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Module - 3: Analysis of Members

Lecture — 15: Analysis of Flanged Sections

Welcome back to prestressed concrete structures. This is the fifth lecture of module three

on analysis of members.
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Module 3-e (5™ Hour)

Analysis of Members Under Hexure
Analysis far Ultimate Stiengih
Analysis of Flanged Seclion

In this lecture, we shall study the analysis of members under flexure, specifically, the

analysis for ultimate strength of flanged sections.

Analysis of flanged section:
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listrodkEciion

A beam cun have fanges for fexuwal efficiency. Thers can
be several types of Ranged Section.

1) & precast or cast-in-place fManged section, with flanges
eitigr at top or boftom of at both [op and bottom,

2y A composite Manged section iz made of precsst web and
cast-in-place skab,

A beam can have flanges for flexural efficiency. There can be several types of flanged
sections. First, a precast or cast-in-place flanged section, with flanges either at top or
bottom, or at both top and bottom. Second, a composite flanged section is made up of

precast web and cast-in-place slab. Let us now see a few examples of these types of
flanged sections.
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Introduciion

Sirgle box seclion Dow ble box secticn

Fig 3e-1 Exampiles of precast flanged sections




In the top, we see precast T- and double T-sections, which are frequently used as bridge
girders. Sometimes, even they are used for making floors. In the lower part, we see a
single box section and a double box section. These are also used as bridge girders. These
types of sections can either be precast or it can be cast-in-place. But, more and more

precast sections are being produced, and they are getting popular.

In the next figure, we see some other types of flanged sections where there can be flanges
at the bottom to rest other members spanning on it. That means these members act as
primary beams carrying some other secondary beams.
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limtroduciion

O R |

L-section Inverted T -section |-girder

Fig Je-1 Exampies of precast flanged sections (continued.. )

It can be an L-section with the flange only on one side. It can be an inverted T-section
with flanges on both the sides. There can be I-girders which are very common in bridge

construction.
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listrodusciion

| |

Bax sechion Composiite beam-slab  T-section

Fig 3a-2 Examples of composite langed sections

In this sketch, we see some composite sections. The web is precast and then moved to the
site. The flange is cast-in-place made at the site. These types of composite sections are
common in buildings or in bridges. There has to be proper shear connectors between the
web and the flange to treat the section as a composite section. There can be various
innovative types of composite sections. Some of them, we shall see in the module under

composite sections.
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Imtraasciion

The analysis of a flanged section for ultimate strength is
different from a rectangular section when the Range ik in
COMPpressson.

if the depth of the neutral axis from the edge under

compression (s greater than the depth of the lange, then
the section is treated as & flanged section.




In this module, we shall study simple type of flanged sections with rectangular webs and
rectangular flanges. The analysis of a flanged section for ultimate strength is different
from a rectangular section when the flange is in compression. This is the first thing we
have to be aware of, that we treat the section as a flanged section only when the flange is
under compression. If the flange is under tension, then we need not have to consider the

overhanging parts of the flange, and we can treat it as similar to a rectangular section.

The next consideration is that if the depth of the neutral axis from the edge under
compression is greater than the depth of the flange, then the section is treated as a flanged

section. Let us try to understand this from a sketch.
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limtroduciion

Strain profike Strain profile
>0 b, <09

In this sketch, we see a flanged section where the flange in the top is under compression.
Here, bs denotes the breadth or the effective width of the flange, D¢ denotes the depth of
the flange, d denotes the depth of the CGS of the prestressing steel and, b,y is the breadth
of the web. There can be two situations. First, the depth of the neutral axis at ultimate
(which is represented as x,) is greater than Dy, and in this case we treat the section as a
flanged section. But, if the depth of the neutral axis is lower than D¢, then we can treat
the section as a rectangular section with a width of bs. In this lecture, we are studying the

first case where X, is greater than Ds.
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introduction

I Ehe prevhous sketch,

x_ = depth of the neutral axs aft ultimate
0= depth of the Gange.

