc depends on whether the section is cracked due to flexure or not. Section 

22.4 of IS: 1343 - 1980, gives two expressions of Vc: one for cracked section, and the 

other for uncracked section. Last time, we had studied that when the concrete member is 

loaded, first the flexural cracks are initiated. Next, the flexural cracks tend to become 

flexure‒shear cracks. As we move away from the mid-span, we may find some 

flexure‒shear cracks developing.  

The shear strength of concrete depends on whether the section has cracked or not. The 

code says that we need to calculate the shear capacity of concrete from two expressions. 

One expression is given for the cracked section, and the other expression is given for an 

uncracked section. Both the expressions need to be evaluated at a particular section, and 

the lower value obtained from the two expressions is selected. Usually, the expression for 

the uncracked section will govern near the support. The expression for the cracked 

section will govern near the mid-span.  
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Usually, for a beam under a uniformly distributed load, cracks generate near mid-span 

and in that region the expression for the uncracked section will govern. For the portions 

near the support, cracks may not develop. Usually, the expression for uncracked section 

will govern in that region.  
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Next, we are moving on to the two expressions for Vc. For uncracked section, Vc = Vc0, 
where Vc0 is expressed as 0.67bD √(ft

2 + 0.8 fcp ft). Vc0 is the shear causing web shear 



crack at CGC. Thus, the capacity of concrete for an uncracked section is the value of 

shear which causes a web shear crack near the support. This expression can be derived 

from the concept of Mohr’s circle.  
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In this expression, b is equal to breadth of the section, which is equal to bw, the breadth of 

the web for flanged sections; D is the total depth of the section which we have 

represented as h in earlier occasions; ft is the direct tensile strength of concrete which is 

0.24√fck; fcp is the compressive stress in concrete at CGC due to the prestress, which is 

equal to Pe/A. We are considering the numeric value of fcp; actually fcp is compressive, 

but we are taking only the numeric value of fcp in the expression.  
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The previous equation can be derived based on the expression of the principal tensile 

stress σ1 at CGC. If we take an element at the CGC, then there is a shear stress (v) and a 

compressive stress (fcp) at the vertical face. This state of two dimensional stresses can be 

transformed to a state of principal stresses, where σ1 is the principal tensile stress and σ2 

is the principal compressive stress. If we plot the Mohr’s circle, the point corresponding 

to the vertical face of the element has coordinates (‒ fcp, v).  The point corresponding to 

the horizontal face is on the vertical axis, with no normal stress, but with a shear stress of 

v. 

We observe that the value of σ1 is much smaller than the magnitude of σ2. This is due to 

the prestressing force. The value of σ1 can be calculated if we are able to locate the origin 

of the circle. The origin of the circle is at (‒fcp/2, 0). The distance of σ1 from the origin is 

the radius of the circle, which is equal to √((‒fcp/2)2 + v2).  Thus, σ1 = ‒fcp/2 + √(fcp
2/4 + 

v2).  
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At the generation of web shear crack at the CGC, the principal tensile stress (σ1) is 

equated to the direct tensile strength of concrete (ft).  Also, v is expressed as v = Vc0Q/Ib, 

which is derived in mechanics of materials.  
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In the previous equation, I is the gross moment of inertia; Q is the product of the area 

above the CGC times the vertical distance of the centroid of the area from CGC, that is Q 



= At ŷ. We can transpose the terms to get the expression of the shear force, which 

initiates a web shear crack at the CGC.  
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Transposing the terms, Vc0 = Ib/Q × √(ft
2 + fcpft). The expression of Vc0 is in terms of the 

sectional properties of the section, which are I, b and Q, the tensile strength of concrete ft, 

and the amount of prestress fcp. Here, we can note that if fcp is increased, that means, if 

the prestress is increased, the shear corresponding to the initiation of web shear crack also 

increases. Thus, we are utilizing the benefit of the prestress in increasing the shear 

capacity of the section.  

The above expression is substituted by a simpler expression Vc0 = 0.67bD √(ft
2 + 0.8fcpft). 

