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Welcome back to prestressed concrete structures. This is the fifth lecture of Module 4 of 

design of members. In this lecture, we shall study the design of sections for flexure by a 

special method called Magnel’s graphical method. 
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The determination of maximum and minimum eccentricities at the critical section helps 

in placing the CGS in the beam. But with different types of possible sections, the 

computations increase. The graphical method proposed by G. Magnel gives a visual 

interpretation of the equations involved. What we have studied till now is the 

computation of the maximum and minimum eccentricities at the critical sections of a 

beam; from there we can place the CGS and the tendons. We also learnt about the 



limiting zone of placing the CGS throughout the span of the beam. But if we are trying 

with several types of sections, then the computations increase. At that time, it is better 

that if we can adopt some faster method of computation. Magnel’s graphical method is 

one such type, which can be implemented in a computer program. The sections can be 

verified for their possible application, and the combination of the prestressing force and 

the eccentricity can be selected quickly. Once this method is implemented in a computer 

program, the graphical method is faster than the hand computations. 
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There are essentially four stress conditions to be checked at the critical section. These 

conditions are as follows: at transfer, we need to make sure that the tensile stress at the 

top of the section (ft) is less than or equal to the allowable tensile stress for the concrete 

(fct,all), and the compressive stress at the bottom (fb) should be greater than or equal to the 

allowable compressive stress for the concrete (fcc,all). The equations are algebraic 

equations; a compressive stress is considered to be negative. Hence, the equation fb ≥ 

fcc,all means that the negative value of fb is larger than or equal to the negative value of 

fcc,all.  In other words, the absolute value of fb is smaller than or equal to the absolute 

value of fcc,all.  



At service, the compressive stress at the top (ft) should be greater than or equal to the 

allowable compressive stress at service (fcc,all). In other words, the absolute value of ft has 

to be smaller than or equal to the absolute value of fcc,all. The other stress condition is that 

the tensile stress at the bottom (fb) should be less than or equal to the allowable tensile 

stress at service.  
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To repeat, the above expressions are algebraic inequalities, where the stresses ft and fb are 

positive if tensile, and negative if compressive. The allowable tensile stress fct,all is 

assigned a positive value and the allowable compressive stress fcc,all is assigned a negative 

value. Thus, if we plot the stress values along a number axis, fct,all falls on the right 

(positive) side of 0 and fcc,all falls on the left side of 0. These are the two limits of the 

stress conditions. If any tensile stress has to be less than fct,all, then the equation states that 

the stress is less than fct,all. Whereas, when a compressive stress has to be numerically less 

than fcc,all, then the equation states that the stress is greater than fcc,all, since as we move 

from left to right along the number axis, the values increase in an algebraic sense.  

The allowable stresses were explained in the module of “Introduction, Prestressing 

Systems and Material Properties”.  
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It is to be noted that the values of fcc,all at transfer and at service are different. They are 

calculated based on the strength of concrete at transfer and at service, respectively. 

Similarly, the values of fct,all at transfer and at service can be different. As per IS:1343 – 

1980, the values of fct,all at transfer and at service have been made same based on the 

reason that the values are small.  
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The stresses at the top and at the bottom in the four inequalities are expressed in terms of 

the initial prestressing force P0, the eccentricity e at the critical section of the member and 

the section properties: area A, section moduli Zt,, Zb,; kern levels kt, kb; and self-weight 

moment Msw.  After transposition, 1/P0 (the inverse of the prestressing force at transfer) is 

expressed in terms of the eccentricity e by linear inequality relationships.  
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For a selected section, these relationships are plotted in the 1/P0 versus e plane. The 

acceptable zone shows the possible combinations of 1/P0 and e that satisfy all the four 

inequality relationships. For the selected section, a combination of P0 and e can be readily 

calculated from the acceptable zone.  

