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Welcome back to prestressed concrete structures. This is the fourth lecture of module 

four on design of members.  

(Refer Slide Time: 01:18) 

 

In this lecture, we shall study the choice of different sections; then we shall move on to 

the determination of limiting zone and finally, we shall talk a little bit on post-tensioning 

in stages.  

 First is the choice of sections.  
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The type of section is selected based on the use of the structure, architectural 

requirements, casting and fabrication options, available technology and skilled work 

force. Here, a few comments are given for the available types of section. The prestressed 

applications are quite varied in nature. The type of section satisfies the structural strength, 

the architectural requirement and the aesthetic consideration. The choice of sections is a 

wide ranging topic. In this lecture, we shall cover the different sections in a summarized 

form by stating the basic points for each type of section. 
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The sections here are broadly classified under rectangular section, T-section, I-section 

and inverted T-section. Some variations of each type are shown under the corresponding 

broad groups. The sections in each group have similar analysis procedure for the primary 

flexural reinforcement. The sections shown are not exclusive.  

(Refer Slide Time: 03:55) 
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The broad groups that we have selected are: first, in the rectangular type of section where 

there is no outstanding flange; the second is the T-section, where the outstanding flange 

is at the top; next the I-section, where there are flanges at the top and the bottom, and 

finally, the inverted T-section, where the flange is at the bottom.  

(Refer Slide Time: 04:27) 

 

Regarding variations, again we are showing some typical types of sections with 

schematic sketches. A rectangular section can be trapezoidal in nature, where the width 

of the web varies along the depth. A T-section can have a bulbed flange at the bottom. 

The flange need not always be outstanding. There can be a flange between two webs. For 

the Type (a) section under this category, there is more room for tendons in the lower 

flange. The purpose of enlarging the bottom of the web is to place the tendons properly. 

For (b) there is better stability during erection. After placing the members adjacently, a 

layer of topping concrete can be cast.  

For the third group, we can have a box type of section which is more common in bridges. 

There can be a void in a section to reduce weight and to create a conduit. For a box type 

of section, the analysis is similar to a flanged section. For a voided section, if the size of 

the void is smaller than a certain value, then the section can be treated as a solid section 

with equivalent properties. The box sections are torsionally stiff and strong. The inverted 

T-section can have variations like U-section (channel section).   
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Let us study some of the aspects of these different types of sections. The fabrication is 

easy for a rectangular section. It is easy for even a T-section. But it can be expensive for 

an I-section. The fabrication for the inverted T-section can also be difficult. Regarding 

the space of reinforcement, the rectangular section has adequate space. A T-section will 

have less than adequate space unless the bottom of the web is enlarged as a bulb. There is 

good space for the tendons in an I-section as well as in an inverted T-section.  

(Refer Slide Time: 07:49) 
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Let us now study some structural properties for these sections, when they are used as 

non-composite sections. Regarding flexural efficiency, the rectangular section is poor. 

The lever arm which is represented by z, is about 40% of the total depth which is 

represented by h. Compared to a rectangular section, a T-section is flexurally more 

efficient and the lever arm is about 50% of the total depth. The I-section is flexurally very 

good and the lever arm is 70% of the total depth. The inverted T-section is very 

inefficient under sagging. However, the efficiency can be increased with a topping slab, 

which we shall mention under the category of composite sections. The ultimate moment 

capacity for an inverted T-section is small as compared to the other types of sections. 

(Refer Slide Time: 09:08)  

 

If we look into the applications of this type of sections as non-composite sections, then 

the rectangular sections are used for light load and short span. The self-weight moment 

which is represented as Msw is quite large compared to the total moment carried by the 

section, which is represented as MT. The T-section is good for long span roofs, when the 

live load is much smaller compared to the dead load. For a T-section also, the ratio 

Msw/MT is large. The I-section is good for long span and heavy loads. Here, the Msw/MT 

ratio is small compared to the rectangular and T-sections. For inverted T-sections, the 

applications are limited. If such a section is used, the Msw/MT ratio will be large.  
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Let us see the properties of the sections, when they are used as composite sections. Here, 

there will be topping slabs above the sections. Regarding efficiency, the rectangular 

section is very good, when the section is shored during the casting of the slab. For the T-

section, the increase in load capacity is marginal, if the topping slab is of small depth. For 

the I-section, the increase in the flexural capacity can be very good. For an inverted T-

section, the flexural capacity increases substantially with a topping slab. Thus, the 

inverted T-section is flexurally efficient, only in presence of a topping slab in composite 

construction.  
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Regarding application, the rectangular section is good for building construction, such as 

in joists. For the T-section, the topping concrete ties the units and allows the members to 

deflect together. For this type of section, additional formwork is not required for the 

topping concrete. The I-section is used in long span applications in buildings and bridges. 

