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Welcome back to prestressed concrete structures. This is the sixth lecture in module three 

on analysis of members. In today’s lecture, we shall study analysis of members under 

flexure, specifically for the ultimate strength of partially prestressed sections and 

unbonded post-tensioned beams. We shall also look into the analysis of behavior of 

members. 

First, we are studying the analysis of partially prestressed sections.  

(Refer Slide Time 01:46) 

 

The analyses that are presented earlier are for sections which do not have any 

conventional non-prestressed reinforcement. Usually, conventional reinforcement is 
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provided in addition to the prestressing steel. When this reinforcement is considered in 

the flexural capacity, the section is termed as a partially prestressed section. 

(Refer Slide Time: 02:12) 

 

What are the reasons for using a partially prestressed section? The reasons are as follows. 

First, a partially prestressed section is economical compared to a fully prestressed section. 

We do not need as much amount of prestressing steel and anchorage units as compared to 

a fully prestressed section. 

Second, the cambering is less compared to an equivalent section without conventional 

reinforcement. We have seen earlier that, when the prestress is transferred to a beam the 

beam tends to deflect upwards, which is termed as camber. The camber is large for beams 

with high prestress. For a partially prestressed section, the camber is lower and hence, 

possibility of cracking due to camber is reduced.  
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The third reason for using a partially prestressed section is that the ductility is more in 

such a section. Towards the end of this lecture we shall study about ductility.  

The fourth reason is that any reversal of moments in the beam, for example due to an 

earthquake, is not detrimental in a partially prestressed beam as compared to an 

equivalent section without conventional reinforcement. In a fully prestressed beam, the 

prestress is designed for a certain value of the moment due to the load acting in a certain 

direction. But in case if there is any reversal of the moment, then the member is prone to 

premature failure compared to an equivalent reinforced concrete beam. A partially 

prestressed section is somewhere in between a fully prestressed section and a reinforced 

section. That means in a partially prestressed section, we try to have a balance between 

the benefits of a reinforced section and a prestressed concrete section. Depending on the 

situation, the partial prestressing is designed. 
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A partial prestressed section can be analyzed either as a rectangular or a flanged section. 

In our previous lectures, we have studied the analysis of fully prestressed sections for 

rectangular and flanged sections. We analyze a section as a flanged section, when the 

flanges are in compression and the depth of neutral axis is larger than the depth of the 

flange. In a partially prestressed section also, we can have either a rectangular section or 

a flanged section.  

A section can be doubly reinforced with reinforcement near the compression face. We 

know about singly reinforced and doubly reinforced sections in conventional reinforced 

concrete. A similar classification is possible in partially prestressed members also. That 

means, in a doubly reinforced partially prestressed section there is reinforcement near the 

tension face, as well as near the compression face. In this lecture, we shall study the 

analysis of a rectangular doubly reinforced partially prestressed section. 
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The following sketch shows the beam cross-section, strain profile, stress diagram and 

force couples at the ultimate state for a partially prestressed section. 

(Refer Slide Time: 06:56) 

 

In the analysis for ultimate state, first we start with the strain diagram. The failure is 

defined as when the strain in the extreme compression fibre is equal to 0.0035. A linear 

strain diagram is drawn based on the principle, plane sections remain plane till ultimate. 
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The strains at the different levels of steel are identified. For a partially prestressed 

section, As
/ is the amount of steel near the compression face at a depth d/. The area of 

prestressing tendon is represented as Ap and its CGS lies at a depth dp. The steel near the 

tension face is represented as As and its centroid is at a depth d. Thus for this section, we 

have three layers of steel. For each layer of steel, we can identify the strain from the 

strain diagram. The strains are represented as εs
/ for the steel near the compression face, 

and εs for the steel near the tension face. For the prestressing steel, εdec is the difference 

between the strain in itself and in the surrounding concrete.  The strain difference exists 

for any loading on the beam. When the strain in the concrete at the level of the CGS is 

added to εdec, the total strain in the prestressing tendon is obtained. For the ultimate state, 

the total strain is represented as εpu. 