Let us now understand this method in a step-by-step fashion and try to have the concept 

cleared by the visual interpretation of the inequality relationships.  
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The method is explained in a general form. For Type 1, Type 2 and Type 3 members, the 

value of allowable tensile stress is properly substituted. For Type 1 member, the 

allowable tensile stress is 0. For Type 2 members, the allowable tensile stress is such that 

it is less than the cracking stress. For Type 3 members, the allowable tensile stress can be 

greater than the cracking stress, but the crack width should be limited, and hence there is 

an upper limit of the allowable tensile stress. 
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First, let us see the equations at transfer. The forces acting on the concrete section are the 

prestressing force P0 below the CGC, and the self-weight moment Msw. The stress 

diagram across the depth of the section has a value of ft at the top, which can be tensile 

and a value of fb at the bottom, which is compressive. The distances of the top and the 

bottom from the CGC are denoted as ct and cb, respectively. 
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The stress at the top is calculated from P0, e, Msw as follows. We are using the stress 

concept for determining the value. The stress at the top consists of three components. 

First is the uniform component which is ‒P0/A. Second is the component due to the 

eccentricity of the prestressing force P0ect/I, which is tensile at the top. The third term 

which is due to the self-weight is compressive (‒ Mswct/I). We are grouping the terms 

with P0 together. For the term with the self-weight moment, we are substituting the 

section modulus Zt which is equal to I/ct.  
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Next, the inequality relationship is ft ≤ fct,all. Once, we substitute the expression of ft in 

this inequality relationship, we get a relationship which relates P0 with e. To get that 

relationship, we are transposing the terms such that on the left hand side of the inequality 

we are retaining 1/P0 and on the right hand side we are keeping the eccentricity e, the 

geometric variables kb, Zt and A, the self-weight moment Msw and the allowable tensile 

stress fct,all. Thus, we have an equation from the first stress condition, which relates 1/P0 

with e. This is an inequality relationship; that means to satisfy the stress condition, 1/P0 

has to be greater than or equal to the value which is calculated from the right hand side. 
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The straight line given by the above inequality is plotted in the 1/P0 versus e plane, and 

the acceptable zone is shaded. If we look back into the equation we see that, if e = kb on 

the right hand side, then the right hand side becomes 0. Hence, we can understand that 

the straight line passes through the point kb and at that instant, 1/P0 = 0. Since, in the 

inequality relationship 1/P0 has to be greater than the value on the right hand side, the 

acceptable zone is the zone above the line. Any combination of 1/P0 and e which falls 

above the line will satisfy the stress condition that ft ≤ fct,all at transfer. 
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The second stress condition at transfer is that fb ≥ fcc,all in an algebraic sense, because both 

these values are negative.  
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We are calculating the stress fb just as before. It consists of the uniform component, 

which is ‒P0/A. Then, it has the varying component (‒P0ecb/I) which is due to the 

eccentricity of the prestressing force. Since the stress is compressive, we are placing a 



negative sign. The component due to the self-weight (Mswcb/I) is tensile, and hence we 

are placing a positive value. Again, we are grouping the terms of P0 together. For the 

term with Msw we are substituting the section modulus Zb = I/cb. We get an expression of 

the stress at the bottom in terms of P0, e, the section variables and the self-weight 

moment.  
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We have to satisfy the inequality relationship that fb ≥ fcc,all. Once we substitute the 

expression of fb and we transpose the terms in such a way that on the left hand side we 

have 1/P0, and on the right hand side we have all other variables which includes the 

eccentricity, the section properties and the self-weight moment, we get the second 

inequality relation. If e = ‒ kt, that is if the CGS is located above CGC at the top kern 

point, then 1/P0 = 0. 
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Hence, when we plot the corresponding straight line, it passes through the point e = ‒kt. 

Since, in the equation 1/P0 has to be greater than the value on the right hand side, any 

value above the straight line is acceptable.  