The inverted T-section can be used in bridges with cast-in-place flange at the top. 

(Refer Slide Time: 12:31) 
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The different types of sections can be compared by a quantity called flexural efficiency, 

which is represented by the symbol η. The flexural efficiency is defined in terms of the 

radius of gyration, r as follows.  Note, r2 = I/A, where I is the moment of inertia and A is 

the sectional area.   

(Refer Slide Time: 12:55)  

 

The flexural efficiency is defined as η = r2/ctcb, where ct is the distance of the top of the 

section from the CGC, and cb is the distance of the bottom from the CGC. To this 

expression, we are multiplying the factor (ct + cb)/h. This factor is equal to 1, because ct 

+ cb = h. Then, splitting the numerator of this factor, η = (r2/cb + r2/ct)/h, which leads to 

the final expression η = (kt + kb)/h.  The quantity kt + kb represents the depth of the kern 

zone.  

Thus, the above quantity compares different types of sections in terms of their flexural 

efficiency. For a section of a certain height h, if the depth of the kern zone can be 

increased, then the flexural efficiency goes up.  
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For a rectangular section, η = 0.33. For an I-section, η can be around 0.5. Thus, we see 

that the flexural efficiency of an I-section is greater than that of a rectangular section.  

 

Next, we move on to another important aspect which is the determination of limiting 

zone. This helps us to place the CGS of the tendons, as well as the distribution of the 

tendons along the span of the beam. 
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In the flexural design, we had studied how to calculate the required eccentricity of the 

CGS at the critical section. Now we shall study, how to place the CGS throughout the 

span of the beam. For full prestressed members which are represented as Type 1, tension 

is not allowed under service conditions. If tension is also not allowed at transfer, the 

compression in the concrete which is represented as C, always lies within the kern zone. 

The limiting zone is defined as the zone for placing the CGS such that C always lies 

within the kern zone. Also, the maximum compressive stresses at transfer and service 

should be within the allowable values.  

For Type 2 and Type 3 members, tensile stresses are allowed and hence, the compression 

in concrete can lie outside the kern zone, but it has to be within a certain limit such that 

the tensile stresses at the bottom or at the top are within the allowable values.  
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The limiting zone is defined as the zone for placing the CGS such that the tensile stresses 

in the extreme edges are within the allowable values. Also, the maximum compressive 

stresses at transfer and service should be within the allowable values.  

(Refer Slide Time: 17:55) 

 

Thus, the definition of the limiting zone is more general for Type 2 and Type 3 members 

as compared to Type 1 members because for Type 2 and Type 3 members, we are 
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allowing tension in the concrete and hence, the compression can lie outside the kern zone. 

Remember that, the limiting zone is defined for the CGS. The individual tendons may lie 

outside the limiting zone provided the CGS is within the limiting zone.  

(Refer Slide Time: 18:31) 

 

The limiting zone is determined from the maximum or minimum eccentricities of the 

CGS along the beam corresponding to the extreme positions of C. The maximum 

eccentricity (which is represented as emax) at any section corresponds to the lowest 

possible location of C at transfer that generates allowable tensile stress at the top of the 

section. Also, the maximum compressive stress at the bottom should be within the 

allowable value.  
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The minimum eccentricity of the CGS (which is represented as emin) corresponds to the 

highest possible location of C at service, that generates allowable tensile stress at the 

bottom of the section. Also, the compressive stress at the top should be within the 

allowable value.  