The term 0.67bD represents Ib/Q for a section. It is an exact substitution for a rectangular 

section, but it is a conservative substitution for other types of sections. Also, fcp is 

substituted by 0.8fcp. The reason is, to be conservative, only 80% of the prestress is 

considered in increasing the shear capacity.  
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The expression that we have derived is based on the stress at the level of CGC, being 

equal to the tensile strength of concrete. 
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For a flanged section, when the CGC is in the flange, the intersection of web and flange 

is considered to be the critical location for the generation of web shear cracks.  Hence, 

substitute 0.8fcp by the term 0.8 times the stress in concrete at the level of the intersection 



of web and flange. This stress can be found out by the elastic analysis that we had studied 

under the analysis of sections for flexure.  
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In presence of inclined tendons or vertical prestress, the vertical component of the 

prestressing force Vp can be added to Vc0. Thus, the total strength can be considered as 

Vc0 = 0.67bD √(ft
2 + 0.8fcpft) + Vp.  
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Next, we are studying the expression of Vc for a cracked section. This expression is more 

involved because the cracking of concrete is inherently variable in nature. The cracks are 

first generated due to flexure and then, they propagate due to shear. The expression of Vc 

is equated to Vcr, where Vcr is the shear corresponding to flexure‒shear cracking. The 

earlier term Vc0 was for web shear cracking, whereas Vcr is for flexure‒shear cracking. 

Vcr = (1 ‒ 0.55 fpe/fpk)τc bd + M0 (V/M). Vcr need not be less than 0.1bd√fck.  

In the above expression there are two terms. The first term is the additional shear that 

changes a flexural crack to a flexure‒shear crack. The second term M0 (V/M) = V(M0/M) 

is the shear corresponding to the generation of a flexural crack at the bottom of the beam.  
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The first term is an empirical expression. The notations are as follows: fpe is the effective 

prestress in the tendon after all losses and it should be less than or equal to 0.6 fpk; τc is 

the ultimate stress capacity of concrete which is obtained from Table 6 of IS: 1343 – 

1980. 
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The values of τc are plotted in this graph. It is given in terms of the amount of 

prestressing steel. The graphs are given for two grades of concrete M30 and M40. We 

observe that as the amount of the prestressing steel is increasing, the strength of the 

concrete is also increasing; but, it gradually tapers off to a constant value. There is not 

much difference between the values for the two grades of concrete. From this we can 

infer that the strength of the concrete under shear even for a cracked section, increases 

with the amount of the prestressing steel. 

Even for the cracked region, since the prestressing steel applies a compression, the 

growth of crack is reduced, the depth of concrete under compression is increased, the 

aggregate interlock is increased, and the bond between the longitudinal steel and concrete 

is retained to generate dowel action. Hence, the strength of concrete under shear for a 

cracked section increases with the amount of prestressing steel.  
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In the expression, b is the breadth of the section, which is equal to bw the breadth of the 

web for a flanged section, and d is the distance from the extreme compression fibre to the 

centroid of the tendons at the section considered. 
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The second term M0 (V/M) = V(M0/M) is the shear corresponding to the moment M0 that 

decompresses, or nullifies the effect of prestress at the tension face, and initiates a 

flexural crack. In this expression, M0/M is a ratio of moments. Hence, it is an expression 



without any units. V is the shear corresponding to M, the moment at the section of 

investigation due to external loading. 

The expression of M0 is given as 0.8fpt I/y.  
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In the previous expression, fpt is the compressive stress in concrete at the level of CGS 

due to prestress only. An equal amount of tensile stress is required to decompress the 

level of CGS. 
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In the expression of M0, y is the depth of the CGS from CGC.  The expression is actually 

80% of fpt I/y, the moment that causes decompression of the concrete at the level of CGS. 

To recollect, M0 is the moment corresponding to the decompression of the tension face, 

which occurs earlier. Hence, M0 is taken as 80% of that moment which causes 

decompression at the level of CGS.  
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Since the concrete is cracked and the inclination of tendon is small away from the 

supports, any vertical component of the prestressing force is not added to Vcr. Earlier we 

had seen, that the code allows us to incorporate Vp along with Vc0, which is the shear 

causing web shear cracking. But here, we find that the code does not allow us to include 

Vp with Vcr, which is the shear corresponding to flexure‒shear cracking.  
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Next, let us learn the maximum permissible shear stress in concrete.  As mentioned in the 

last lecture, there are several modes of shear failure. The approach in shear design is that, 

we design the reinforcement as per the requirement based on the capacity of concrete to 

take shear. We also do some other checks and satisfy detailing requirements to avoid 

other modes of failure. The maximum permissible shear stress in concrete is one way to 

check the crushing of concrete in shear compression failure. 

