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Welcome back to prestressed concrete structures. Today, we are covering the fourth

lecture of module three on analysis of members.
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Module 3-d {4* Hour)

Analysis of Members Under Flexure

Analysls for Uimale Strength
ariation of Siress in Steel
Condition at Ultimate Limit State

Analysis of Rectangular Section

In today’s lecture, we shall cover the analysis for ultimate strength for members under
flexure. Under that, we shall understand the variation of stress in steel throughout the
loading history. We shall also learn about the condition at the ultimate limit state and

finally, we shall move on to the analysis of a rectangular section.

First is the analysis of ultimate strength.
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introduct ien

A presiresssd member usually remains uncracked
under service loads. The analysis under service loads
assumes the matenal o be linear elastic.

A prestressed member usually remains uncracked under service loads. The analysis under
service loads assumes the material to be linear elastic. In whatever we have studied till
now for the analysis under service loads, we had assumed linear stress—strain diagrams
both for concrete and for steel.
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Introduct ien

After cracking, thie Behaviour of 4 prestressed mem e
lis sbmitlar b0 @ non-prestressed reinforced concrele
member. With increasing load, the stress versus strain
behawiour of Concrets eCOmes non - inear,

Close 1o the yvielding of the prestressing stesl, the
stress versus strain behaviour of steel also becomes:
non-limear.

After cracking, the behaviour of a prestressed member is similar to a non-prestressed
reinforced concrete member. With increasing load, the stress versus strain behavior of
concrete becomes non-linear. Close to the yielding of the prestressing steel, the stress
versus strain behavior of steel also becomes non-linear. This makes the analysis of

ultimate strength different from the analysis under service loads.

Under analysis of service loads, we have assumed both the materials to be linear elastic.
But when we are doing an analysis for ultimate strength, the stress—strain for concrete
should be non-linear. Also, if the steel has started to yield, the stress—strain for steel
should be non-linear.
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introduct ion

The amalysis of a presiressed member fer ultimate
strength iz similar to that of a reinforced concrete
member. Tha analysis sims 1o esleulats the uitimate

RGTER] EARacly [Wilimate moment of Feaiatance),

The capacity I8 compared with the demand af ultimate
loads.

The analysis of a prestressed member for ultimate strength is similar to that of a
reinforced concrete member. The analysis aims to calculate the ultimate moment
capacity, which is also known as the ultimate moment of resistance. The capacity is

compared with the demand at ultimate loads.
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Thede ks aR IneaAsistenzy (0 the traditional analysis st
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based on elastic analysis, with superposition for the
different load cases using the load lfactors, Bui the
sapacily s calculatod baged on the nen-linear [imit
stale analysis,




There is an inconsistency in the traditional analysis at the ultimate state. The force
demand is calculated based on elastic analysis, with superposition for the different load
cases using the load factors. But the capacity is calculated based on the non-linear limit
state analysis. This inconsistency has stayed after the introduction of the limit states
method. When we are calculating the demand, we are using a linear analysis with the
principle of superposition being applied for the different load cases, whereas, when we

are trying to find out the capacity, we are using a non-linear behaviour of the material.
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I rosd wediomn

The inesns gteney (s justified by the following arguments.

1) Tha moment versus curvatune relationship is almost
lirsear il the: yinlding of the steal.

2) Ths marmant 5t yield (o alightly lowar thamn the ultiemsts
PRGETIETL 8 pbiily.

This inconsistency is justified by the following arguments: First, the moment versus
curvature relationship is almost linear till the yielding of the steel. That is, although there
is some non-linearity in the concrete, yet the non-linearity is not reflected to a great

extent before the yielding of the steel.

Second, the moment at yield is slightly lower than the ultimate moment capacity. When
we are talking of the behavior, it is almost linear up to the yield moment. That is, it is

almost linear close to its ultimate capacity.