Thus, to determine the minimum eccentricity of the CGS, we are allowing the 

compressive force to rise as much as possible at a particular section, such that the 

compressive stress generated at the top and the tensile stress at the bottom are within the 

allowable values. The purpose of allowing the compression to rise as much distance as 

possible is to have an efficient design. With that, we are able to reduce the amounts of 

prestressing force and prestressing steel.  
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The following material gives the expressions of emax and emin for Type 1 and Type 2 

sections. The difference between Type 2 and Type 3 sections is only in the value of the 

allowable tensile stress. If we have the expressions for Type 2 section, we can use that for 

Type 3 section, provided we change the value of the allowable tensile stress. The zone 

between the loci of emax and emin is the limiting zone of the member for placing the CGS.  

We calculate emin and emax at different sections throughout the length of the beam. Next, 

we join them by lines, one line for the emin values, and another line for the emax values. 

The space in between these two lines is termed as the limiting zone for placing the CGS 

of the tendons.  
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The values of emax and emin can be determined by equating the stresses at the edges of the 

concrete with the allowable values. Else, explicit expressions of emax and emin can be 

used.  

There are two ways to determine the values of emax and emin at a particular section. One 

way is to write the expression of the stresses at the top and the bottom, equate the stresses 

to the allowable values; from there, we can find out the emax or emin values. Another 

approach is to use explicit expressions of emax and emin so that, we can directly calculate 

their values without calculating the stresses. Both the approaches will give the same 

results.  

Here, the expressions of emax and emin based on allowable tensile stress are given.  
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For Type 1 section, at transfer we are pushing down the CGS as low as possible to have 

the lowest possible location of C which is at the bottom kern point. In this figure, we can 

see that the C is located at a distance kb from CGC, and the stress block in concrete is 

triangular with values zero at the top and fb at the bottom.  

(Refer Slide Time: 24:16) 
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The lever arm (distance between T and C) at transfer is governed by the self-weight 

moment (Msw). It is equal to emax ‒ kb = Msw/P0, where P0 is the value of C at transfer. 

From this, we find the expression of emax.  

emax = Msw/P0 + kb  

This expression is based on satisfying the allowable tensile stress at the top, which is zero 

for a Type 1 member. We should also check emax to satisfy that, the stress at the bottom 

fb should be less than the allowable compressive stress at transfer, which is represented 

as fcc,all. 

(Refer Slide Time: 25:14)  

 

Next, for Type 1 section, we are determining emin. At service, C is at the top of the kern 

zone which is at a distance kt from CGC. The stress block in concrete is triangular with 

zero stress at the bottom and a certain value ft at the top. 
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The lever arm at service is governed by the total moment (MT). It is equal to emin + kt = 

MT/Pe, where Pe is the value of C at service. Thus,  

emin = MT/Pe ‒ kt  

Also, the compressive stress at the top ft should be less than the allowable compressive 

stress at service. If for a particular section emin is negative, it implies that the CGS can be 

placed above CGC. This happens near the supports.  
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For Type 2 section at transfer, we can push the CGS even below. C can lie outside the 

kern zone so that, the tensile stress generated at the top is equal to the allowable value. 

The stress block in the concrete has some tension at the top. The distance of C from the 

bottom most kern point is represented as e1 and the distance between C and T is 

represented as e2.  

(Refer Slide Time: 27:54)  
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We can write that the distance between the CGS and the bottom most kern point as emax ‒ 

kb = (Msw + fct,all Akb)/P0. From this we find an explicit expression of emax. 

emax = (Msw + fct,all Akb)/P0 + kb  

This expression is the general form of the previous expression that we had seen for Type 

1 section. This expression has an extra term involving the allowable tensile stress at the 

top (fct,all). Also, the compressive stress at the bottom should be less than the allowable 

compressive stress at transfer. 

 

 (Refer Slide Time: 29:26)  

 

For Type 2 section at service, we can have C going above the kern region by a distance 

equal to e3, so that we have a tensile stress at the bottom which is equal to fct,all for 

service. 

The minimum eccentricity plus the distance of the kern point from CGC is equal to (MT ‒ 

fct,all A kt)/Pe.  Thus,  

emin = (MT ‒ fct,all A kt)/Pe ‒ kt.  
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The expression of emin for a Type 2 section is similar to that for a Type 1 section.  It has 

an additional term involving the allowable tensile stress in the concrete.  If we substitute 

fct,all = 0, then we get back the expression for a Type 1 section. Also, we need to check 

the stress at the top to be within the allowable compressive stress under service 

conditions.  