A flanged section is analysed diferently from @ ectanguiar
seztion wien 8, > 0,

M ¢, % O, the section is analysed 53 3 rectangular seetion,

In the previous sketch, x, is the depth of neutral axis at ultimate, D is the depth of the
flange. Thus, a flanged section is analyzed differently from a rectangular section, when

Xy is greater than Dy. If X, is less than Ds, the section is analyzed as a rectangular section.
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|t resnscion

The effect!ve widih or bresadth: of Ehe I'Hlmtﬂlll s
determined From the span of the baam, breadth of the web
(b, and depth of the flange (D} as per Clause 23.1.2,

51458 - M,

Another important consideration is to calculate the breadth of the flange or the effective
width of the flange. If it is an isolated beam with a small width of the flange, then the full



width of the flange can be considered as the breadth of the flange. But, if the flange is a
part of a slab, then we have to calculate an effective width from the slab, where the

assumption is that the compressive stress is uniform over the effective width.

The effective width of the flange is determined from the span of the beam, the breadth of
the web, and the depth of the flange as per clause 23.1.2 of IS: 456-2000. Under this
clause, there are several expressions for different types of sections to calculate the
effective width of a flange. The expressions are simple in nature to be used in
conventional design. These expressions are not repeated here because the students are

expected to be familiar with these expressions in a course on reinforced concrete design.
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Analysis of a Flanged Section

Thi Pollavwimeg sicetelh shaws the: Bearm Sross-Lection, Strain
prafile, siress disgram and fonce couples at the uitimate
state. The lollowing conditions are considenosd.

Next, we move on to the analysis of a flanged section. In the following sketch, the beam
cross-section, the strain profile, the stress diagram and the force couples at the ultimate

state are shown. The following conditions are considered in the sketch.
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Analysiz of a Flanged Section

1) 5, = O, : this ensures that the snalysis is for 5 Nanged
section

) iy, < (37 x,, : this ensures that the compressive
stress is constant at 0.447F, along the depth of the
flange.

First, we consider that x, is greater than D+. This ensures that the analysis is for a flanged
section, which is different from that of a rectangular section. Second, we consider that the
depth of flange is smaller than 3/7 x, This ensures that the compressive stress is constant
at 0.447f along the depth of the flange.
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Analysis af a Flanged Section
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In the sketch, the left hand side shows the cross-section of a flanged section. Next, in the
strain profile, the ultimate state is defined as the instance when the compressive strain in
the concrete at the extreme edge becomes 0.0035. With the known strain in the extreme
fibre, a linearly varying strain profile is drawn based on the hypothesis that plane sections
remain plane, till the ultimate. For the prestressing tendon, the strain at ultimate is
represented as epy. It is equal to the strain in concrete at the level of the CGS plus the
constant strain difference, which is denoted as gq¢c. In the last lecture, we had seen how to
calculate g4ec from the value of the prestressing force. The expressions are different for a

pre-tensioned beam and a post-tensioned beam.

The stress profile is drawn based on the constitutive relationship of concrete. The stress

fpu is calculated from gy, using the design stress—strain curve for the prestressing tendon.

From the stress diagram, we move on to the force diagram. Here is the difference with
respect to a rectangular section. We are decomposing the force diagram into two
components: one, which exists in the outstanding parts of the flanges and part of the
prestressing steel, and the other which exists in the web and the rest of the prestressing
steel. The compression which acts in the web is denoted as C,, and the corresponding
component of the tension is denoted as Tyy. Cuw acts at the distance of 0.42x, from the
top fibre. The resultant compression in the outstanding parts of the flanges is denoted as
Cus. It acts at a distance of 0.5 Dy, that is at half of the flange depth. The corresponding
component of the tension is denoted as T .

The purpose of decomposing each force into two components is to identify the individual

force couples and the respective lever arms.
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Analysis of a Flanged Saction

I the sketch, the tensile force is decomposed into fwo
components. The firsi component [T, balances the
compressive foree carried by the wels (C__). Thus T _=C .

The second companent [T ] halances the compressive
foree carmied by the cutsianding fange (CJ. Thus T =C .

