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Welcome back to prestressed concrete structures. This is the fifth lecture of module three 

on analysis of members. 

(Refer Slide Time: 01:16) 

 

In this lecture, we shall study the analysis of members under flexure, specifically, the 

analysis for ultimate strength of flanged sections. 

Analysis of flanged section: 
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A beam can have flanges for flexural efficiency. There can be several types of flanged 

sections. First, a precast or cast-in-place flanged section, with flanges either at top or 

bottom, or at both top and bottom. Second, a composite flanged section is made up of 

precast web and cast-in-place slab. Let us now see a few examples of these types of 

flanged sections. 

(Refer Slide Time: 02:13) 
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In the top, we see precast T- and double T-sections, which are frequently used as bridge 

girders. Sometimes, even they are used for making floors. In the lower part, we see a 

single box section and a double box section. These are also used as bridge girders. These 

types of sections can either be precast or it can be cast-in-place. But, more and more 

precast sections are being produced, and they are getting popular.  

In the next figure, we see some other types of flanged sections where there can be flanges 

at the bottom to rest other members spanning on it. That means these members act as 

primary beams carrying some other secondary beams. 

(Refer Slide Time: 03:22) 

 

It can be an L-section with the flange only on one side. It can be an inverted T-section 

with flanges on both the sides. There can be I-girders which are very common in bridge 

construction. 
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In this sketch, we see some composite sections. The web is precast and then moved to the 

site. The flange is cast-in-place made at the site. These types of composite sections are 

common in buildings or in bridges. There has to be proper shear connectors between the 

web and the flange to treat the section as a composite section. There can be various 

innovative types of composite sections. Some of them, we shall see in the module under 

composite sections. 

(Refer Slide Time: 04:34) 
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In this module, we shall study simple type of flanged sections with rectangular webs and 

rectangular flanges. The analysis of a flanged section for ultimate strength is different 

from a rectangular section when the flange is in compression. This is the first thing we 

have to be aware of, that we treat the section as a flanged section only when the flange is 

under compression. If the flange is under tension, then we need not have to consider the 

overhanging parts of the flange, and we can treat it as similar to a rectangular section.  

The next consideration is that if the depth of the neutral axis from the edge under 

compression is greater than the depth of the flange, then the section is treated as a flanged 

section. Let us try to understand this from a sketch. 

(Refer Slide Time: 05:41) 

 

In this sketch, we see a flanged section where the flange in the top is under compression. 

Here, bf denotes the breadth or the effective width of the flange, Df denotes the depth of 

the flange, d denotes the depth of the CGS of the prestressing steel and, bw is the breadth 

of the web. There can be two situations. First, the depth of the neutral axis at ultimate 

(which is represented as xu) is greater than Df, and in this case we treat the section as a 

flanged section. But, if the depth of the neutral axis is lower than Df, then we can treat 

the section as a rectangular section with a width of bf. In this lecture, we are studying the 

first case where xu is greater than Df. 
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In the previous sketch, xu is the depth of neutral axis at ultimate, Df is the depth of the 

flange. Thus, a flanged section is analyzed differently from a rectangular section, when 

xu is greater than Df. If xu is less than Df,, the section is analyzed as a rectangular section. 

(Refer Slide Time: 07:25) 

 

Another important consideration is to calculate the breadth of the flange or the effective 

width of the flange. If it is an isolated beam with a small width of the flange, then the full 
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width of the flange can be considered as the breadth of the flange. But, if the flange is a 

part of a slab, then we have to calculate an effective width from the slab, where the 

assumption is that the compressive stress is uniform over the effective width.  

The effective width of the flange is determined from the span of the beam, the breadth of 

the web, and the depth of the flange as per clause 23.1.2 of IS: 456-2000. Under this 

clause, there are several expressions for different types of sections to calculate the 

effective width of a flange. The expressions are simple in nature to be used in 

conventional design. These expressions are not repeated here because the students are 

expected to be familiar with these expressions in a course on reinforced concrete design. 

(Refer Slide Time: 09:27) 

 

Next, we move on to the analysis of a flanged section. In the following sketch, the beam 

cross-section, the strain profile, the stress diagram and the force couples at the ultimate 

state are shown.  The following conditions are considered in the sketch. 