(Refer Slide Time: 31:09)  

 

The zone between the loci of emax and emin is the limiting zone of the member for placing 

the CGS for a given loading condition. The values of emax and emin for several sections 

can be determined at regular intervals along the length of the beam. For example, an 

interval of one-tenth of the span can be selected. Depending on the moment due to self-

weight and the moment due to service loads, we can find out the emax and emin values for 

each section. Once we join these points, we get the boundaries of the limiting zone and 

we can place our CGS within this limiting zone.  
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The following figure shows the limiting zone as the shaded region for a simply supported 

beam subjected to uniformly distributed load. Here, the locus of emin and the locus of emax 

are the upper and the lower boundaries of the limiting zone, respectively. The depth of 

the limiting zone is wide at the end. As we proceed towards the centre of the span, the 

depth of the limiting zone gets reduced. 

(Refer Slide Time: 32:55)  
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Let us now try to understand the concept of limiting zone by solving a problem. For the 

post-tensioned beam with a flanged section as shown in the next slide, the span is 18 m. 

For uniform loads, the profile of the CGS is parabolic. The live load moment at mid-span 

(MLL) is 648 kNm. The prestress after transfer (P0) is 1600 kN. Assume 15% loss at 

service.  

Evaluate the limiting zone of CGS, if the allowable stresses at transfer and at service are 

as follows. For compression, the allowable stress (fcc,all) is 18.0 N/mm2. For tension, the 

allowable stress (fct,all) is 1.5 N/mm2. In this problem, the allowable values are same for 

transfer and service. But in general, these values will be different because the strength of 

the concrete will be different at transfer and at service.  

(Refer Slide Time: 34:11)  

 

The section is an unsymmetric I-section, where the top flange width is 500 mm and the 

bottom flange width is 250 mm. The total depth is 1000 mm. The depth of both the 

flanges is 200 mm, and the width of the web is 150 mm. The CGS is intended to be 

located at a distance of 150 mm from the soffit of the beam at mid-span.   
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First, we are calculating the geometric properties. Since the section is unsymmetric, we 

need to locate the CGC which is not at the mid-depth any more. The section is divided 

into three rectangles for the computation of the geometric properties. The centroid of 

each rectangle is located from the soffit. For the first rectangle, the centroid is 900 mm 

from the soffit. For the second rectangle, the centroid is 500 mm from the soffit and for 

the third rectangle it is 100 mm from the soffit. We intend to find out ȳ, the distance of 

the CGC from the soffit. Once we have determined ȳ, we can calculate ct, the distance of 

the top from the CGC and cb, the distance of the bottom from the CGC. Of course, cb = 

ȳ. 
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The area of the section is given as the summation of the areas of the three rectangles. 

Area of Rectangle 1 is A1 = 500 × 200 = 100,000 mm2 

Area of Rectangle 2 is A2 = 600 × 150 = 90,000 mm2  

Area of Rectangle 3 is A3 = 250 × 200 = 50,000 mm2  

Thus, the total area A = A1 + A2 + A3 = 240,000 mm2.  
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The distance of CGC from the soffit is given as the summation of the first moments of 

the individual areas divided by the total area. The moment of the first area is A1 × 900, 

the moment of the second area is A2 × 500, and the moment of the third area is A3 × 100. 

All these three distances are the distances of the centroids of the individual rectangles 

from the soffit of the beam.  The sum of the moments divided by the total area is ȳ = 

583.3 mm. Thus, the CGC is located at a distance of 583.3 mm from the soffit of the 

beam. Therefore, cb = ȳ = 583.3 mm, ct = 1000.0 ‒ 583.3 = 416.7 mm. 
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Moment of inertia of Rectangle 1 about axis through CGC can be computed by the 

parallel axis theorem. I1 is equal to the moment of inertia about the centroid of the 

rectangle plus the area of the rectangle times the distance squared. Thus,  

I1 = 500 × 2003/12 + A1 × (900 ‒ 583.3)2 = 1.036 × 1010 mm4.  

Similarly, we can calculate the moments of inertia of Rectangles 2 and 3.  