Next, let us move on to the computations at service.   
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At service, we have to satisfy ft ≥ fcc,all; both these values are compressive and hence 

negative, and this equation is in an algebraic sense. At service, the prestressing force is 

denoted as ηP0, where η is a fraction of the initial prestressing force.  The prestressing 

force has reduced due to the long-term losses.  MT is the total moment due to the dead 

load and live load.  
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First, we are writing the expression of the compressive stress at the top. The first term is 

the uniform component, which is ‒ ηP0/A. The second is the tensile component due to the 

eccentricity of the prestressing force, which is ηP0ect/I. The third component is the 

compressive component due to the total moment, which is ‒MTct/I. We are grouping the 

terms with P0 together, and for the term with MT, we are substituting the section modulus 

Zt = I/ct. Once, we have done the substitutions I = Ar2 and r2/ct = kb, we get an expression 

of the stress at the top ft in terms of the prestressing variables, the section properties and 

the total moment.  
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In the inequality relationship ft ≥ fcc,all, we are substituting the expression of ft and then 

we are transposing the terms such that we have 1/P0 on the left and all the other variables 

on the right side.  We arrive at an equation which is the third inequality relationship 

related with the stress condition at service.  
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Here, we find that if e = kb, then the numerator on the right hand side becomes 0 and 

hence 1/P0 = 0. Thus, when we plot the straight line, it will pass through the point e = kb. 

Note that, in this inequality relationship, 1/P0 has to be less than or equal to the value on 

the right hand side. Unlike the equations at transfer, where we had 1/P0 to be greater than 

the value on the right hand side, here we have 1/P0 to be less than or equal to the value on 

the right hand side. Thus, the zone below the straight line is the acceptable region. 
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The fourth stress condition is that at service, the bottom stress fb ≤ fct,all.  
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The first term of the bottom stress is the uniform component ‒ηP0/A. The second term is 

‒ηP0ecb/I; this is also negative because the eccentric prestressing force causes 

compression at the bottom. Then, the tensile stress due to the external moment is MTcb/I. 

We are grouping the terms with P0. For the term with MT, we are substituting Zb = I/cb. 

Once we have substituted I = Ar2 and r2/cb = kt, we get an expression of the stress in 

terms of P0, e, the section properties and the total moment MT. 
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In the inequality relationship fb ≤ fct,all, we are substituting the expression of fb and again 

we are transposing the terms such that, we have 1/P0 on the left hand side and all the 

other terms on the right hand side.  
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For this equation, we see that if e = ‒kt then the numerator will be 0 and 1/P0 = 0. Hence, 

the straight line will pass through the point e = ‒kt. The region below the straight line is 



the acceptable region for the combination of 1/P0 and e. Thus, we have the fourth 

inequality relationship and the corresponding straight line in the 1/P0 versus e plane. At 

this stage, we are having four straight lines for the four stress conditions, and now we are 

superposing those straight lines in the 1/P0 versus e plane to determine the common 

acceptable zone which satisfies all the four stress conditions. 
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The four lines are plotted together. The common region is the acceptable zone. For the 

two equations for the stress conditions at transfer, Eqns. 4e-1 and 4e-2, any point lying 

above the straight lines is acceptable; whereas, for the stress conditions at service, which 

are represented by Eqns. 4e-3 and 4e-4, any combination which lies below the straight 

lines is acceptable. The common region which is acceptable for all the four stress 

conditions is the area which lies in between these four straight lines, and that region is 

called the acceptable zone. 

Thus, for a particular section, we may have an acceptable zone and we have the freedom 

of selecting values of P0 and e within that acceptable zone. If there is no acceptable zone 

for a section, then it implies that, that section is not suitable for the given loading 

conditions. If the acceptable zone for a section is small, then it implies that we do not 

have much freedom in the combinations of P0 and e, and we have to select a value which 



lies in that acceptable zone. Thus, the graphical method gives a visual interpretation of 

the stress conditions that we have to satisfy, and it helps us to select the combination of 

the prestress at transfer (P0) and the eccentricity (e) from the acceptable zone. 
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A combination for a trial section, the prestressing force (P0) and eccentricity (e) at the 

critical section can be plotted in the form of the above graph. If the point lies within the 

acceptable zone then the combination is valid, and it will satisfy all the four stress 

conditions. 

Let us understand the Magnel’s graphical method by an example problem.  
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The section shown in the next slide, is designed as a Type 1 member with the total 

moment MT = 435 kNm, which includes an estimated self-weight of Msw = 55 kNm. The 

height of the beam is restricted to 920 mm. The prestress at transfer fp0 = 1035 N/mm2 

and the prestress at service fpe = 860 N/mm2. Based on the grade of concrete, the 

allowable compressive stresses are 12.5 N/mm2 at transfer and 11 N/mm2 at service. 