From the strain diagram, we are moving on to the stress diagram where we calculate the 

stress block for concrete and the stresses for the three layers of steel, from the constitutive 

relationships. For the stress in concrete, the diagram is parabolic and rectangular with a 

maximum stress of 0.447 fck. The stress in the compression steel is represented as fs
/ and 

is calculated from the strain εs
/. The stress in the tension steel is represented as fs and is 

calculated from the strain εs. The stress in the prestressing tendon fpu, is calculated from 

the total strain εpu.  

From the stress diagram, we move to the force diagram. Cs
/ is the force acting in the 

compression steel. Cc is the resultant of the stress block in concrete. Tp is the tension 

carried by the prestressing steel, and Ts is the force carried by the reinforcement near the 

tension face. 
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The expressions of the forces are as follows: 

Cs
/ = As

/fs
/, Cc = 0.36fckxub, Tp = Apfpu and Ts = Asfs.  

(Refer Slide Time: 11:33) 
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Next, we write the equations based on the principles of mechanics. First, let us start with 

the equations of equilibrium. For the longitudinal forces, ΣF = 0, which gives the total 

tension is equal to the total compression. The tension constitutes of Tp, the tension in the 

prestressing tendon, and Ts which is the tension in the reinforcement steel near the 

tension face. The compression also consists of two components, Cc which is the 

component taken by the concrete and Cs
/ which is the compression taken by the 

compression steel. We are writing the expressions of the individual forces, and this gives 

us the first equilibrium equation. 

(Refer Slide Time: 12:35) 

 

The second equilibrium equation is for the moment. Here we are writing the moment 

with respect to the axis passing through the CGS. The moment at ultimate is represented 

as MuR or the ultimate moment of resistance. That is equal to the summation of the 

individual forces times the respective lever arms. The first term is Ts(d ‒ dp), where d ‒ 

dp is the lever arm between the tension steel and the CGS.  The second term is Cc (dp ‒ 

0.42xu), where dp ‒ 0.42xu is the lever arm between the CGS and the resultant of the 

compression in concrete.  The third term is Cs
/ (dp ‒ d/), where dp ‒ d/ is the lever arm 

between the CGS and the compression steel. Once we substitute the expressions of Ts, Cc 

and Cs
/ from the previous equations, we get an expression of the ultimate moment of 

resistance.  
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The second principle provides the equations of compatibility of strains. For each layer of 

steel there is a compatibility equation. The compatibility of strains means that the steel 

and the surrounding concrete are deforming together. If there are distributed reinforcing 

bars in several layers and the spacing between the layers is large, then the use of 

compatibility equation for each layer is more accurate than the use of one compatibility 

equation for the centroid of the layers. The equations that we shall learn now, will help us 

to analyze any beam where we have distributed steel in several layers, with wide spacing 

between the layers.  
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In this figure, we can see that there are three layers of steel. The top layer is the steel near 

the compression face. Then we have the prestressing steel which is at a depth dp, and 

finally we have the steel near the tension face. The first equation is related with the 

prestressing steel. The depth of the neutral axis which is represented as xu, is related to dp 

by the similarity of the triangles. The second equation is related with the steel near the 

tension face. The depth of the steel from the neutral axis (d ‒ xu) divided by xu is equal to 

εs divided by 0.0035. The third equation is for the steel near the compression face, which 

relates the distance of the compression steel from the neutral axis (xu ‒ d/) to xu as εs
/ 

divided by 0.0035.  

10 
 



(Refer Slide Time: 17:13) 

 

Next we move on to the constitutive relationships. A constitutive relationship relates the 

stress and strain in a material. For concrete, the constitutive relationship is considered in 

the expression of Cc which we had seen earlier. This is based on the design stress‒strain 

curve for concrete under compression. 

(Refer Slide Time 17:35) 
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The design curve has a maximum stress of 0.447fck, and the maximum strain εcu is equal 

to 0.0035. When we calculate the area of the stress block, we get the expression of Cc 

equal to 0.36fckxub.  

(Refer Slide Time 18:10) 

 

The second constitutive relationship is for the prestressing steel, where the relationship is 

denoted as fpu = F1(εpu). 

(Refer Slide Time 18:24)  
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This function is available from the design curve for the prestressing steel. 