I2 = 3.32 × 109 mm4.  
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I3 = 1.184 × 1010 mm4.  

The total moment of inertia of the section I = I1 + I2 + I3 = 2.552 × 1010 mm4.  

(Refer Slide Time: 39:49)  

 

Next, we are calculating the moment due to self-weight. The distributed self-weight is 

equal to the unit weight of concrete which is taken as 24 kN/m3 times the area which is 

240,000 mm2 times a factor which converts mm2 to m2.  This gives a self-weight of 5.76 
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kN/m. The moment due to the self-weight Msw is equal to the weight times the span 

squared divided by 8. After substituting the values, Msw = 233.3 kNm.  

(Refer Slide Time: 40:42)  

 

Now, we move on to calculating the limiting zone. The values of emax and emin are 

determined by equating the stresses at the edges of concrete with the allowable values. 

The expression of stress at depth y is given below. 

f = ‒ P/A ± Pey/I ± My/I  

The first term is the uniform component.  The second term is due to the eccentricity of 

the prestressing force.  The third term is due to the moment. The summation of the three 

components gives the resultant stress profile.  
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At mid-span, for emax, consider the load stage at transfer. First, calculate e based on the 

stress at the bottom fb = ‒ 18.0 N/mm2, the allowable compressive stress. The individual 

components of the stress are as follows. 

‒ P0/A = ‒ 1600 × 103 N / 240 × 103 mm2 = ‒ 6.67 N/mm2.  

P0ecb/I = ‒ 1600 × 103 × e × 583.3 / 2.552 × 1010 = ‒ 0.0366e. Thus, this component of 

the stress is in terms of the eccentricity e.  
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Mswcb/I = 233.3 × 106 × 583.3 / 2.552 × 1010 = 5.33 N/mm2.  

Thus, the total stress at the bottom is fb = ‒ 6.67 ‒ 0.0366e + 5.33, which is equated to 

‒18.0 N/mm2. Solving, e = 455.2 mm. This value of e is based on satisfying the 

compressive stress at the bottom. 

(Refer Slide Time: 44:31)  
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Let us now calculate e based on the allowable tensile stress at the top ft = 1.5 N/mm2. 

The uniform component of the stress is already known to be ‒ 6.67 N/mm2. The other 

components are as follows. 

P0ect/I = 1600 × 103 × e × 416.7 / 2.552 × 1010 = 0.0261e 

Mswct/I = ‒ 233.3 × 106 × 416.7 / 2.552 × 1010 = ‒ 3.81 N/mm2  

(Refer Slide Time: 45:28)  

 

Thus, the total stress at the top is ft = ‒ 6.67 + 0.0261e ‒ 3.81, which is equated to 1.5 

N/mm2. Solving, e = 460.8 mm. 
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Out of the two values, the lower value of 455.2 mm governs. This is selected as the 

maximum eccentricity for the CGS at mid-span.  

(Refer Slide Time: 46:20)  

 

For emin, consider the load stage at service. We are proceeding with a similar set of 

calculations.  
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The stress at the top (ft) is equated to ‒ 18.0 N/mm2. The effective prestress (Pe) is equal 

to 85% of the prestress at transfer (P0).  The individual components of the stress are as 

follows. 

Pe/A = 0.85 × P0/A = ‒ 0.85 × 6.67 = ‒ 5.67 N/mm2 

Peect/I = 0.85 × 1600 × 103 × e × 416.7 / 2.552 × 1010 = 0.022 e.  

(Refer Slide Time: 47:26)  

 

MLLct/I = ‒ 648.0 × 106 × 416.7 / 2.552 × 1010 = ‒ 10.58 N/mm2  

Thus, the total stress at the top is ft = ‒ 5.67 + 0.022e ‒ 3.81 ‒ 10.58, which is equated to 

‒ 18.0 N/mm2.  
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Solving, e = 93.6 mm. 

Next, e is to be calculated based on the allowable tensile stress at the bottom fb = 1.5 

N/mm2.   

(Refer Slide Time: 48:47)  

 

Peecb/I = ‒ 0.031e 
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MLLcb/I = 14.81 N/mm2.  