The properties of the prestressing strands are given below. Type of prestressing strand is 

7-wire strands; the nominal diameter of each strand is 12.8 mm and the nominal area is 

99.3 mm2. 
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For the section, find the acceptable zone by Magnel’s graphical method. Compare the 

designed values of the eccentricity e and the inverse of prestressing force at transfer 

(which is 1/P0) with the acceptable zone.  

This problem we had solved earlier (Lecture 18) and from the preliminary design, we had 

calculated the type of the section. Then from the final design, we had selected the final 

dimensions. The flange width was 435 mm. It is a section symmetric about the horizontal 

axis and we have satisfied the requirement of the height which is 920 mm. The thickness 

of the web and the flange both are 100 mm. The calculated eccentricity has been rounded 

off to a value of 290 mm. That means the CGS is located at 290 mm below the CGC. We 

had selected ten 7-wire strands with P0 = 994 kN.  



(Ref Slide Time: 33:12) 

 

Here, we are checking the section based on the Magnel’s method. First, we need to 

calculate the geometric properties of the section to plot the four lines in the 1/P0 versus e 

plane.  

The section is symmetric about the horizontal axis; hence, CGC lies at mid depth. The 

section is divided into three rectangles for the computation of the geometric properties. 

From the CGC, the centroid of the top rectangle is at a distance 410 mm. The distances of 

the top and bottom fibres are 460 mm from the CGC.  
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We are calculating the area of the section. Since, A1 is equal to A3, the total area is given 

as 2A1 + A2; A1 is the flange width times the depth of the flange, which is 435 × 100; A2 

is equal to the remaining part of the depth of the web times the width of the web, which is 

720 × 100. Once, we substitute the values the area is A = 159,000 mm2. 

Next, we are calculating the moment of inertia of the section about the axis through CGC. 

Here also, I = 2I1 + I2. To calculate I1, we are using the parallel axes theorem. It states 

that the moment of inertia of the top rectangle about the axis through CGC is equal to the 

moment of inertia through the centroidal axis of the rectangle, plus the area of the 

rectangle times the distance squared, where the distance is between the CGC and the 

centroidal axis of the rectangle. 

Thus, I1 = 1/12 × 435 × 1003 + (435 × 100) × 4102. For I2, the centroidal axis is same as 

the axis through CGC and hence, I2 = 1/12 ×100 × 7203. After substitution, I = 1.78 × 

1010 mm4. 
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Square of the radius of gyration, r2 = I/A. When we substitute the values of I and A, we 

find r2 = 112,000 mm2. 
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The section moduli Zb = Zt  = I/ct,  and once we substitute the values of I and ct, we get Zb 

= Zt  =  38,712,174 mm3. The kern levels kb = kt = r2/ct. Once, we substitute the values we 

get kb = kt = 243.5 mm.  
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Next, we are calculating the inequality relationships from the stress conditions. The ratio 

of effective prestress and prestress at transfer η = Pe/P0 = fpe/fp0 = 860/1035 = 0.83. Thus, 

83% of the prestress at transfer stays as the effective prestress. 
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The first inequality relationship satisfies the condition that at transfer, the stress at the top 

should be less than the allowable tensile stress, which is fct,all.  Since, it is a Type 1 



section, fct,all = 0. Once, we have substituted the values of kb, Msw, Zt and A on the right 

hand side, we find the relationship 1/P0 ≥ 1/225,897.9 × (‒1 + e/243.5). 
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This equation is plotted in the 1/P0 versus e plane, and this passes through the point e = kb 

= 243.5 mm. Any point lying above the line is acceptable, and hence that region is shaded 

as green. Any point lying below the straight line is not acceptable, and hence that region 

is represented as red. Hence, we see that the first stress condition gives a line which 

demarcates the combination of 1/P0 and e into two regions: one is a green region, which 

is acceptable and the other is red region, which is not acceptable. 
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The second condition is at transfer, the stress at the bottom should be greater than the 

compressive stress at transfer. After substituting the values of kt, Msw, Zb and A, the 

corresponding relationship is 1/P0 ≥ 1/2,213,397.9 × (1 + e/243.5). 
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When we plot this relationship, the line passes through the point e = ‒kt = ‒ 243.5 mm. 