The shear stress is limited to a maximum value which is represented as τc,max. The value 

of τc,max depends on the grade of concrete and is given in Table 7 of IS: 1343-1980. The 

nominal shear stress, Vu/bdt should be less than τc,max. This is to avoid a brittle shear 

compression failure.  
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In the previous expression, b is the breadth of the section, dt is the greater of dp or ds, 

where dp is the depth of the CGS from the extreme compression fiber, ds is depth of 

centroid of regular steel, Vu is the shear force at a section due to ultimate loads. Thus, 

whenever we are doing this shear check, we are calculating the average shear stress based 

on the depth, which is larger of the depth of the CGS and the depth of the non-prestressed 

steel. This larger value is denoted as dt.  
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When the values of τc,max from Table 7 are plotted, their variation is as shown in the 

graph. For different grades of concrete, τc,max slightly increases and more or less it 

stabilizes when we reach a concrete strength of 60 N/mm2.  

To check web crushing failure, the Indian Roads Congress code IRC 18-2000 specifies 

minimum thickness of the web for a T-section in Clause 9.3.1.1. The minimum thickness 

is 200 mm plus diameter of the duct hole. This provision is not there in IS: 1343-1980. 

But, it is advisable to maintain a minimum width of the web to avoid web crushing 

failure for a flanged section. 
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Next, let us look into the design of transverse reinforcement in more details. When the 

shear demand Vu exceeds the shear capacity of concrete which is denoted as Vc, 

transverse reinforcements in the form of stirrups are required. The stirrups resist the 

propagation of diagonal cracks, checking both the diagonal tension failure and shear 

tension failure. The diagonal tension failure occurs when a diagonal crack propagates 

rapidly through the depth of the section.  
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In a shear tension failure, the diagonal crack merges with the horizontal crack at the level 

of the bottom longitudinal bars. The crack propagates towards the support and the 

longitudinal bars lose their anchorage. To resist both these types of failures, we need 

shear reinforcement which will traverse the diagonal cracks. The stirrups resist a failure 

due to shear by several ways. 
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The functions of stirrups are listed below: first, stirrups resist part of the applied shear 

which is denoted as Vs; second, they restrict the growth of diagonal cracks; third, the 

stirrups counteract the widening of the diagonal cracks, thus maintaining aggregate 

interlock to a certain extent; fourth, the splitting of concrete cover is restrained by the 

stirrups, by reducing dowel forces in the longitudinal bars.  

Thus, the contribution of the stirrups is not only in Vs, but it has a contribution in Vc as 

well. For the different reasons, stirrups are mandatory for a reinforced concrete or a 

prestressed concrete beam.  
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After cracking, the beam is viewed as a plane truss. The top chord and the diagonals are 

made of concrete struts and the bottom chord and the verticals are made of steel 

reinforcement ties. Based on this truss analogy, the total area of the legs of the stirrups 

which is represented as Asv is given as follows. 

Asv / sv = (Vu ‒ Vc) / 0.87fy dt  

Vu is the shear demand. From this, we are subtracting the concrete contribution Vc.  Vc 

can be calculated for a particular section from the expressions of Vcr or Vc0, whichever 

gives the lower value.  Subtracting Vc from Vu, we get the required value of Vs. Then, 

from the truss analogy, we can write the expression of Asv / sv.  We are not going into the 



details of the truss analogy here. The angle of inclination of the cracks is considered to be 

45°.  
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The notations in the previous equation are as follows: sv is the spacing of the stirrups, dt 

is the effective depth which is greater of dp or ds where dp is the depth of CGS from the 

extreme compression fibre and ds is the depth of centroid of the longitudinal steel, fy is 

the characteristic yield strength of the stirrups.  The maximum stress in the stirrups is 

limited to 0.87fy. The grade of steel for stirrups should be restricted to Fe 415 or lower. 

That means, the code does not allow a grade of steel greater than Fe 415 because 

traditionally such a grade has less yielding.  
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For design, if Vu is less than Vc, theoretically we do not need stirrups. But the code says 

that we have to provide a minimum amount of transverse reinforcement which is based 

on the following equation.  