7 
 



(Refer Slide Time: 09:40) 

 

First, we consider that xu is greater than Df. This ensures that the analysis is for a flanged 

section, which is different from that of a rectangular section. Second, we consider that the 

depth of flange is smaller than 3/7 xu. This ensures that the compressive stress is constant 

at 0.447fck along the depth of the flange.  

(Refer Slide Time: 10:21) 
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In the sketch, the left hand side shows the cross-section of a flanged section. Next, in the 

strain profile, the ultimate state is defined as the instance when the compressive strain in 

the concrete at the extreme edge becomes 0.0035. With the known strain in the extreme 

fibre, a linearly varying strain profile is drawn based on the hypothesis that plane sections 

remain plane, till the ultimate. For the prestressing tendon, the strain at ultimate is 

represented as εpu. It is equal to the strain in concrete at the level of the CGS plus the 

constant strain difference, which is denoted as εdec. In the last lecture, we had seen how to 

calculate εdec from the value of the prestressing force. The expressions are different for a 

pre-tensioned beam and a post-tensioned beam.  

The stress profile is drawn based on the constitutive relationship of concrete. The stress 

fpu is calculated from εpu using the design stress‒strain curve for the prestressing tendon. 

From the stress diagram, we move on to the force diagram. Here is the difference with 

respect to a rectangular section. We are decomposing the force diagram into two 

components: one, which exists in the outstanding parts of the flanges and part of the 

prestressing steel, and the other which exists in the web and the rest of the prestressing 

steel. The compression which acts in the web is denoted as Cuw and the corresponding 

component of the tension is denoted as Tuw. Cuw acts at the distance of 0.42xu from the 

top fibre. The resultant compression in the outstanding parts of the flanges is denoted as 

Cuf. It acts at a distance of 0.5 Df, that is at half of the flange depth. The corresponding 

component of the tension is denoted as Tuf.  

The purpose of decomposing each force into two components is to identify the individual 

force couples and the respective lever arms.  
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In this previous sketch, the tensile force is thus decomposed into two components. The 

first component Tuw balances the compressive force carried by the web, which is Cuw. 

Thus we have the equation Tuw = Cuw. The second component Tuf balances the 

compressive force carried by the outstanding flange which is Cuf.  We have the second 

equation which is Tuf = Cuf. 

(Refer Slide Time: 15:32) 
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Next, we are writing the equations based on the principles of mechanics. Before that, we 

are writing the expressions of the resultant forces. Cuw is calculated from the stress block 

based on the design stress‒strain curve of the concrete, and it is given as 0.36 fck xu bw. 

Next, Cuf is given as the constant stress over the flange which is 0.447 fck, times the 

width of the outstanding flanges which is the total width minus the width of the web, that 

is bf ‒ bw , times the depth of the flange which is Df. Next, Tuw is equal to a component 

of the total prestressing steel Apw times fpu. Finally, Tuf is equal to the rest of the 

prestressing steel, which is Apf times fpu.  

Next, let us recollect the three principles of mechanics we use in our analysis of sections. 

(Refer Slide Time: 17:09) 

 

The first one is the equilibrium of forces. Here we have two equations: one is for the 

longitudinal force and the second is for the moment. The second principle we use is the 

strain compatibility. Here again there are two aspects. One is that the strain in the 

concrete in the vicinity of the tendon is equal to the increment of strain in the steel. The 

second consideration is that, plane sections remain plane and hence the strain profile is 

linear along the depth of the section. The third principle is the constitutive relationships 

which relate the stress and strain in each material, concrete and steel. 

11 
 



Let us see the equations based on these principles of mechanics. The first one is the 

equation for equilibrium of forces: ΣF = 0. The total tension Tuw + Tuf is equal to the total 

compression Cuw + Cuf. With the expressions of the forces, (Apw + Apf) fpu = 0.36fckxubw 

+ 0.447fck (bf ‒ bw)Df.  