The third argument is that the calculated moment demand for a load case is based on
elastic analysis that is well within the moment at yield. Say, if | pick up the load case
either for the dead load or live load, then the moment demand for any of this particular



load case is well within the yield moment. Hence, superposition for the different load

cases is applicable to find out the force at ultimate.
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imtraduct lon

3) The ealeulated maoment demand fer 3 load case
based on slastic analysis is well within the momant at
yield. Hemce, superpasition for the load cases is
applicable o find out the force at ultimate,

O coufse, superpoiilion canncl be uied 16 calculate
ihe deflection at ultimate.

Of course, superposition cannot be used to calculate the deflection at ultimate. Here we
have to be careful that, we may apply the principle of superposition to find out the
demand, but we cannot use the principle of superposition to find out the deflection at
ultimate. Because, after yielding there is substantial inelastic deformation which will not
be accounted for if we use the principle of superposition for deflections of individual load

cases.

The second important aspect of the analysis at ultimate strength is to understand the

variation of stress in steel.
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Variation of Stress in Steed

in non-presiressed reinforced conerele members, the
lengion and consequenty the siress in sieel increase
almost proportionataly with increasing misment 1
yislding. Tha lever arm botwssn the resubtant
CEFMBEression and 1eRsion remaing almest constant,

In non-prestressed reinforced concrete members, the tension and consequently the stress
in steel increase almost proportionately with increasing moment till yielding. The lever
arm between the resultant compression and tension remains almost constant. We had seen
this in the analysis under service loads that for a reinforced concrete member, as the load
IS increased or as the external moment is increased, the stress in the steel increases almost

proportionately till it starts to yield.
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Variation of Stress im Steel

In prestressed concrele members, he tenskon and
consequently the SInEss in prestressing steel increase
slightly with increasing moment till cracking. The
Increase in moment changes the bever arm skgnificanthy.

Thie was expiained previously in the Module of “Anslysis
Under Service Loads"™. Only afler cracking, the stress in
steel increases rapidly with moment.




Whereas, in prestressed concrete members, the tension and consequently the stress in
prestressing steel, increase slightly with increasing moment till the cracking. The increase
in moment changes the lever arm significantly. This is in contrast to that in a reinforced
concrete member. For a prestressed concrete member, as the load is increased, or as the
external moment is increased, the tension in the steel does not increase significantly. It
just increases slightly, whereas the lever arm between the compression and tension
increases as the moment increases. The compression shifts from the level of the
prestressing steel upwards, and that the increase in the lever arm is able to resist the
increase in external moment. This was explained previously in the module of analysis

under service loads.

Only after cracking, the stress in steel increases rapidly with moment. That means,
before cracking the increase in the stress in steel is not significant, but after cracking
there is a significant increase in the stress in the steel, and then it reaches a value close to

its ultimate.
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Yarfation of Stress in Stesd

The following sketch explaing the variation of the
stress in presiressing steel |} with increasing load.

The following sketch explains the variation of stress in prestressing steel which is

denoted as f,, with increasing load.
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Variation of Stress n Steel

In this sketch, what we see is that first the prestressing steel in the tendons is stretched up
to a stress of f. The self-weight can act either while the member is hogging up, or it can
act when the shuttering is removed. When the self-weight acts, there is a slight increase
in the stress, and then with time there is a drop in the stress due to the long-term effects of
shrinkage, creep and relaxation, and it stabilizes to a value of fpe.

A drop in the prestress has been just denoted by a vertical line in this sketch, because we
are not plotting this with respect to time. We are plotting the variation of the stress with
respect to the increasing load. From the self-weight, once the service load starts acting,
the stress again increases slightly until the member cracks. A Type 1 or Type 2 member
does not crack under service load, and hence the variation of the stress in the steel is very
small. Hence, it is neglected in the analysis under service loads. We assume that, the

stress in the steel remains constant at a value of fp..

After cracking, there is a sudden increase in the stress in the steel. Here, we see that both
for bonded and unbonded tendons, there is a jump in the stress in the steel. There is a
redistribution of the stresses between the concrete and the steel, and then when the load is
increased further, the stress increases till it reaches an ultimate value corresponding to the
ultimate capacity of the member.