In this previous sketch, the tensile force is thus decomposed into two components. The
first component T, balances the compressive force carried by the web, which is Cyy.
Thus we have the equation T,y = Cyuw. The second component T, balances the
compressive force carried by the outstanding flange which is Cy;. We have the second

equation which is Ty = Cys.
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Analysis of a Flanged Section
The expressions of the lorces are a5 follows.

0.50
044Tr, i C., [Cu=036f,x.0, (Fe-1)
oazr| &

0.8477, B - B,)D; | [3e.2]

At (3e-3)

Al (L]
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Next, we are writing the equations based on the principles of mechanics. Before that, we
are writing the expressions of the resultant forces. C,, is calculated from the stress block
based on the design stress—strain curve of the concrete, and it is given as 0.36 fe X, by.
Next, Cys is given as the constant stress over the flange which is 0.447 f, times the
width of the outstanding flanges which is the total width minus the width of the web, that
is bs — by , times the depth of the flange which is Ds. Next, Ty, is equal to a component
of the total prestressing steel A,y times fp,. Finally, Ty is equal to the rest of the

prestressing steel, which is Aps times fy,.
Next, let us recollect the three principles of mechanics we use in our analysis of sections.
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Analysis of a Flanged Saction

Eased on the principles of mechanics, the equations
aire &5 Follows,

1) Equations of equlilbrium

EF =]

TG,
Tt Ty =Gt Gy
AR AN -0k, Q44T B 00,  (3a-5)

The first one is the equilibrium of forces. Here we have two equations: one is for the
longitudinal force and the second is for the moment. The second principle we use is the
strain compatibility. Here again there are two aspects. One is that the strain in the
concrete in the vicinity of the tendon is equal to the increment of strain in the steel. The
second consideration is that, plane sections remain plane and hence the strain profile is
linear along the depth of the section. The third principle is the constitutive relationships

which relate the stress and strain in each material, concrete and steel.

11



Let us see the equations based on these principles of mechanics. The first one is the
equation for equilibrium of forces: F = 0. The total tension T + Ts is equal to the total
compression Cyy + Cys. With the expressions of the forces, (Apw + Apr) fou = 0.36fcXubw
+0.447f (bs — bw)Ds.
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Analysis of a Flanged Section
1) Equations of equilibrium (oontinmed.. |

Y M-0
M, =T (d-042x, )+T, (d-0.50,)
M, -A_f_ (0 0422, )+ A S (d-05D,)  (3e8)

The second equilibrium equation is M = 0, from which we can find out the ultimate
moment capacity or the moment of resistance (Myr), which is equal to the individual
moments created by the two couples. The first component is equal to Ty, (d — 0.42%y),
where d — 0.42x, represents the lever arm of the first couple. The second part of the
moment is given as Ty (d — 0.5ds). Once we add them up and substitute the expressions
of Tyw and T, we get an expression of the ultimate moment capacity of the section
which is given as Myr = Apw fpu (d —0.42xy) + Aps fpu (d —0.5Dy).

12
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Analysis of a Flanged Section

From T, = C, and Eqns. (Je-Z) and (Jed), A is given
a5 fellows. The caleulation of A__ from A and A is
al=o shown,

(LI - P I-ul [3&-T

[3=-8)

If we have to know the individual values of Ay and Ay, we can calculate them from the
equation Ty = Cys . Aps = Tus / fpu = 0.447F (bs — bw) Dy / fpu. Given the total amount of

steel if we deduct the component Ay, we get the amount Apy,. That is, Apw = Ap — Apr.
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Analysis of a Flanged Section

2) Equation of compatiblity

0.0035

The second principle gives us the equation for compatibility. From the similarity of

triangles, we can relate the compressive strain in the extreme fibre of concrete which is

13



0.0035, with the tensile strain in concrete at the level of CGS which is gy — €gec. The

expression is written as X, / d = 0.0035 / (0.0035 + gpy — €dec).
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Analysis of a Flamnged Saciion

3| Constitutive reiationships

a) Concrete

Tha constitutive relatisnship for concnete | eonskdered
in the exprassions of C and C. This is based on the
area under the design stress-strain curve for concrete
under compression.