(Refer Slide Time 18:35) 

 

The third constitutive relationship is for the reinforcing steel of two layers. The equation 

for the bottom layer near the tension face is represented as fs = F2(εs). The equation for 

the steel near the compression face is equal to fs
/ = F3(εs

/). 

(Refer Slide Time: 19:19) 
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Both the functions F2 and F3 are same, if we are using the same grade of steel for the 

bottom steel and the top steel. For mild steel bars, the design curve is an elasto-plastic 

curve without any strain hardening.  

(Refer Slide Time: 19:56) 

 

Usually, the strains εs and εs
/ are larger than the yield strain. Therefore, fs

 = 0.87 fy and 

fs
/
 = 0.87 fy. 

(Refer Slide Time: 20:36) 
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In an analysis, the following variables are given: 

b = breadth of the section, d = depth of the centroid of the reinforcing steel near the 

tension side, d/ = depth of the centroid of the reinforcing steel near the compression side, 

dp = depth of the centroid of prestressing steel (CGS). 

(Refer Slide Time: 21:00) 

 

We know the sectional areas of steel. As = area of the reinforcing steel in the tension side, 

As
/ = area of the reinforcing steel in the compression side, Ap = area of the prestressing 

steel. 

15 
 



(Refer Slide Time: 21:16) 

 

εdec is known from the amount of prestressing. This is the strain in the prestressing steel 

at decompression of concrete. The expression of εdec for a pre-tensioned beam is different 

from that for a post-tensioned beam. For a pre-tensioned beam, εdec is the same as the 

strain in the steel just before the transfer of the prestress. But for a post-tensioned beam, 

εdec is the strain in the prestressing steel plus the strain in the concrete after the 

prestressing operation has been done. We also know the material properties: fck = 

characteristic compressive strength of concrete, fy = characteristic yield stress of the 

reinforcing steel, fpk = characteristic tensile strength of the prestressing steel. 
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What are the unknown quantities? The first unknown quantity is MuR which is the 

ultimate moment capacity. The second unknown quantity is xu, the depth of the neutral 

axis at ultimate. 

(Refer Slide Time: 22:37) 
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We do not know the strains in the steel at ultimate: εs = strain in reinforcing steel for the 

tension side, εs
/ = strain in the reinforcing steel for the compression side, εpu = strain in 

the prestressing steel at the level of CGS. 

(Refer Slide Time: 22:57) 

 

We also do not know the stresses in the steel at ultimate: fs = stress in reinforcing steel 

for the tension side, fs
/ = stress in reinforcing steel for the compression side, fpu = stress in 

prestressing steel. With this set of known and unknown quantities, the objective of an 

analysis is to find out MuR, the ultimate moment capacity. 
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The set of equations can be solved iteratively by the method of strain compatibility, as we 

have learnt for a fully prestressed section. 

(Refer Slide Time: 23:53) 

 

First, we are assuming the depth of the neutral axis which is xu. Next, we are calculating 

εpu from Eqn. 3f-7, where the equation is rewritten as εpu = 0.0035/(xu/d) ‒ 0.0035 + εdec. 

Once we know εpu, we can calculate fpu from Eqn. 3f-10 which is the constitutive 
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relationship for the prestressing tendon, fpu = F1(εpu). Next, we calculate the tension in 

the prestressing steel which is given as Tu = Apfpu. 

(Refer Slide Time: 24:46) 

 

Next, from Eqn. 3f-8 we calculate εs = 0.0035(d‒xu)/xu. From Eqn. 3f-11, fs = F2(εs). 

The tension in the reinforcement steel at the tension face is equal to Ts = Asfs. 

(Refer Slide Time 25:25) 
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Finally, we calculate the strain in the steel close to the compression face. From Eqn. 3f-9, 

εs
/ = 0.0035(xu‒d/)/xu. From Eqn. 3f-12, fs

/ = F3(εs
/). Next, Cs

/ = As
/ fs

/. 

(Refer Slide Time 26:01)  

 

Thus, what we did till now is from the compatibility equations, we calculated the strain in 

each layer of the steel. From the strain, we calculated the stress from the constitutive 

relationship, and from the stress we calculated the force carried by each layer of steel.  