(Refer Slide Time: 49:22) 

 

Thus, the total stress at the bottom is fb = ‒ 5.67 ‒ 0.031e + 5.33 + 14.81, which is 

equated to 1.5 N/mm2.  

(Refer Slide Time: 49:45) 
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Solving, e = 418.4 mm. Out of the two values of e, the higher value of 418.4 mm governs 

because if we still reduce e then, we shall have tensile stress larger than the allowable 

value at the bottom.  

Thus, we have found out the two extreme values of the CGS at the mid-span of the 

section.  

(Refer Slide Time: 50:38)  

 

Similarly, we can find out the limiting position at the end. Here, the moments due to self-

weight and live load are equal to zero. Going through a similar procedure, at transfer for 

fb = ‒ 18.0 N/mm2, e = 309.6 mm.  
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For ft = 1.5 N/mm2, e = 314.2 mm.  Selecting the lower value of the two, emax = 309.6 

mm.  

(Refer Slide Time: 51:17)  

 

At service, for fb = 1.5 N/mm2, e = ‒ 223.0 mm.  
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For ft = ‒ 18.0 N/mm2, e = ‒ 436.0 mm. Since, the values of e are negative, the CGS can 

lie above the CGC. The position of CGS closer to the CGC is selected. Thus, out of the 

two values, the numerically smaller one is selected.  Therefore, emin = ‒ 223.0 mm.  

(Refer Slide Time: 52:15)  
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Similarly, the values of emax and emin can be determined at regular intervals along the 

span. The limiting zone is available by joining the points by straight lines. In the 

following sketch the limiting zone is shown shaded.  

(Refer Slide Time: 52:29)  

 

Thus, at the centre, the depth of the limiting zone is small which is between 418.4 and 

455.2 mm. At the end, the depth of the limiting zone is large. Here, the CGS can lie 

above the CGC, up to a height of 223 mm, and it can lie below the CGC up to a depth of 

309.6 mm.  
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From the sketch of the limiting zone, it is evident that the tendons can be spread out at the 

ends. This is necessary to anchor the tendons and reduce the stress concentration at the 

ends. The following photo shows the spreading of the tendons near the end.  

(Refer Slide Time: 53:38)  

 

We are learning another concept which is helpful in avoiding stresses going beyond the 

allowable values, and this concept is called post-tensioning in stages.  
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In the previous expressions of emax and emin, the values of P0 and Pe can be for different 

levels of prestressing for post-tensioned members. At transfer, the member can be 

partially prestressed in the casting yard, from which P0 is calculated.  

(Refer Slide Time: 55:10)  
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After the member is placed in its permanent location, it can be further prestressed before 

it is put into service. The application of prestress in different stages is termed as post-

tensioning in stages. The value of Pe is calculated from the revised prestressing force.  

In the previous example, both P0 and Pe were due to the same prestressing force at 

transfer. But, the prestress can be applied in stages. First in the casting yard, the prestress 

is partial, for which P0 is low and emax is increased. Next, after the member is moved to 

its permanent location, the prestress can be increased. By this time, the concrete has 

attained more strength and the allowable stresses go up. Also, the loss in the prestress is 

reduced. The value of Pe is calculated from the new value of the prestressing force.  

 

(Refer Slide Time: 57:37) 

 

Thus, the limiting zone for placing the CGS and the available zone for the shift in C 

under service loads are also increased.  
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In today’s lecture, we studied three important concepts of design of members for flexure. 

First, we studied the choice of sections. We know that the sections can be of varied types 

depending on the type of application, the available technology and money for the 

construction. We have divided the sections into four broad groups: the rectangular 

section, the T-section, the I-section and the inverted T-section. We saw certain variations 

of these sections. We can have a tapered section, a bulbed T-section, a box section and U-

type channel section. For long span structures, the I-section or the T-section are preferred.  

Next, we moved on to the determination of the limiting zone. The limiting zone helps to 

place the tendons throughout the span of the beam. For a simply supported beam, the 

limiting zone is deeper at the ends and shallower towards the mid-span. This helps to 

spread out the tendons near the ends for anchorage, and to reduce stress concentration. 

Post-tensioning in stages can increase the depth of the limiting zone. With this, we are 

ending the design of members.  

Thank you. 
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