Finally, we move on to the constitutive relationships. For concrete the constitutive
relationship is considered in the expressions of Cy, and Cy:. This is based on the area

under the design stress—strain curve for concrete under compression.
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Analysis of a Flanged Seciion
3) Constitutive relationships (continued...)

aj Concrele
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We had seen the design stress—strain curve in the module of material properties. From the
characteristic curve, we define a design curve with a maximum stress of 0.447f. The
area under this design curve gives the value of Cy,, For Cy, since the stress is constant,
Cut Is equal to the constant stress times the area over which the stress acts on the
outstanding flange.

(Refer Slide Time: 24:37)
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Analysis of 3 Flanged Section

Constitutive redationship (continued. .. )

bj Prestressing steal

f,=Fle,) (3e-10)

The function Me_) nepresents the design stress-strain
cume lor the type of prestress ing stesl used,

For the prestressing steel, the constitutive relationship can be expressed in the form fy,, =
F(epu), where the function F(epy) represents the design stress—strain curve for the type of
prestressing steel used.

15
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J) Constitutive relatienship (continued...)

b} Prestressing steel

s

_L"hlm:tu-ﬂ'nh cure

Design curde

We had seen these curves in the module of material properties. We have the characteristic
curve of the prestressing steel from which we define the design curve.
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Amddysis of 8 Flanged Secthon

The following variables are given inan analysis,
by, = breadih of the fange

b, = breadth of the web

0,= depth of the flange

d = depth of the centroid of prestressing steel [CGS)
A= area of the presiressing stesl

[earilifised., )

In the analysis of a flanged section, the following variables are given. We know the

geometric properties of the flanged section: b¢ the breadth of the flange, by, the breadth of

16



the web, D¢ the depth of the flange, d the depth of the centroid of the prestressing steel
(CGS), and A, the area of the prestressing steel.
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Amdlysis of 8 Flanged Section

Eg. ™ strabn im the presiressing stesl af decompression
of cancroie

I, = characteristic compressive strength of concrefe

iy ® charactesstic tensile strength of prestressing
shoel

We know gg4¢c, the strain in the prestressing steel at decompression of concrete, which is a
function of the prestressing force applied. We also know the material properties: fcx the

characteristic compressive strength of concrete, and fy, the characteristic tensile strength
of the prestressing steel.

17
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Analysis of a Flanged Section
The wakfown quantities ang &6 follows.

# = part of A, that halances comprassion in the
outstanding Manges

A = part of 4 that balances compression in the web

M, = ultimate moment capacity {moment of resistance)

£ = depth of e neutral aEis St ullimate

What are the unknown quantities in our analysis? First of all, we do not know the
individual components of the prestressing steel, Aps and Apw. Aps is the part of A, that
balances the compression in the outstanding flanges, and Ay is the part of A, that
balances compression in the web. We also do not know the ultimate moment capacity, or
the moment of resistance which is denoted as Mg, and we do not know Xx,, the depth of

the neutral axis at ultimate.

18
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Analysis of a Flanged Section

The unknown quaniities are as follows [continued...).

i, = strain in prestressing steel at the level of CGS at
uitimate

,= Siress in presiressing steel i uitimate

The objective of the analysis is to find out M, the
ultimate monment capactty. :

We do not know the strain in the prestressing steel at ultimate which is gy, and we do not

know the stress in the prestressing steel which is fp,.

The objective of the analysis is to find out Mg, the ultimate moment capacity. The set of

simultaneous equations are solved in a certain procedure.
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Analysis of Members under Flexure
Analysis of a Flanged Secticn
The steps of the strain compatibility method are as follows.
1) Assume x, = 0,

) The calculations ane similar to & rectangular section.