For a bonded tendon, the stress is higher at the locations of the cracks. For an unbonded
tendon, the average stress over the length is not as high as the local stress for a bonded

tendon.
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Variation of Stress in Steal

The abeve sketch assumes that the section is falling in
fienure. Oiher types of fallure are not considered. The
stress varfables in the sketch are defined as foliows.

£ = effective presiress after time dependeni |osses
o = prestress afer initial losses

£, = uitimate siress in prestressing sbeel

The above sketch assumes that the section is failing in flexure. Other types of failure are
not considered here. The stress variables in the sketch are defined as follows: f is the
effective prestress after long-term time dependent losses, fyo is the prestress after initial

losses, fpy is the ultimate stress corresponding to the capacity of the member.

10
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Variatkon of Stress in Steel

Wihen the pre-dens ioned
member is ifed from the

i dise to bending undar self
weight.

The time dependent losses
over a period reduces thip
prestress io the effective
vabise f_.

Let us try to understand this variation in a bit more details. When a pre-tensioned member
is lifted from the prestressing bed, the prestress increases beyond f,, due to bending
under self-weight. If during the transfer of prestress the member hogs up, that means the
prestress is high enough to counteract the self-weight, then the self-weight acts right after
transfer.

For a post-tensioned member, if the member is post-tensioned in the casting bed itself,
then the self-weight may not act during prestressing. But, if the member is prestressed at
the site where it is being supported only at the ends, then the self-weight is acting even

before the prestress is applied.

The increase in stress from fyo to a value slightly higher than f, is due to the self-weight
of the member. The time dependent losses over a period reduce the prestress to the
effective value fpe. The drop in the prestress is represented by this vertical line, and this

occurs over several years in the service life of the member.

11
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Varistion of Stress in Slesl
[
B,
When the extemnal lodd
starts scting, the presiress
Foe Thiin iR iliaE k5 i hai
in bonded tendons due to
local increase in stress al N=
the region of higher N
mormient.

This increase in prestress is gall Sarvies ’““"i

negiected in the anabysls wl, |mmd Déniid
under sernvice nads.

When the external load starts acting, the prestress increases slightly beyond fp.. The
increase is higher in bonded tendons due to the local increase in stress at the region of
higher moments. For an unbonded tendon, the stress is averaged throughout the length of
the member. The increase in prestress is neglected in the analysis under their service
loads.
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Varlastion of Stress in Stesl
By
After cracking, the stress
imcreases rapidly till it
reaches . The incremss

is higheer im bonded
tendons due to local
imcreiEe in stress ul ihe
ciracks, The stress is noi
unifomm zlong the length.

Gracking Uitimate
load  load
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After cracking, the stress increases rapidly till it reaches f,,. After cracking, the
behaviour of a prestressed concrete member is very similar to a reinforced concrete
member. The increase in stress is higher for bonded tendons, due to local increase at the
cracks. The stress is not uniform along the length for a bonded tendon.
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For an unbonded tendon, the stress remains uniform along the length. At the failure of the
beam, it may not reach as high as the local stress for a bonded tendon. Thus, we have
understood the variation of the stress in steel as the load is increased. To summarize, the
stress in the tendon does not increase much under the service load. But after the member
cracks, the increase in the stress is substantially high, and we cannot consider that the

stress is remaining constant at fpe.

Next we are trying to understand the conditions at ultimate limit state.

13



(Refer Slide Time: 17:50)

Analysis of Members under Flexure

omd iions at Litimate Limit State

lin the fimit siates medhod of analysis, the limit state of
collapse (ultimate state] of 3 member under flexure s
defined a5 the siate when the exireme concrebe
compressive strain neaches a value of 00005,

At witimate, et the extreme concrnete compressive
strain be denoted as £, - Thus, £ =00035,

In the limit states method of analysis, the limit state of collapse (or the ultimate state) of a
member under flexure is defined as the state when the extreme concrete compressive
strain reaches a value of 0.0035. This is the definition of failure of both the reinforced
concrete member and the prestressed concrete member, as per the Indian codes. At the
ultimate state, the extreme concrete compressive strain is represented as g¢,. Thus, gy =
0.0035.
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Comditions i UMimats Limit State

D piiivdinig on the amount of prestressing stesl, a
section can be under-reinforced or over-reinforced.