As before, the straight line demarcates the 1/P0 versus e plane into two regions. Any 



combination which lies above the straight line is acceptable, and that is shown as green; 

any combination lying below the straight line is not acceptable, which is shown as red.  

Next, we are moving onto the stress condition at service. 
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The first condition is that the stress at the top should be greater than fcc,all. Once, we 

substitute the values of kb, η, MT, Zt and A, we find the relationship as 1/P0 ≤ 1/45,358.0 

× (‒ 1 + e/243.5). 
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After plotting in the 1/P0 versus e plane, the line passes through the point e = kb. Any 

point which lies below the straight line is acceptable, here it is shown as green; and any 

point lying above the straight line is unacceptable, this is shown as red.  
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Next, we are moving on to the fourth condition which states that the stress at the bottom 

should be less than the allowable tensile stress at service. In the corresponding equation, 



after substituting the values of kt, η, Mt, Zb and A, we find that 1/P0 ≤ 1/2,152,587.1 × (1 

+ e/243.5).  
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After plotting in the 1/P0 versus e plane, the straight line passes through the point e = ‒ kt. 

Any point lying below this straight line is acceptable, and hence this region is shown as 

green; any point lying above the straight line is not acceptable, and that is shown in red.  
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The four relationships are plotted in the following graph and the acceptable zone is 

shown. The zone is zoomed in the next graph. The calculated values of e and 1/P0 for the 

Type 1 section, from the earlier design are as follows: e = 290 mm, P0 = 994 kN, 1/P0 = 

1/994 = 0.001 kN‒1. The solution of the design is shown in the graph. It lies in the 

acceptable zone. 
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Once we plot all these four lines, we see that for this particular section, the allowable 

zone is a small strip on the right hand side; the solution is shown as a dark rectangle. Let 

us zoom into this small region which will show that the solution indeed lies in the 

acceptable zone. 
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When we zoom, we find that the four lines give a region which is shaded as green. This is 

the acceptable zone for this particular section. The selected values of e and P0 indeed lie 

within the acceptable zone. Hence, the design values are appropriate. If we shift the 

design value more towards the right, then we are increasing the eccentricity and reducing 

P0; but the eccentricity will not be a rounded off value. Thus, this graph explains the 

application of Magnel’s method for the type of section which has been selected for this 

particular problem. 

Summary 

In today’s lecture, we studied the design of sections for flexure by the Magnel’s graphical 

method. In a real situation, calculations based on the first principles of the stress 

conditions can be quite involved, especially, if you are having different types of section 

to select from. In that situation, Magnel’s method can be quite handy. It can be 

implemented in a program and it can give a visual interpretation of the equations that we 

are using.  

The stress conditions are: at transfer, the stress at the bottom is numerically lower than 

the allowable compressive stress, and the stress at the top is lower than the allowable 



tensile stress. At service, the stress at the bottom is less than the allowable tensile stress, 

and the stress at the top is less than the allowable compressive stress. This concept of 

satisfying the stress conditions at transfer and at service has been implemented in a 

graphical form by the Magnel’s method.  

When we plot the four inequality relationships in the 1/P0 versus e plane, we may get an 

acceptable zone for that particular section, under the given loading conditions. Then that 

section is adequate. If there is no acceptable zone, we cannot use that section for the 

given loading conditions. 

We saw the application of the method through an example, which we had solved earlier. 

First, we calculated the geometric properties of the section. Next, we found out the 

inequality relationships. Third, we plotted the four relationships in the 1/P0 versus e 

plane. Once we plotted, we found that there is a small strip which is an acceptable zone, 

and our previous solution indeed lies within the acceptable zone. 

Thus, today we are ending the design of members with the Magnel’s graphical method, 

and in our next class we shall move on to the detailing of members for flexure.  

Thank you. 