NN T, »C increase r, . Treat the section as a fanged
sagiion,

19



The method is called the strain compatibility method, and the steps are as follows. First
check, whether the section behaves as a flanged section or not. We assume the depth of
the neutral axis (x,) equal to the depth of the flange (Ds). This is the border case of the
transition from a rectangular section to a flanged section. With x, = Dy, the calculations
are similar to a rectangular section which we have seen in our previous lecture. We find
the compressive force in the flange (C,). We get the strain in the prestressing steel from
the compatibility relationship, from which we get the stress using the design stress—strain
curve. We calculate the tension in the prestressing tendon (T,). If we find that T, > C,
then we need to increase X, to have more compression. Once x, > Dy, then the section is

treated as a flanged section.
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4) Assume M, = u.m,,k

§) Calculate A, and A from Eqg. (3e-T) and Eq. (Je-8),
respociively.

A, u.u:’-""; blp,

If T, <C,, then x, has to be reduced. That means x, < D¢, and we can proceed with the
procedure of rectangular section, with the breadth of the flange equal to the breadth of the

rectangular section.

Once we have determined whether the section behaves as a flanged section or not at
ultimate, and if it behaves as a flanged section, then we move on to the next set of steps.
Here we do an iteration to find out the strain and stress at the level of prestressing steel,

and we have to satisfy the equilibrium equation of the longitudinal forces. In our next

20



step in the analysis of a flanged section, we assume f,, equal to the maximum allowed
value as per the code which is equal to 0.87fy. Once we have assumed f,,, we can

calculate the individual components Ay and Ay from the previous equations.
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Analysis of 2 Flanged Section

6) Culeulate L from: B, (J-9). - G'M':f 00035 £

o

7) Calculate f,_ from Eq. [3e-10). f.=Flr)

Cheeck [ with value assumed in Step 4. Update the value
of f_, and repeat Steps 5 to 7.

Next, we calculate e, from the compatibility equation (Eqg. 3e-9), which we have
rewritten as gp, = 0.0035/(x,/d) — 0.0035 + eq4ec. We calculate f,, from the constitutive

relationship fp, = F(epu).

Earlier, we had used a value of f,, to calculate Ay and Apw, and now we have found out
another f,,. We have to check whether this f,, is same as the value assumed in Step 4. If

they are not same, then we update the value of f,, and repeat Steps 5 to 7.

21
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Analysis of 3 Flanged Section

8) Caleudate C . &, T, and T . HEg. (3eS5) (T, =C.)is
not satisfied, iterate with a new value of x,, BNl
COMVENgEnce.

9) Caleulate M, from Eq. (32-8).
M =T _|d-04Zx )+ T (d-050,)

The capacity M, can be compared with the demand
undes ultimate loads.

Next, we are able to calculate Cyw, Cu, Tuw and Ty All the expressions for these
individual forces were given before. Once we calculate the forces, we can check the first
equilibrium equation which is T, = C,. If this is satisfied, then our assumed X, is correct.
If this is not satisfied, then we need to iterate with a new value of x, till the convergence
of T, and C,.

At this stage, we are able to calculate the ultimate moment of resistance from Eq. (3e-6),
which is Myg = Ty (d — 0.42%x,) + Tys (d — 0.5D¢). The capacity Myr can be compared

with the demand under ultimate loads.
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Analysis of a Flanged Sectian

In the strain compatibility method, the difficull step is o
calculate r'nndl‘_. Similar to the rectanguiar section, an
appifoximale dnalysis can be done baded on Table 11 and
Tabbe 12, Appendix B, 15213431980,

In the strain compatibility method, the difficult step is to calculate x, and f,, because we
have to go through an iterative process, which satisfies the strain compatibility equation,
the constitutive relationships and the equilibrium equations. If we want to bypass this
method, the code IS: 1343-1980 allows us a simpler method which is similar to the
approximate analysis for a rectangular section. This analysis is done based on Table 11

and Table 12 in Appendix B of the code.

The above tables are given with respect to a variable which is a measure of the total
prestressing steel times its strength divided by the area of the concrete times the

characteristic strength of concrete.

23
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Analysis of a Flanged Section

The values of x_and [, are available in terms of a

refnforcement index [ -

This quantity is denoted as the reinforcement index (®). When we use this table for a
flanged section, then the area of concrete that we have to take is equal to the breadth of
the web times the effective depth of the CGS. Since this is different from a rectangular
section, we are denoting the reinforcement index with a different subscript, and it is
represented as wpw. Here, owpw = Apwfpk / (bwdfek). Thus, wpw uses a fraction of the
prestressing steel which is Apy, and it also uses only the breadth of the web in the

denominator.