Far an under. reinfarcsd ssstisn, the amcunt of

prestressing steel (8 655 and the s16sl yvields befors
the extreme concrete strain resches 00035,

14



Depending on the amount of prestressing steel, a section can be under-reinforced or over-
reinforced. For an under-reinforced section, the amount of prestressing steel is less and
the steel yields before the extreme concrete strain reaches 0.0035. The concept is similar
to that for reinforced concrete section, where an under-reinforced section means that the

steel will yield before the concrete reaches its ultimate strain.
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G omed iHons al U imate Limit State

For an over-reinforced section, the amount of steed is
high and the steel does not yield at uitimate. The
fransilion situation |5 called a balanced condition.

For an over-reinforced section, the amount of steel is high and the steel does not yield at
ultimate. The transition situation is called a balanced condition, which we are familiar

with in the analysis of reinforced concrete sections.

15
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Conditions at Ultimale Lim#t State

The straim profiles across the depth of bearms (wp to the
depth of CGS] for the three situations are shown below,
£

L] B (U_ k l'_,

Let us try to understand the profiles of the strain across the depth of a section, at the
ultimate, for the three situations. Here, we can see that the linear strain diagram comes
from the assumption that the plane sections remain plane, till the failure. We have to also
note the strain compatibility condition at the level of the prestressing steel. Here, there is
a difference between the reinforced concrete and prestressed concrete sections. In
reinforced concrete, the strain in steel is same as the strain in the concrete at the level of
the steel; whereas, in prestressed concrete, there is a permanent difference between the
strain in the prestressing steel and the strain in the concrete. Even at ultimate, the strain
difference will be there and that is being denoted as eqe (Strain at decompression). The
total strain in the prestressing tendon is equal to the strain in the concrete at the level of

the steel, plus &gec.

For the profile at the left, at ultimate, the strain of the extreme concrete fiber is &¢, and
the strain in the prestressing steel is higher than the strain for a balanced condition
(€pupat)- This is an under-reinforced section. On the other hand, for the profile at the
right, the strain in the steel is lower than ep,pa When the extreme compressive strain in
the concrete is g¢,. This is an over-reinforced section. At the transition, which is a

balanced section, the strain in the prestressing steel is equal to &py pal.

16
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Conditions a1 Ultimate Limit State
In the previous skatch,

By = Shradn br the stesl at the decompression of concrals
By o= Fhrain im the steel at balanced comd ition,

In the previous sketch, eqgec IS the strain in the steel at the decompression of concrete, and
epu,bal 1S the strain in the steel at balanced condition.
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As mentioned under material properties, the
prestressing steel does not have a definite wield polint.
The 0.2% proof siress is defined when the el
reaches an inelastic strain of 0.2%.

Hence, unlike reinforced concrete, the transition from
under-reinforced (o over-reinforced section S gradual
and there (£ no definibe Balanced condition.

As mentioned under material properties, the prestressing steel does not have a definite
yield point. Here, we are seeing a difference between the behavior of mild steel in

reinforced concrete and the behaviour for prestressing steel. For prestressing steel, the
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0.2% proof stress is defined when the steel reaches an inelastic strain of 0.2%. The 0.2%

proof stress is like an equivalent yield point for prestressing steel.

Hence, unlike reinforced concrete with mild steel, the transition from under-reinforced to
over-reinforced section in prestressed concrete is gradual, and there is no definite

balanced condition.
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Gomed ions al Uiimaie Limit State

151343 - 1980 does not explicitly enforce an under-
reinforced section. But the IRS Concrete Bridge Code
requires thail the siraim in the oulermosi lendon is moi
fess tham the fodlowing.
n..::r,. -

The sbove value can be considaesed 1o be the siFain inthe
sheel ol balanced condition.