(Refer Slide Time: 19:19) 

 

The second equilibrium equation is ΣM = 0, from which we can find out the ultimate 

moment capacity or the moment of resistance (MuR), which is equal to the individual 

moments created by the two couples. The first component is equal to Tuw (d ‒ 0.42xu), 

where d ‒ 0.42xu represents the lever arm of the first couple. The second part of the 

moment is given as Tuf (d ‒ 0.5df). Once we add them up and substitute the expressions 

of Tuw and Tuf, we get an expression of the ultimate moment capacity of the section 

which is given as MuR = Apw fpu (d ‒ 0.42xu) + Apf fpu (d ‒ 0.5Df).  
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If we have to know the individual values of Apf and Apw, we can calculate them from the 

equation Tuf = Cuf . Apf = Tuf / fpu = 0.447fck (bf ‒ bw) Df / fpu. Given the total amount of 

steel if we deduct the component Apf, we get the amount Apw. That is, Apw = Ap ‒ Apf. 

(Refer Slide Time: 22:23) 

 

The second principle gives us the equation for compatibility. From the similarity of 

triangles, we can relate the compressive strain in the extreme fibre of concrete which is 
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0.0035, with the tensile strain in concrete at the level of CGS which is εpu ‒ εdec. The 

expression is written as xu / d = 0.0035 / (0.0035 + εpu ‒ εdec).  

(Refer Slide Time: 23:37) 

 

Finally, we move on to the constitutive relationships. For concrete the constitutive 

relationship is considered in the expressions of Cuw and Cuf. This is based on the area 

under the design stress‒strain curve for concrete under compression. 

(Refer Slide Time: 23:56) 
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We had seen the design stress‒strain curve in the module of material properties. From the 

characteristic curve, we define a design curve with a maximum stress of 0.447fck.  The 

area under this design curve gives the value of Cuw. For Cuf, since the stress is constant, 

Cuf is equal to the constant stress times the area over which the stress acts on the 

outstanding flange. 

(Refer Slide Time: 24:37) 

 

For the prestressing steel, the constitutive relationship can be expressed in the form fpu = 

F(εpu), where the function F(εpu) represents the design stress‒strain curve for the type of 

prestressing steel used. 
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We had seen these curves in the module of material properties. We have the characteristic 

curve of the prestressing steel from which we define the design curve.  

(Refer Slide Time: 25:30) 

 

In the analysis of a flanged section, the following variables are given. We know the 

geometric properties of the flanged section: bf the breadth of the flange, bw the breadth of 

16 
 



the web, Df, the depth of the flange, d the depth of the centroid of the prestressing steel 

(CGS), and Ap the area of the prestressing steel. 

(Refer Slide Time: 26:02) 

 

We know εdec, the strain in the prestressing steel at decompression of concrete, which is a 

function of the prestressing force applied. We also know the material properties: fck the 

characteristic compressive strength of concrete, and fpk the characteristic tensile strength 

of the prestressing steel. 
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What are the unknown quantities in our analysis? First of all, we do not know the 

individual components of the prestressing steel, Apf and Apw. Apf is the part of Ap that 

balances the compression in the outstanding flanges, and Apw is the part of Ap that 

balances compression in the web. We also do not know the ultimate moment capacity, or 

the moment of resistance which is denoted as MuR, and we do not know xu, the depth of 

the neutral axis at ultimate. 
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We do not know the strain in the prestressing steel at ultimate which is εpu, and we do not 

know the stress in the prestressing steel which is fpu.  

The objective of the analysis is to find out MuR, the ultimate moment capacity. The set of 

simultaneous equations are solved in a certain procedure. 

(Refer Slide Time: 27:37) 
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The method is called the strain compatibility method, and the steps are as follows. First 

check, whether the section behaves as a flanged section or not. We assume the depth of 

the neutral axis (xu) equal to the depth of the flange (Df). This is the border case of the 

transition from a rectangular section to a flanged section. With xu = Df, the calculations 

are similar to a rectangular section which we have seen in our previous lecture. We find 

the compressive force in the flange (Cu). We get the strain in the prestressing steel from 

the compatibility relationship, from which we get the stress using the design stress‒strain 

curve. We calculate the tension in the prestressing tendon (Tu). If we find that Tu > Cu, 

then we need to increase xu to have more compression. Once xu > Df,  then the section is 

treated as a flanged section. 