 

Next, we are calculating the compression in the concrete Cc from Eqn. 3f-2. Cc = 

0.36fckxub. If the equilibrium equation Tu = Cu is not satisfied, then we need to change 

xu. If Tu < Cu, then decrease xu; if Tu > Cu, then increase xu. Thus, if the tension is less 

compared to the compression, then we need to reduce xu such that the amount of 

compression in concrete is less, and the tension in the steel is more. On the other hand, if 

the tension comes out to be larger than Cu, then we need to increase xu thus having more 

compression in the concrete, and lesser tension in the steel. Like that, we iterate till the 

first equilibrium equation is satisfied within tolerable limits. 

Next, we are calculating MuR from the second equilibrium equation. MuR = Ts (d ‒ dp) + 

Cc(dp ‒ 0.42xu) + Cs
/(dp ‒ d/). Thus, MuR consists of three components which come from 
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the three forces multiplied by the respective lever arms with respect to the CGS. Once we 

have calculated the capacity MuR, we compare it with the demand under the ultimate 

loads.  

Next we move on to the analysis of an unbonded post-tensioned beam. 

(Refer Slide Time 28:40)  

 

In an unbonded post-tensioned beam, the ducts are not grouted. Hence, there is no strain 

compatibility between the steel of the tendons and the concrete at a section. The 

compatibility is in terms of deformation over the length of the member. A sectional 

analysis is not possible. The analysis involves integrating the strain in concrete to 

calculate the deformation over the length of the member.  

Till now, whatever we have studied is for a bonded tendon and we have assumed a 

perfect bond between the steel and the concrete. From this, we wrote the strain 

compatibility equations. A perfect bond means that, there is a relationship between the 

strain in the steel with the strain in the concrete at the level of the steel. If the tendons are 

not grouted, then we cannot apply the strain compatibility equation and we cannot do a 

sectional analysis. A sectional analysis means that the analysis is based on the strains, 

stresses and forces at a section. Since the strain in the concrete at the level of the 
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prestressing steel and the strain in the prestressing steel are not related by an equation 

throughout the loading, we cannot use the conventional analysis for an unbonded tendon. 

For an unbonded tendon, we write the compatibility equation in a different way. We write 

the compatibility in terms of the total deformation of the concrete at the level of the 

prestressing steel, and the deformation of the prestressing steel. Since we need to 

calculate the deformation of the concrete throughout the length of the member, we need 

to integrate the strain in the concrete at the level of prestressing steel.  

The equation of compatibility is given as follows. 

(Refer Slide Time 31:01) 

 

Δp = Δcp, where Δp is the deformation of the tendon and Δcp is the deformation of the 

concrete at the level of prestressing steel, which is the CGS. 
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The change in stress in steel at ultimate which is denoted as Δfp, is determined from Δp. 

The stress in steel at ultimate is given by the sum of effective prestress fpe and Δfp. 

Unlike bonded tendons, where we calculated the stress from the strain at a particular 

location, here we are calculating the stress from the total deformation. Once we know the 

total deformation, we know the change in the stress in the tendon at ultimate, and then we 

calculate the total stress in the tendon at ultimate.  

The value of fpu for an unbonded tendon is less than that for a bonded tendon. We have 

seen earlier that for a bonded tendon, the stress at the cracks can get substantially high. 

Whereas for an unbonded tendon, the stress is averaged out for the length of the member, 

and hence when the member fails, the stress does not reach a value which a bonded 

tendon achieves. Once we know fpu, the ultimate moment is given by the conventional 

equation, MuR = Apfpu(d ‒ 0.42xu). 
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The rigorous method of evaluating fpu, based on deformation compatibility is difficult. 

IS: 1343-1980 allows the calculation of fpu and xu approximately from Table 12 

Appendix B, based on the amount of prestressing steel. The later is expressed as the 

reinforcement index ωp = Apfpk/bdfck. The variables are given for three values of 

effective span to effective depth ratio, which is denoted as l/d. 

(Refer Slide Time: 34:02) 
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As we had seen for bonded tendons, the code allows us to use some approximate values 

for xu and fpu, based on the reinforcement index. In the tables for a bonded tendon, fpu is 

normalized with respect to 0.87fpk, the maximum allowed stress in the tendon. In the 

tables for an unbonded tendon, fpu is normalized with respect to fpe, the effective 

prestress. 