Asv / bsv = 0.4/0.87fy  

This equation is derived by assuming that the stirrups should have a minimum stress of 

0.4 N/mm2.  
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Here, b is the breadth of the section which is equal to bw the breadth of the web for 

flanged sections. If Vu is less than 0.5 Vc and the member is of minor importance, stirrups 

may not be provided. That means, the code gives us some freedom that if the shear 

demand is half of the shear capacity of concrete and the member is of minor importance, 

in that situation we may not provide stirrups. Otherwise we have to provide stirrups. If Vu 

is less than Vc, we have to provide the minimum amount of stirrups. 
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Next, let us look at the detailing requirements. The detailing requirements for the stirrups 

in IS: 1343 -1980 are briefly mentioned.  
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The maximum spacing of stirrups is given. The spacing of stirrups is restricted so that a 

diagonal crack is intercepted by at least one stirrup. In the sketch of the cross-section, the 

notations are: dp is the depth of the CGS, ds is the depth of the longitudinal steel, bw is the 

breadth of the web, and h is the total depth.  
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The maximum spacing is given in Clause 22.4.3.2. It is equal to 0.75dt or 4bw whichever 

is smaller. Thus, the maximum spacing is the smaller value of 75% of the value of dt or 4 

times the breadth of the web. If the shear demand Vu is high, if it crosses 1.8 times Vc, 

then the maximum spacing is reduced to 0.5 times dt. Thus, for higher values of Vu the 

stirrup spacing is even restricted. 
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The variables are: bw is the breadth of the web, dt is greater of dp or ds, dp is depth of CGS 

from extreme compression fiber, ds is depth of centroid of non-prestressed steel, Vu is the 

shear force at a section due to ultimate loads, Vc is the shear capacity of concrete which is 

determined from Vc0 or Vcr.  
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A minimum amount of stirrups is necessary to restrict the growth of diagonal cracks and 

subsequent shear failure. As per Clause 18.6.3.2, stirrups are recommended for beams 

with thin webs. The minimum amount of stirrups is given in terms of Awh, the horizontal 

sectional area of the web in plan.  
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The area is shown in this figure. If we take a horizontal section, then Awh is the area of 

the web for this horizontal section.  
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In the presence of dynamic load, minimum amount of Asv (Asv,min) is equal to 0.3% of 

Awh, which can be lowered to 0.2% Awh, when h is less than or equal to 4bw. With high 

strength bars, Asv,min is equal to 0.2%Awh which can be lowered to 0.15%Awh, when h is 

less than or equal to 4bw.  
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In the absence of dynamic load, when h is greater than 4bw, then Asv,min is equal to 0.1% 

of Awh. There is no specification of Asv,min when h is less than or equal to 4bw. Thus, we 



find that there are two requirements of minimum amount of stirrup. One is based on the 

truss concept that the stirrups have to take a minimum amount of shear stress. The other 

expression is for beams with thin webs, given in terms of the horizontal section of the 

web. 
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The stirrups should be anchored to develop the yield stress in the vertical legs. This is 

very important that we anchor the stirrups properly, so that it can develop the yield stress 

at ultimate. 
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The stirrups should be bent close to the compression and tension surfaces, satisfying the 

minimum cover. That means the stirrups should run throughout the full depth as much as 

possible. The stirrups should be bent around the top steel and the bottom steel. Each bend 

of the stirrups should be around a longitudinal bar. The diameter of the longitudinal bar 

should not be less than the diameter of the stirrups.  
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In order to maintain the bend in the stirrups, the diameter of the longitudinal bar has to be 

at least equal to the diameter of the stirrup. The end of the stirrups should be anchored by 

standard hooks. The specifications for the hooks are given in handbook on detailing.  

There should not be any bend in a re-entrant corner. In a re-entrant corner, the stirrup 

under tension has the possibility to straighten, thus, breaking the cover concrete. Let us 

understand this with the help of a sketch. The following sketches explain the requirement 

of avoiding the bend of a stirrup at a re-entrant corner. 

(Refer Slide Time 49:21)  

 

In a re-entrant corner, if we provide a single stirrup, then the stirrup tends to straighten 

out. It tends to break the concrete near the re-entrant corner. This detailing is incorrect. 

The correct detailing is that, we have to provide two pieces of stirrups. None of them has 

any bend near the re-entrant corners and hence, does not pose a threat of breaking the 

concrete near the corners. 
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Today, we studied the design for shear. First, we studied the limit state for shear. As we 

had said earlier, that in shear analysis and design, we do not consider the complete 

behaviour. The design is based on the ultimate strength of the section under shear. This 

strength, which is represented as VuR is a summation of Vc and Vs, where Vc is considered 

to be the contribution of the concrete, and Vs is the contribution of the stirrups. In Vc, we 

are placing all the three individual components: the contribution of uncracked concrete 

under compression is represented as Vcz, the aggregate interlock is represented as Va, and 

the dowel action is Vd. All these three are clubbed together in the expression of Vc. The 

code gives us two expressions of Vc: one for uncracked section and the other for a 

cracked section. The uncracked section expression usually governs the region near the 

supports, and the cracked section expression usually governs the region near the mid-

span. 