IS: 1343-1980 does not explicitly enforce an under-reinforced section. It just limits the
maximum stress in the steel. But the Indian Railway Standard concrete bridge code
requires that the strain in the outermost tendon is not less than 0.87f/Ep + 0.005. Here,
fo and E, are the characteristic strength and modulus of prestressing steel, respectively.
0.87fu/Ep is the elastic component and 0.005 is plastic component of the strain. The total

value can be considered to be the strain in the steel at balanced condition.

Next, we are moving on to the assumptions of the analysis at ultimate strength.

18



(Refer Slide Time: 25:48)

Analysis of Members under Flexure

Aggumptions

The amalysis of members under fexure for uitimate
strength considers the following,

11 Flane sections remain plane ot vitimate.

2] Perfect bond is retsined between concrete and
presiressing steel for bonded tendons.

3} Tansion in concrete s neglected.

4] The design stress Versus strain curves of concrete
and steel are considared.

The analysis of members under flexure for ultimate strength considers the following:

First, a plane section perpendicular to the axis of the beam, remain plane at ultimate. This

is the Bernoulli’s hypothesis which is the basic assumption in flexural analysis.

Second, perfect bond is retained between concrete and prestressing steel for bonded
tendons. That is, we assume strain compatibility between the concrete at the level of the
steel and the prestressing tendon, till the failure of the member. This is not exactly true
around the cracks, where there is disruption of the bond. But in an average sense, we

assume that there is compatibility between the strains in the concrete and the steel.

Third, the tension in concrete is neglected. This is an assumption to simplify our

calculations.

Fourth, the design stress versus strain curves of concrete and steel are considered. In
service load analysis, we assume linear elastic behaviour for both the materials. We just
need to know the moduli for the two materials. But in the analysis for ultimate strength,

we should know the design stress-strain curves for both the concrete and the steel.
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The methods of analysis will be presented for three
types of sections.

1) Rectangular section: A rectangular section is easy to
cast, but it is not an efficlent section,

The method of analysis will be presented for three types of sections.

1) A rectangular section: A rectangular section is easy to cast, but it is not an efficient

section.
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7| Flanged section: A precast Nanged section, with
Banges either at lop or bottom reed s costlier
lormerark. Bui the section |s efficient in fexure. A
flanged section can also be made of precast web and

cast-in-piace skab.

¥} Parially presiressed section: A seclon In a member
containing both prestressed and non-gerest ressed
rednforcement.
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2) A flanged section: A precast flanged section, with flanges either at top or bottom needs
costlier formwork. But, the section is efficient in flexure. A flanged section can also be

made of precast web and cast-in-place slab

3) A partially prestressed section: A section in a member that contains both prestressed

and non-prestressed reinforcement.

The comparison of different types of sections will be again elaborated when we study the
design of prestressed members. Here, we shall learn about the analysis of the three types
of sections.

We are moving on to the analysis of a rectangular section.
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Analysis of a Rectangular Secthon

The fellawing sketch shows thi beain cross section,
strain profile, siress diag ram and force couple al the
ultimaie siate.

The following sketch shows the beam cross section, strain profile, stress diagram and

force couple at the ultimate state.
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Analysis of a Rectangular Section

- ., =0.0035 DA4TF,,

Before we start the analysis, we should understand these individual diagrams. The
geometric variables in a rectangular section are the breadth of the section which is
represented by b, and the depth of the CGS which is represented by d. At ultimate, we
first draw the strain diagram. The strain is linear along the depth, which is from the
assumption that a plane section remains plane. At failure, the ultimate compressive strain
in concrete is 0.0035, and the tensile strain in the steel is equal to the tensile strain in the
concrete at the level of the steel, plus the permanent strain difference which we are

representing as €gec.

From the strain diagram, we move on to the stress diagram. The neutral axis is the level
where the strain in the section is zero. The depth of the neutral axis at the ultimate is
represented as X,. In the stress profile, we are having a non-linear curve for concrete
under compression, which we get from the design stress—strain curve. The maximum
value of the stress is equal to 0.447 times the characteristic cube compressive strength
(fex). The stress in the prestressing steel is denoted as fy,, which corresponds to the strain

of epy. To determine f,y, we need the design stress strain—curve for the prestressing steel.