As the prestressing steel increases, opy Will increase and the value of x, will go up. That
is, with increasing amount of steel we need larger depth of the compression to balance the
tension in the steel. Also, with increasing wpy beyond a certain value, the stress in the
steel decreases. That means, a lower amount of stress in the steel will be able to

equilibrate the compression in the concrete.
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Analysis of a Flanged Section

The calculation of A__ |2 from Eq. (3e-8) (A=A - A_]
But A, depends on £, which is unknown. Hence, an
iterative procedurne is required similar to Steps 4 to 7.

When we are using the approximate analysis for a flanged section, we need to calculate
Apw from the total prestressing steel. The calculation of Ay, is from Eq. (3e-8) which is
Apw = Ap — Apr. But Ays depends on f,, which is unknown. Hence, an iterative procedure
which is similar to that we have seen in the strain compatibility method, is required. That
means, we have to assume a value of fy,. Next, calculate Ay, Apw and wpw. From wpy we
can calculate f,, and check this f,, with our assumption. If they are not close, then we

have to update our assumption and then make another cycle of calculation.

In all these analyses, we had assumed that the depth of the flange (Dy) is less than (3/7)Xy.
This assumption makes the stress in the flange constant, and the calculation of C is
simple using the constant stress 0.447f.
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Analyesis of a Flanged Secticn

Ir0,> (37) ¥, the Nange deplh is larger than the depth
of constant compressive stress. An equivalent depih of
the flange is defined 25 follows.

¥,=0.15x, 0650,  (38-12)

The equivalent depth v,k substituted for Dy in e
supression of M .

But if D¢ > (3/7)xy, then Dx is larger than the depth of constant compressive stress in the
stress block. In that case, the code allows us to define an equivalent depth of the flange.
The equivalent depth means that, the compressive force in the original flange will be
equal to the compressive force in the new flange. The expression of this equivalent depth
is yf = 0.15x, + 0.65D;. Thus, the equivalent depth depends both on the depth of neutral
axis x, and the depth of the flange, which is D¢. The equivalent depth y; is substituted for
D¢ in the expression of Mg. Thus, the only difference we have when the depth of flange
is large is that we are using an equivalent depth instead of the actual depth of the flange
in the expression of the ultimate moment of resistance. Otherwise all other steps are

similar.

Let us now understand the procedure of analysis for a flanged section with the following

example.
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Example Je-1

A bonded post-tensioned concrete Beam has a fanged
cross-section as shown. it is prestressed with tendons
ol area 1750 mm? and effective prestress of 1100 Nimm?,
The tensile strength of the tendon is 1860 Mimm<. The
grade aof concrete s M&.

Estirmate the uiimabe fexural strength of the member by

the approximate method of 15:1343 - 1980,

A bonded post-tensioned concrete beam has a flanged cross-section as shown in the
following sketch. It is prestressed with tendons of area 1750 mm?, and effective prestress
of 1100 N/mm?. The tensile strength of tendon is 1860 N/mm? and the grade of concrete
is M60.

Estimate the ultimate flexural strength of the member by the approximate method of IS:
1343-1980.

In our last example for a rectangular section, we had solved by the strain compatibility
method. Here, we are solving by the approximate method as given in IS: 1343. The cross-

section of the section is as follows.
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Examplie Je-1 (continwed. . |

7 (118
4ED

Vakses ane in mm.

Cress.seetion ai mid-spsn

The effective width of the flange is 460 mm. The depth of the flange is 175 mm. There is
also a flange at the bottom, but we will not consider this flange in our analysis because
this flange is under tension. The CGS is located at a distance of 115 mm from the soffit
of the beam. The width of the web is 140 mm. The total depth of the member is 900 mm.