(Refer Slide Time: 30:44) 

 

If Tu < Cu, then xu has to be reduced. That means xu < Df, and we can proceed with the 

procedure of rectangular section, with the breadth of the flange equal to the breadth of the 

rectangular section.  

Once we have determined whether the section behaves as a flanged section or not at 

ultimate, and if it behaves as a flanged section, then we move on to the next set of steps. 

Here we do an iteration to find out the strain and stress at the level of prestressing steel, 

and we have to satisfy the equilibrium equation of the longitudinal forces. In our next 
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step in the analysis of a flanged section, we assume fpu equal to the maximum allowed 

value as per the code which is equal to 0.87fpk. Once we have assumed fpu, we can 

calculate the individual components Apf and Apw from the previous equations. 

(Refer Slide Time: 32:36) 

 

Next, we calculate εpu from the compatibility equation (Eq. 3e-9), which we have 

rewritten as εpu = 0.0035/(xu/d) ‒ 0.0035 + εdec. We calculate fpu from the constitutive 

relationship fpu = F(εpu).  

Earlier, we had used a value of fpu to calculate Apf and Apw, and now we have found out 

another fpu.  We have to check whether this fpu is same as the value assumed in Step 4. If 

they are not same, then we update the value of fpu and repeat Steps 5 to 7. 
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Next, we are able to calculate Cuw, Cuf, Tuw and Tuf. All the expressions for these 

individual forces were given before. Once we calculate the forces, we can check the first 

equilibrium equation which is Tu = Cu. If this is satisfied, then our assumed xu is correct. 

If this is not satisfied, then we need to iterate with a new value of xu till the convergence 

of Tu and Cu.  

At this stage, we are able to calculate the ultimate moment of resistance from Eq. (3e-6), 

which is MuR = Tuw (d ‒ 0.42xu) + Tuf (d ‒ 0.5Df). The capacity MuR can be compared 

with the demand under ultimate loads.  
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In the strain compatibility method, the difficult step is to calculate xu and fpu because we 

have to go through an iterative process, which satisfies the strain compatibility equation, 

the constitutive relationships and the equilibrium equations. If we want to bypass this 

method, the code IS: 1343-1980 allows us a simpler method which is similar to the 

approximate analysis for a rectangular section. This analysis is done based on Table 11 

and Table 12 in Appendix B of the code. 

The above tables are given with respect to a variable which is a measure of the total 

prestressing steel times its strength divided by the area of the concrete times the 

characteristic strength of concrete.  
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This quantity is denoted as the reinforcement index (ω). When we use this table for a 

flanged section, then the area of concrete that we have to take is equal to the breadth of 

the web times the effective depth of the CGS. Since this is different from a rectangular 

section, we are denoting the reinforcement index with a different subscript, and it is 

represented as ωpw. Here, ωpw = Apwfpk / (bwdfck). Thus, ωpw uses a fraction of the 

prestressing steel which is Apw, and it also uses only the breadth of the web in the 

denominator. 

As the prestressing steel increases, ωpw will increase and the value of xu will go up. That 

is, with increasing amount of steel we need larger depth of the compression to balance the 

tension in the steel. Also, with increasing ωpw beyond a certain value, the stress in the 

steel decreases. That means, a lower amount of stress in the steel will be able to 

equilibrate the compression in the concrete. 
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When we are using the approximate analysis for a flanged section, we need to calculate 

Apw from the total prestressing steel. The calculation of Apw is from Eq. (3e-8) which is 

Apw = Ap ‒ Apf. But Apf depends on fpu which is unknown. Hence, an iterative procedure 

which is similar to that we have seen in the strain compatibility method, is required. That 

means, we have to assume a value of fpu. Next, calculate Apf, Apw and ωpw. From ωpw we 

can calculate fpu and check this fpu with our assumption. If they are not close, then we 

have to update our assumption and then make another cycle of calculation.  

In all these analyses, we had assumed that the depth of the flange (Df) is less than (3/7)xu. 