From the stress diagram, we move on to the force couple. The resultant compression is
represented as C,, which acts at a depth of 0.42 times x, from the face under
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compression. The resultant tension T, is equal to the area of the prestressing steel which

is denoted as A, times the stress fpy.
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Analysis of @ Rectangular Section

Contiutive relationship for Concrete

The constitutive relationship for concrete is parabolic up to a strain of g, and then the
stress is constant up to the ultimate strain of g, = 0.0035. From the stress block based on

the design curve, we can find out the expression of the resultant compression.
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Anslysis af & Restanguiar Seetion
In the farce diagram,

iC

0.38F, % b

TL=Af.
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This expression is Cy = 0.36 faxyb. Also, Ty = Apfuu.
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Analysis ol & Rectang ular Sectian

Based on the principles of machanics, the equations ane
&5 fodlows.

1) Equations of equilibrium

The analysis at ultimate strength is based on three principles of mechanics.

1. The first principle is based on the equilibrium of forces. The axial forces are under
equilibrium, that means T, = C, which gives, Ayf,, = 0.36fXxyb.
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Analysis of a Rectanguiar Section
1) Equations of eguilibrium (continwed.. .y
Y M-0

Ml =Tl -0A2X, )

M AL (d-042%,)  (344)
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The second equilibrium equation is that the ultimate moment of resistance is equal to the
tension times the lever arm. The lever arm is given as the depth of the CGS (d) minus the
depth of the resultant compression (which is 0.42x,). Hence, the lever arm is d — 0.42x,,.
Thus, the ultimate moment capacity is Mg = Ty (d — 0.42Xy) = Apfpu (d — 0.42Xy).

(Refer Slide Time: 33:50)
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Analysis of n Rectangular Saction
Z) Equatien of compatibility
0035

|

2. The second principle is based on the compatibility of strains. The equation also
involves the assumption of plane sections remaining plane. We are able to relate the
strain in the steel with the ultimate strain in the concrete. By the similarity of triangles,
Xy/d = 0.0035/(0.0035 + gpy — eqec). Here, gpy — €dec IS the strain in the concrete at the
level of the prestressing steel, at the ultimate state.
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Analysis of 3 Rectanguiar Section
J) Constitutive relationships

i) Coancrete

The eanstitutive relaths nahip for concrete |3 considorsd
in the expression C, = 0360 x b. This is based on the
area under thie design stress-strain cure far concnets
ungseT COmpression.

3. The third principle is based on the constitutive relationships. The constitutive
relationship for concrete has already been considered in the expression of Cy. This is

based on the area under the design stress—strain curve for concrete under compression.
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+) Ganstitutive relationship (cendinwed.. )

) Prestressing steel

r. =Fle) (3d-6)

The fumction M, ) represents the design stress-strain
curve for presiressing stes| under tension.

For the steel, the constitutive relationship can be expressed as fp, = F(epu), Where F(epy)

represents the design stress—strain curve for prestressing steel under tension.
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+) Canstitutive relationship (continwed.. )

b) Prestressing steel
f‘pl

We have seen this curve earlier under material properties. Thus, given the design

stress—strain curve, for any value of p,, we can determine fp,.
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Analy=sis of 2 Rectapgular Seetion

The fellawing variables are given in an analysis,
b = breadth of the section

d = depth of the controid of prestressing stesd (CGS)

A, = area of the prestressing steel

E,,.= EtTain in the prestreszing stosl af decom pression
of concreie

fu = charscteristic compressive stremgth of concrete

M = characterisilc lnnsile sirengih of prestressing steel

In the analysis of a rectangular section, the following variables are given. We know the
section of the member, that means, we know b and d. We know the area of the

prestressing steel (Ap). We also know egec, Which is the strain in the prestressing steel at
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decompression of concrete, or which is the strain difference between the concrete and the
steel at the level of the steel. This is further explained later. We also know the strengths
of the two materials, for concrete it is represented as f.x and for the steel it is represented
as fp. What are the unknown quantities that we need to find out?
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Analysis of a Rectangular Section

Thee unkcriswn o uantities are as follows.