The code has given the values of fpu/fpe for three values of l/d equal to 30, 20, and 10. 

The variations by fpu/fpe with respect to ωp are shown. With increasing amount of the 

prestressing steel fpu decreases, which follows the logic that with more steel, the less 

stress the tendon will carry at ultimate.  

(Refer Slide Time: 36:15) 

 

The other table gives us the values of the depth of the neutral axis, which is normalized 

with respect to the depth of the prestressing steel. xu/d increases with ωp. That means the 

more steel we have, we need to have a larger depth of the neutral axis to have higher 

compression in the concrete, to balance the stress in the steel at ultimate. Here also, the 

values of xu/d are given for the three values of l/d. 

Next, we move on to the analysis of behavior of a prestressed member.  
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The analysis of behavior refers to the determination of the complete moment versus 

curvature behavior of the section. The analyses at transfer, under service loads and for 

ultimate strength, correspond to three instances in the above behavior. Till now, for the 

analysis of members under flexure, first we had studied analysis at transfer and service 

loads which are similar, based on the elastic analysis. We had checked the stresses to be 

within the allowable values. For the analysis at ultimate, we found out the ultimate 

moment of resistance and we compared this capacity with the demand under factored 

loads. In both these type of analysis, we were interested only in either the stress or the 

strength.  

But when we talk of analysis of behavior, we are interested not only on the stress or 

strength, we are also interested in the deformation of the section which is given in terms 

of curvature. That means the analysis of behavior refers to the generation of the moment 

versus curvature curve for a section.  

How do we define curvature for a beam?  
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The curvature which is denoted as ϕ, is defined as a gradient of the strain profile. ϕ = (εc 

+ εcp)/d, where εc is the extreme concrete compressive strain and εcp is the strain in 

concrete at the level of prestressing steel (the CGS), and d is the depth of CGS. 

Remember that, we are talking of curvature not just at ultimate, but throughout the 

loading history, and hence εc is variable. It varies from zero till a value of 0.0035 at 

failure, as the load is increased.  

(Refer Slide Time: 39:38) 
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This sketch shows the definition of curvature which is equal to the gradient of the strain 

profile.  

(Refer Slide Time: 40:15) 

 

The analysis involves three principles of mechanics: first, the equilibrium of internal 

forces with the external loads at any point of the behavior. There are two equilibrium 

equations: a) force equilibrium equation, b) moment equilibrium equation. 

Earlier in our analysis for ultimate strength, we had come across the equilibrium 

equations at ultimate. But, now we are saying that the equilibrium is maintained 

throughout the loading history. That means, at any point of the loading history, the 

longitudinal forces are under equilibrium, and the internal moment is equal to the 

externally applied moment. The internal forces in concrete and steel are evaluated based 

on the respective strains, cross-sectional areas and the constitutive relationships. 
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The second principle that we use is the compatibility of the strains in concrete and in steel 

for bonded tendons. This assumes a perfect bond between the two materials. Thus, to 

relate the strains in the several layers of steel with the strain in the concrete, we use the 

strain compatibility equations. If we have unbonded tendon, then the strain compatibility 

equation cannot be used. For an unbonded tendon, we use the compatibility in terms of 

deformation. 

The third principle that we use, is the constitutive relationships relating the stresses and 

strains in the materials. These relationships are developed based on the material 

properties. 
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The equilibrium and compatibility equations, and the constitutive relationships can be 

solved to develop the moment versus curvature curve for a section. In this lecture, we are 

not going into the details of evaluating the moment versus curvature curve, but we are 

just learning the basic idea of how to develop the moment versus curvature curve. That 

means, we have set of equations which are written based on the principles of mechanics. 

Then, we solve those equations iteratively with an increasing amount of a certain variable 

say the maximum compressive strain in the concrete. Once we solve the set of equations 

for each value of εc, we get a complete moment versus curvature curve.  