This assumption makes the stress in the flange constant, and the calculation of Cuf is 

simple using the constant stress 0.447fck. 
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But if Df > (3/7)xu, then Df is larger than the depth of constant compressive stress in the 

stress block. In that case, the code allows us to define an equivalent depth of the flange. 

The equivalent depth means that, the compressive force in the original flange will be 

equal to the compressive force in the new flange. The expression of this equivalent depth 

is yf = 0.15xu + 0.65Df. Thus, the equivalent depth depends both on the depth of neutral 

axis xu and the depth of the flange, which is Df. The equivalent depth yf is substituted for 

Df in the expression of MuR. Thus, the only difference we have when the depth of flange 

is large is that we are using an equivalent depth instead of the actual depth of the flange 

in the expression of the ultimate moment of resistance. Otherwise all other steps are 

similar. 

Let us now understand the procedure of analysis for a flanged section with the following 

example.  
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A bonded post-tensioned concrete beam has a flanged cross-section as shown in the 

following sketch. It is prestressed with tendons of area 1750 mm2, and effective prestress 

of 1100 N/mm2. The tensile strength of tendon is 1860 N/mm2 and the grade of concrete 

is M60.  

Estimate the ultimate flexural strength of the member by the approximate method of IS: 

1343-1980.  

In our last example for a rectangular section, we had solved by the strain compatibility 

method. Here, we are solving by the approximate method as given in IS: 1343. The cross-

section of the section is as follows. 
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The effective width of the flange is 460 mm. The depth of the flange is 175 mm. There is 

also a flange at the bottom, but we will not consider this flange in our analysis because 

this flange is under tension. The CGS is located at a distance of 115 mm from the soffit 

of the beam. The width of the web is 140 mm. The total depth of the member is 900 mm. 

(Refer Slide Time: 44:46) 
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First, we are calculating the effective depth which is the total depth minus the distance of 

the CGS from the soffit, d = 900 ‒ 115 = 785 mm. Next, we are assuming the depth of the 

neutral axis equal to the depth of the flange to check whether the section will behave as a 

rectangular section or as a flange section. Once we assume xu = Df = 175 mm, we can 

treat the section as a rectangular section. For a rectangular section, ωp = Apfpk/bdfck. 

Substituting the values of the variables, ωp = 0.15. Note that, here b = 460 mm which is 

the breadth of the flange, and Ap = 1750 mm2 which is the total amount of prestressing 

steel. 

(Refer Slide Time: 46:03) 

 

From Table 11 corresponding to ωp = 0.15, fpu/0.87fpk = 1.0. The prestressing steel has a 

stress which is the maximum allowable value by the code, and is equal to 0.87 fpk = 1618 

N/mm2. 
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The tension Tu = Apfpu = 2831.5 kN. The compression Cu = 0.36fckxubf = 1738.8 kN. 

Comparing these two values, we find that Tu is much larger than Cu and hence we need 

to increase xu beyond Df. Thus, we have to treat the section as a flanged section at 

ultimate.  

From now onwards we are treating the section as a flanged section, and hence the 

expression of the reinforcement index will also be different. 
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First, we are assuming fpu = 0.87fpk = 1618 N/mm2. Next, we are calculating Apf which is 

the amount of steel balancing the compression in the outstanding part of the flanges. Apf 

= 0.447fck(bf ‒ bw)Df / fpu = 934 mm2. 

(Refer Slide Time: 48:35) 

 

From this we calculate Apw = 1750 ‒ 934 = 816 mm2. The reinforcement index for the 

flanged section is ωpw = Apw fpk / bw d fck = 0.23. 
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Again going back to Table 11, fpu/0.87fpk = 0.92 from which we get fpu = 1489 N/mm2. 

Thus, with increased xu, there is a drop in the prestressing stress in the tendons. In our 

second iteration, the new value of fpu is used to calculate Apf. 

(Refer Slide Time: 50:27) 
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We are recalculating Apf by the previous expression where we have substituted 1489 in 

the denominator, and we find Apf = 1015 mm2. We are recalculating Apw as 1750 ‒ 1015 

= 735 mm2. 