M, = uliimate moment capacily [moment of resistance|

x, =depth of the newtral axis at uitimate

£, =strain in presireceing steel a1 the level of CGS o
uliimate

M = stress n prestressing sbeed ai ullimate

The abjective of the snalysis is to find out M, the ultimate
ROMeNt capacity,

The first one, what we are looking for is Myg which is the ultimate moment capacity or
the ultimate moment of resistance. We have to know x,, which is the depth of neutral
axis at ultimate. We also need to know &y, and f,, which are the strain and stress,
respectively, in the prestressing steel at the ultimate. The objective of the analysis is to
find out Mg from the equations that we have in our hand.
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Analysis of Members under Flexure

Analysis of a Rectangular Section

The simultanecus equations 3d-1 to 3d-8 can be solved
iteratiwvedy. This procedure of analysis is calied the
strain compatibility method. The steps are as follows.

The simultaneous equations 3d-1 to 3d-6 can be solved iteratively. This procedure of

analysis is called the strain compatibility analysis. The steps are as follows:
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Analysis of Members under Flexure

Analysis of a Recltangular Section

1) Assume x_ .
0, 0935

2] Calculate £, frem Eqn. -5, £. ¥, — 0.00356

3) Caliculate f_, from Eqm. Jd-&

4) Calculate: T, from Eqn. 3d-2.

First we assume a depth of the neutral axis, which is x,. Second we calculate gy, from
Eqgn. 3d-5, which is the strain compatibility equation. By rewriting the equation in a
slightly different form, we can find out that €, = 0.0035/(x,/d) — 0.0035 + €gec. The third
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step is to calculate f,, from Eqn. 3d-6, which is the design stress—strain curve for the
steel. Calculate T, from Eqn. 3d-2, where the tension is equal to the area of the

prestressing tendon times the stress.
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Analysis of Members under Flexure
Analysis of & Rectangular Section

$) Callculate: C, from Eqn. 3d-1. C, = 0368, x b

it Egm. 3d-3 (T, = C_ | s not sxtisfied change x
T, <<€, decreasex, I T >C, increase x_.

§) Calculate M, from Eqn. 3d-4. M, -T,(d-0.42x_)

The cxpazity M, cam be csmpared with the domand
undier ultimate bads.

Fifth, we calculate C, from Eqn. 3d-1, which is C, = 0.36fx,b. Next, we check the first

equilibrium equation (Egn. 3d-3), that is whether T, = C,, as per our calculations.

If it is not satisfied, then we have to change x,. If the calculated T, is less than C,, then
decrease x, to reduce compression. If the calculated T, comes out to be greater than C,
then increase X, to increase compression. We do this iteration process till the values of T,
and C, are reasonably close. Once we have converged to this condition, then we
calculate Mg from Eqn. 3d-4, which is Mg = T, (d — 0.42x,). The capacity Mg is then

compared with the demand under ultimate loads.
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Analysis of Members under Flexure

Analysis of a Reclangular Section

Im thee strain compatiblity methad, the difficalt step s to
calculate x_and . 151343 <1980 allows (o calculate these
variables approximatedy from Table 11 and Table 12,
Appendix B, based on the amount of prestressing stesed,

The ieter is expressed 15 8 reinforcement index iy

, - Ve (3a-7)
" b,

In the strain compatibility method, the difficult step is to calculate x, and fp, which we
have to do in an iteration process. The code IS: 1343-1980 allows to calculate these
values approximately from Table 11 and Table 12, Appendix B, based on the amount of
prestressing steel. The later is expressed as a reinforcement index o, = Apf/bdfe. That
means, the code gives us a simple way to calculate approximate values of the depth of the

neutral axis and the stress in the prestressing steel at ultimate.
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Analysis of Members under Flexure
Anatysis of a Rectangular Section