The following plot shows the curves for a prestressed and a non-prestressed section. The 

two sections are equivalent in their ultimate flexural strengths. 
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The idea of studying the behavior is to understand the effect of prestressing in the 

moment versus curvature curve for a section. For a conventional reinforced concrete 

section which is non-prestressed, in the initial part we have an elastic behavior where the 

moment is proportional to the curvature. Then after cracking, there is an increase in the 

curvature, and then there is non-linearity in the curve. At the yielding of the steel, we can 

get a short kink in the curve if we are using mild steel. After the yielding, we see a 

substantial reduction of the slope of the curve. The curve goes up to a point when the 

extreme strain in the concrete reaches a value 0.0035.  

On the other hand, for a prestressed section we see that the curve has shifted from the 

origin. We have a higher cracking load for a prestressed section, and then after cracking 

we have a yielding of the steel. But here we do not see any sharp kink in the curve 

because the prestressing steel does not have a specific yield point. Finally, the strength in 

the prestressing steel also tapers off to a maximum value. We are comparing the curves of 

two sections whose ultimate strengths are same.  
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From the previous plot the following can be inferred:  

1) The prestressing increases the cracking load. This is the primary reason why we use 

prestressing in a concrete member. The increase in the cracking load leads to the 

following benefits: first, it leads to the reduction of steel corrosion, which in effect 

increases the durability of a section. Second, the full section is utilized; that means we 

have a higher moment of inertia for a prestressed section corresponding to a reinforced 

section, which gives higher stiffness. Thus, we have less deformation for a prestressed 

concrete section of equivalent strength, and thus it gives improved serviceability. Also, 

since the section is uncracked, we have increase in the shear capacity for a prestressed 

section. 
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2) The second observation is that the prestressing shifts the curve from the origin which 

means, for the prestressed member there is a negative curvature causing camber in 

absence of external moment. We have seen earlier that when the prestress is transferred 

to the concrete member, the member bends up. That means, now it has a negative 

curvature in absence of any external load. Even the self-weight may not be adequate to 

bring it down. Although the self-weight is acting downwards, still due to prestressing the 

member may hog up causing camber. A certain amount of external moment is required to 

straighten the member. That means, we need some external load to have zero curvature in 

a prestressed member; whereas, in a reinforced concrete member the curvature is zero in 

absence of any external load. 
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The third observation is for a given moment, the curvature of the prestressed member is 

smaller. 

(Refer Slide Time: 48:02) 

 

If we look at the two values of curvature from the two curves at a particular value of the 

moment, we see that the curvature in the prestressed concrete member is less than the 

curvature of the reinforced concrete member. Hence, prestressing reduces curvature at 
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service loads which gives less deflection at service loads. The fourth inference is, for a 

given reverse moment the curvature of the prestressed member is larger. In case if the 

moment reverses, then the curvature of the prestressed concrete member will be higher 

than that of a reinforced concrete section. We can conclude that prestressing is 

detrimental for the response under reverse moment. 

(Refer Slide Time: 49:03) 

 

The fifth inference is, the ultimate strength of the prestressed member is lower for reverse 

moments and hence, prestressing is detrimental under reverse moments. The sixth 

inference is for a partially prestressed section, with the same ultimate strength, the 

moment versus curvature curve will lie in between the curves of prestressed and non-

prestressed sections. Thus, for a partially prestressed section, we may get the benefits of 

both reinforced concrete section and a prestressed concrete section depending on the 

amount of prestressing. For a partially prestressed section, the cracking moment will be 

higher compared to a reinforced concrete section, but in case if there is a reversal in the 

moment, a partially prestressed section will not be as detrimental as a fully prestressed 

section. Hence, a partially prestressed section is preferable when there is a chance of 

reversal of moments. 
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Another important concept, we come to know by studying the behavior is the concept of 

ductility. The ductility is the measure of energy absorption.  

(Refer Slide Time: 50:35) 

 

For beams, we define the ductility in terms of curvature and we are denoting it as μ. The 

curvature ductility is the ratio of the curvature at ultimate which is denoted as ϕu, divided 

by the curvature at yield which is denoted as ϕy. When we are designing for seismic 

forces, the ductility becomes an important consideration.  

We know that for a prestressing tendon there is no definite yield point. Then how do we 

calculate ϕy in the moment versus curvature curve of a prestressed section? 