When a beam is loaded, first, we observe flexural cracks near the mid-span. Then, the 

flexural cracks away from the mid-span tend to bend due to the effect of shear. These 

types of cracks are called flexure shear cracks. Then, with further increase in the load, we 

may have cracks near the centroid of the section close to the supports. Those cracks are 

inclined and are called web shear cracks.  



The shear strength of uncracked concrete is given as the shear force which initiates a web 

shear crack at the level of CGC. The expression of Vc = Vc0 is derived from the concept 

of Mohr’s circle of stress at the level of CGC.  

For a point at the level of CGC, there is a shear stress. Along with that, for a prestressed 

concrete beam there is a normal compressive stress which we are denoting as fcp. From 

the values of V and fcp, we can write the expression of the principal tensile stress σ1 based 

on the Mohr’s circle. Then we equate σ1 to the direct tensile strength of concrete which is 

denoted as ft. 

Once we write this expression, we can substitute the shear stress v = Vc0Q/Ib. After 

transposing the terms, we get an expression of Vc0. In this expression, fcp is reduced to 

80% to stay conservative. If we have a flanged section, then the code recommends that 

the crack may initiate at the level of the intersection of the web and the flange. Hence, 

0.8fcp should be substituted by 0.8 times the stress in the concrete at the level of 

intersection of web and the flange.  

The second expression for Vc is based on a cracked section, where Vc = Vcr consists of 

two terms. The first term is the shear that propagates flexural crack to a flexure shear 

crack. This expression is in terms of the prestressing force fpe and the capacity of 

concrete, which is given as τc. The capacity of concrete τc increases with the amount of 

prestressing steel, because the more prestressing steel we have, we have  a reduced length 

of the flexure shear cracks, we have more concrete under compression, there will be more 

aggregate interlock, and a better dowel action. Hence, the capacity of concrete is 

increased with the amount of prestressing steel. 

The second term of Vcr is the shear corresponding to the generation of a flexural crack at 

the bottom of the beam. This is based on the ratio of the moments M0/M, where M0 is the 

moment required to generate a flexural crack at the bottom and M is the moment demand 

based on service loads.  

We can have both V and M as the demands based on ultimate loads, because the load 

factors anyhow will cancel out from the numerator and the denominator. M0V/M denotes 



the shear, which corresponds to the generation of a flexural crack at the bottom of the 

beam. Thus, Vcr consists of two terms: the first term is a shear which extends a flexural 

crack to a flexure shear crack. The second one is the shear which is needed for a 

generation of a flexural crack at the bottom of the beam. 

Once we have learned these two expressions of Vc0 and Vcr, we can calculate Vc as the 

lower of these two values at any particular section. We can add Vp to Vc, if the tendon is 

inclined and this is allowed only with the expression of Vc0. Once we have calculated Vc, 

we can subtract this from Vu, the shear demand and get the required value of Vs. The 

amount of steel and the spacing of the stirrups are given by an expression which is based 

on the truss analogy for shear. This is in terms of Vs and the maximum stress that can be 

generated in the stirrups equal to 0.87fy. The code recommends to provide a minimum 

amount of stirrups even if Vu is less than Vc. That is based on a certain minimum stress to 

generate within the stirrups. The code also gives another expression of minimum amount 

of stirrups which is applicable for beams with thin webs. The values are given in the 

presence of dynamic load and in the absence of dynamic load.  

Next, we studied about the detailing of the stirrups. The stirrups should be properly 

anchored at the top steel and at the bottom steel. They should traverse the depth as much 

as possible, satisfying the cover requirements. The spacing of the stirrups is restricted 

because a diagonal crack should be intercepted by at least one stirrup. The stirrups should 

have standard hooks at the ends. The functions of the stirrups are multiple. They not only 

provide shear capacity Vs but also influence Vc, by increasing the dowel action, the 

aggregate interlock and checking the growth of the crack.  

There are other detailing requirements which check the other modes of failure such as the 

shear compression failure and the web crushing failure. We have to limit the shear stress 

to a maximum value, so that, we do not have any sudden shear failure. In the next class, 

we shall move on to the design steps for shear.  

Thank you. 