(Refer Slide Time: 44:46)

Solnstion

Effective depth o = #00 - 115
= TES mm

Assume x_ = 0, =175 mm. Treatas a rectanguiar
sncHon,

Aol
b,

Reinforcement indeyx Wi,
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First, we are calculating the effective depth which is the total depth minus the distance of
the CGS from the soffit, d = 900 — 115 = 785 mm. Next, we are assuming the depth of the
neutral axis equal to the depth of the flange to check whether the section will behave as a
rectangular section or as a flange section. Once we assume x, = D¢ = 175 mm, we can
treat the section as a rectangular section. For a rectangular section, o, = Apfy/bdfe.
Substituting the values of the variables, o, = 0.15. Note that, here b = 460 mm which is
the breadth of the flange, and A, = 1750 mm? which is the total amount of prestressing

steel.

(Refer Slide Time: 46:03)

S.olnsion

From Table 11,

I
10
0871y,

* f, =0.87 % 1860

618 Mimm’

From Table 11 corresponding to @, = 0.15, f,,/0.87fp = 1.0. The prestressing steel has a
stress which is the maximum allowable value by the code, and is equal to 0.87 f,, = 1618

N/mm?.
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Samsion

T = Ady, C,, = 03675 b,
= 1750 = 1618 =0 36 =60 = 175 = 460
= FAX1. 5 N = {73188 kN

T, >, Hescex, >
» Treat as a Nanged seciion.

The tension T, = Apfp, = 2831.5 kN. The compression C, = 0.36fuX,bs = 1738.8 kN.
Comparing these two values, we find that T, is much larger than C, and hence we need
to increase x, beyond D¢. Thus, we have to treat the section as a flanged section at

ultimate.

From now onwards we are treating the section as a flanged section, and hence the

expression of the reinforcement index will also be different.
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S.oinsion

Assume

Ay

Fo

0.4471,, (B, - b, )3,

10,847 B0 (480 - 140) <175

934 mim'

First, we are assuming f,, = 0.87f, = 1618 N/mm®. Next, we are calculating Ay which is

the amount of steel balancing the compression in the outstanding part of the flanges. Aps

= 0.447f e (bs — by)Ds / fpy = 934 mm?,

(Refer Slide Time: 48:35)

S.oinstion

A, = 1750834
218 M’
Rednforcement index

Anlny
b_dY,

,

8161860
140« 78S « 60

0.23

From this we calculate Ay, = 1750 — 934 = 816 mm®. The reinforcement index for the

flanged section is wpw = Apw fox / bw d fex = 0.23.
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S.ostion

From Table 11,

fﬂl
0877, aae

“ £, = 092087 <1880

1489 Mima

Again going back to Table 11, f,,/0.87fp = 0.92 from which we get f,, = 1489 N/mm?.

Thus, with increased x,, there is a drop in the prestressing stress in the tendons. In our
second iteration, the new value of fy, is used to calculate Apr.

(Refer Slide Time: 50:27)

S.olasion

27 jterathon
Iy, ™ Tl Bldrrarm®
Calculate A, and A

- AT <60 <{4BD-140) « 175
. 1489

10715 men”

A - 1750 1015

T35 mem
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We are recalculating Ays by the previous expression where we have substituted 1489 in
the denominator, and we find Ay = 1015 mm?. We are recalculating A,y as 1750 — 1015

=735 mm->.

(Refer Slide Time: 50:47)

Salanion
Rednforcement indax

From Tabie 11,
fou

0.94
0.871

1, =0.94 <0.87 <1860

1531 Nl

From that, we are recalculating mpw = 0.21. Last time, we had got a value of wpy = 0.23
and this time we are getting opy = 0.21. Thus, we can see that we are converging
gradually. With this new value of wp, we are going back to Table 11, and we are finding
fou / 0.87fk = 0.94 from which fp, = 1521 N/mm?.
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Soinsion

I jleration

gy ™ 1821 Nimmnd

Galculate A, and A_

A 0447 « 60« (460 - 180} 175
gl ral

934 mm’
A_ ~1750- 994

TEE mm’

In the third iteration, if we substitute f,, = 1521 N/mm?, we calculate Ay = 994 mm? and
Apy = 756 mm?,

(Refer Slide Time: 51:56)

Sointion
RKeinfoncement index

TSE 1880

Whe 140785860

0.21

Thoie wilibd of o2 IS Sarme 45 after 2™ iteration. Henca,
the values of £, A and A4__ have converged.