We have to define a point in the stress‒strain curve of the steel for which we define a 

corresponding yield curvature. This point we can select as the 0.2% proof stress point; 

that is the point with a plastic strain of 0.002. The definition can be changed if we want to 

have more plastic strain corresponding to the defined yield point. We can have a value 

equal to 0.87fpk/ep + 0.005, which gives a plastic strain of 0.005 for the defined yield 

point. Thus, the definition of yield point for a prestressed section is left to the analyst 

based on how much plastic strain the analyst wants at the onset of yielding.  
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It has been observed that, the ductility of prestressed beams is less than in reinforced 

concrete beams. That is, the ratio of ϕu/ϕy is less for a prestressed concrete beam as 

compared to a reinforced concrete beam. In design of members for seismic forces, 

ductility is an important requirement. In addition, seismic forces lead to reversal of 

moments near the supports of beams in a moment resisting frame. Hence, prestressing of 

beams in a moment resisting frame is not recommended in seismic areas.  

There are two considerations why prestressing may not be helpful in a seismic region. 

First, the ductility of a prestressed member is lower than a reinforced concrete member. 

Second, there is a chance of reversal of moments under seismic forces near the supports 

of the beams. Hence, prestressing is not recommended for beams in a moment resisting 

frame. We may have prestressed members which are simply supported, but those 

members are not part of the primary lateral load resisting frame. The primary lateral load 

resisting frame should have conventional reinforced concrete beams with appropriate 

detailing, to have adequate ductility and to have adequate capacity under reversal of 

moments. 
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The behavior of a beam and its ultimate strength can be determined by testing prototype 

specimens. The tests can be conducted under static or dynamic loads. Testing also helps 

to check the performance of the anchorage units. Whatever we have studied till now was 

based on analysis. But, it is also possible to understand the behavior of a prestressed 

member and to calculate its ultimate capacity based on experiments because, there can be 

beams which are prestressed in a non-conventional way for which the analysis can be 

difficult. There can be cross-sections which are not very easy for computation. In that 

case, an experimental program is helpful to understand the behavior. 
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(Refer Slide Time: 55:41) 

 

This photograph shows a prestressed concrete beam being tested in a laboratory. The 

distributed load has been simulated by eight point loads along the span of the beam. We 

see the reaction frame which supports the jacks. The jacks are applying loads on the 

brown steel beam, which is transferring the loads to the blue beams, and finally the blue 

beams are transferring the loads to the prestressed beam, through the yellow loading 

stubs. In this test, the distributed load is simulated by a series of point loads, which is 

more applicable for a bridge structure. The section is a flanged section, where the flange 

width is constant throughout the length. But the width of the web has been increased near 

the ends, so as to have increased shear capacity and reduced stress concentration for 

anchoring the tendons. The beam was tested to failure to observe the behavior and to 

calculate its ultimate moment capacity. 
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Today we studied the analysis for ultimate strength of a partially prestressed section. A 

beam may not be fully prestressed. There can be conventional reinforcement along with 

the prestressing tendon. There are some advantages of partially prestressed sections. First 

of all, the sections are economical. Next, the sections have more ductility. It is better for 

reversal of moments. In a beam with unbonded tendons, in presence of bonded 

reinforcement, the cracks are more distributed.  

A partially prestressed section has several layers of steel. There is a compatibility 

equation for each layer of steel. We have the set of equilibrium equations and the set of 

constitutive relationships. When we solve these equations for the ultimate state, we get 

the ultimate moment of resistance for a partially prestressed section. 

We also studied the analysis of unbonded post-tensioned beams. Here, we cannot use the 

strain compatibility equations as we have used for bonded beams. For an unbonded post-

tensioned beam, the compatibility is based on overall deformation. Thus it needs an 

integration of the strain in the concrete at the level of the CGS. The code allows us to use 

approximate values of the depth of the neutral axis and the force in the tendon, from 

tabulated results.  

41 
 



Finally, we studied the analysis of behavior, where we understood the moment versus 

curvature curve for a prestressed section as compared to that for a reinforced concrete 

section. We learned the concept of ductility. We understood the benefits and certain 

drawbacks of prestressing. With this, we are ending the analysis of members. Next, we 

shall move on to the design of prestressed concrete members.  

Thank you. 
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