(Refer Slide Time: 50:47) 

 

From that, we are recalculating ωpw = 0.21. Last time, we had got a value of ωpw = 0.23 

and this time we are getting ωpw = 0.21. Thus, we can see that we are converging 

gradually. With this new value of ωpw we are going back to Table 11, and we are finding 

fpu / 0.87fpk = 0.94 from which fpu = 1521 N/mm2. 
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In the third iteration, if we substitute fpu = 1521 N/mm2, we calculate Apf = 994 mm2 and 

Apw = 756 mm2. 

(Refer Slide Time: 51:56) 

 

We recalculate ωpw and it turns out to be same as that of the second iteration, which is 

0.21. That means, we have converged to a value of ωpw which is not changing beyond the 
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third iteration. Hence, the number of iterations is sufficient and the values of fpu, Apf and 

Apw have converged. 

(Refer slide time 52:38) 

 

From that, we are now calculating the ultimate moment of resistance which is given as 

Tuw (d ‒ 0.42xu) + Tuf (d ‒ 0.5Df).  The first component of the moment is equal to 739.9 

kNm. The second component of the moment is 1054.5 kNm. 

(Refer Slide Time: 53:34) 
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Thus adding these two values, the total ultimate moment of resistance is equal to 1794.4 

kNm. 

(Refer Slide Time: 53:49) 

 

Today, we studied the analysis of members under flexure. Specifically, we studied the 

analysis of flanged sections for the ultimate strength. We first saw the different types of 

flanged sections that are possible in the construction. We treat a section as a flanged 

section under two considerations. The first is that the flanges have to be in compression 

so that we get benefit out of the concrete under compression. If the flange is under 

tension, then we neglect the part of the concrete in the flange and treat it similar to a 

rectangular section. The second consideration is that, the depth of the neutral axis should 

be larger than the depth of the flange. If the depth of the neutral axis is smaller than the 

depth of the flange, then we can use the expressions of the rectangular section to find out 

the ultimate moment of resistance, where the breadth of the rectangular section is same as 

the breadth of the flange. 

In this lecture, we had considered a flange section which is constituted of a rectangular 

web and a rectangular flange. We found that when xu > Df, in the analysis we decompose 

the force couple into two components. In one couple, the compression in the web is 

balanced by a part of the tension in the tendons, and in the second couple the 
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compression in the outstanding flanges is balanced by the rest of the tension. This type of 

decomposition helps us to identify the individual lever arms of the two couples. From the 

expressions of the individual lever arms, we got an analytical expression of the ultimate 

moment of resistance of a flanged section. 

In an analysis, we are using three principles of mechanics; first is the equilibrium of 

forces, which has two equations. Next is the equation of compatibility which relates the 

maximum strain in concrete with the strain in the prestressing steel, and third, we have 

the constitutive relationships of the concrete and the steel. In the analysis, there are a set 

of variables which are given, and there are few variables which are unknown. 

There is a rational procedure which is called the strain compatibility method by which we 

solve the simultaneous equations in a logical manner. First, we assume the depth of the 

neutral axis and then we find out the values of the forces in the compression and the 

tension. If they are equal, then our assumption is correct. If not, then we change the depth 

of the neutral axis and do another cycle of calculations. 

The steps of the strain compatibility method can be involved if the section is more 

complicated than what we had studied. This can be implemented in a computer program 

where once the variables are input, the program itself will do the iteration process. Else, if 

we do not want to use the strain compatibility method, then we can use an approximate 

method proposed by the code.  Here, we calculate the depth of the neutral axis and the 

stress in the prestressing tendon based on a quantity called the reinforcement index. For a 

flanged section, the calculation of reinforcement index is different from that of a 

rectangular section.  Here we take the part of the tendon Apw in the numerator and we 

take bw in the denominator. Once we know the reinforcement index, from the tables we 

can calculate the depth of the neutral axis and the stress in the prestressing tendon. From 

this we can calculate the ultimate moment of resistance of a flanged section. We solved a 

problem based on the approximate method. In the next class, we shall move on to the 

third type of section, the partially prestressed section.  

Thank you. 
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