We recalculate wpy and it turns out to be same as that of the second iteration, which is

0.21. That means, we have converged to a value of mp, Which is not changing beyond the
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third iteration. Hence, the number of iterations is sufficient and the values of f,,, Ay and

Apw have converged.

(Refer slide time 52:38)

Salution
Ulimate Aexural stremgth

M, =~ T_(d-0A42x, )+ T,id- 050, )

T (0042 )~ A_f_ (d-042x )
7561521785 -0.42 - 337)
739.9 kNm
T.\d-0.50,) = Af_|d-0.50,)
9041521 [T85 - 0.5~ 175)

1054.5 kMim

From that, we are now calculating the ultimate moment of resistance which is given as
Tuw (d —0.42x,) + Tys (d — 0.5D¢). The first component of the moment is equal to 739.9

kNm. The second component of the moment is 1054.5 kNm.

(Refer Slide Time: 53:34)

Solution
The uitimate Aexural strength is given as follows,

M, - 10545+ 7399
17544 kNm
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Thus adding these two values, the total ultimate moment of resistance is equal to 1794.4
kNm.

(Refer Slide Time: 53:49)

Summary

Analysis of Mambers Under Flaxure
Analy=is for Ultimate Strength
Analyzis of Flanged Seotion

Today, we studied the analysis of members under flexure. Specifically, we studied the
analysis of flanged sections for the ultimate strength. We first saw the different types of
flanged sections that are possible in the construction. We treat a section as a flanged
section under two considerations. The first is that the flanges have to be in compression
so that we get benefit out of the concrete under compression. If the flange is under
tension, then we neglect the part of the concrete in the flange and treat it similar to a
rectangular section. The second consideration is that, the depth of the neutral axis should
be larger than the depth of the flange. If the depth of the neutral axis is smaller than the
depth of the flange, then we can use the expressions of the rectangular section to find out
the ultimate moment of resistance, where the breadth of the rectangular section is same as
the breadth of the flange.

In this lecture, we had considered a flange section which is constituted of a rectangular
web and a rectangular flange. We found that when x, > Dy, in the analysis we decompose
the force couple into two components. In one couple, the compression in the web is

balanced by a part of the tension in the tendons, and in the second couple the
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compression in the outstanding flanges is balanced by the rest of the tension. This type of
decomposition helps us to identify the individual lever arms of the two couples. From the
expressions of the individual lever arms, we got an analytical expression of the ultimate

moment of resistance of a flanged section.

In an analysis, we are using three principles of mechanics; first is the equilibrium of
forces, which has two equations. Next is the equation of compatibility which relates the
maximum strain in concrete with the strain in the prestressing steel, and third, we have
the constitutive relationships of the concrete and the steel. In the analysis, there are a set

of variables which are given, and there are few variables which are unknown.

There is a rational procedure which is called the strain compatibility method by which we
solve the simultaneous equations in a logical manner. First, we assume the depth of the
neutral axis and then we find out the values of the forces in the compression and the
tension. If they are equal, then our assumption is correct. If not, then we change the depth

of the neutral axis and do another cycle of calculations.

The steps of the strain compatibility method can be involved if the section is more
complicated than what we had studied. This can be implemented in a computer program
where once the variables are input, the program itself will do the iteration process. Else, if
we do not want to use the strain compatibility method, then we can use an approximate
method proposed by the code. Here, we calculate the depth of the neutral axis and the
stress in the prestressing tendon based on a quantity called the reinforcement index. For a
flanged section, the calculation of reinforcement index is different from that of a
rectangular section. Here we take the part of the tendon A,y in the numerator and we
take by, in the denominator. Once we know the reinforcement index, from the tables we
can calculate the depth of the neutral axis and the stress in the prestressing tendon. From
this we can calculate the ultimate moment of resistance of a flanged section. We solved a
problem based on the approximate method. In the next class, we shall move on to the

third type of section, the partially prestressed section.

Thank you.
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