Table 3d-1 Approximate calculation of & and £
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Table 11 gives the values for pre-tensioned members, and post-tensioned members with
bonded tendons. Table 12 gives the values for post-tensioned members with unbonded
tendons. As | had said earlier, that the analysis of pre-tensioned members and post-
tensioned members with bonded tendons are similar because, we assume strain
compatibility for both of them. Whereas, the analysis for post-tensioned members with
unbonded tendons is different, because there we cannot assume strain compatibility at a

section. We assume a compatibility of the overall deformation of the member.

(Refer Slide Time: 42:41)

il (Bonged

Fiig 3d-3 Varistion of f, with respect 15 o, (Table 11) &

To understand the tabulated values in Table 11, this plot shows the values of fp,
(normalized with respect to the maximum allowed stress 0.87fpx) with respect to wp. As
op increases, we observe that beyond a certain value fy, reduces. If we put more steel,
beyond a certain point the stress in the steel will go down, which is evident. On the other
hand, if we reduce the amount of steel, then the stress in steel goes up till it reaches the
maximum value which is allowed by the code. The code does not allow the design stress
in the steel to go beyond 0.87f .
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P | a— P.sal b ri d (B
+— P e-lensioned eaf-le naierred |Randed

Figy 304 Varistion of x, With respect 10 ., (Table 11)

On the other hand, if we try to understand the variation of the depth of the neutral axis
(Xu), then as the amount of steel (or wp) is increased, X, also increases. If we have more
steel, we need more concrete to balance the force in the steel. Hence, the depth of the
neutral axis increases with the increasing amount of the reinforcement. Thus, the values

of fpu and x, given in the tables follow our intuition.

Next, the analysis of a rectangular section is demonstrated with the help of an example.
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Exampils 3d-1

A prestressed concrete beam produced by pre-
lensioning method Ras o rectangular cross section of
100mem = 160 mmi (b= i) It s prestressed with 10

rusm barirs of straight 2.5mm diameter wires. Each wire is
stressed up to & load of 6.8 kN, The design basd warsos
sirain earve for saeh wire iz given n & tebuler form, The
grade of concnati is M40,

Estimaite the uliimate Mexural sirength of the member by
the strain compatitility method.

A prestressed concrete beam produced by pre-tensioning method has a rectangular cross
section of 100 mm x 160 mm, which is breadth times the total depth. It is prestressed
with 10 numbers of straight 2.5 mm diameter wires. Each wire is stressed up to a load of
6.8 kN. The design load versus strain curve for each wire is given in a tabular form. The
grade of concrete is M40. Estimate the ultimate flexural strength of the member by the
strain compatibility method.
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Exampile Jd-1 jcontinuesd...)
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The depth of the CGS is 40 mm below the CGC. The design load versus strain curve for
each wire is given for the range under consideration. This is different from the
stress—strain curve because, the load versus strain curve is readily available from the

tests, and it can be used to calculate the ultimate strength of a wire.

(Refer Slide Time: 45:54)

Example 3d-1 [contimued. ..)

Design load (F) versus strain (£) values for the
prastressing wine are §iven for the Ange under
mration.

For a strain of 0.006, the load in a wire is 5.4 KN. Similarly, for a strain of 0.014, the load

is 10.7 KN. The values outside this range are not required.
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Haluion

Thie (mitial strain in the presiressing wires (g, ) =
caleilabed o the load varsus stfain tabile.

Ayl = 6.5 kN
gy = 00073

The sirain at decompression is: same as £y, for pre-
tensioned members

By = 00073

The effective depth af the CGS (d ) is 120 mm.

First, we are calculating the initial strain in the prestressing wires, g to calculate the
strain at decompression of the concrete. Since, we know the initial load in each wire, we
can calculate the strain from the given load versus strain table, and that strain is 0.0073.
Since, for a pre-tensioned member the strain at decompression is same as epi, we can
write g4oc = 0.0073. From the section, we also know the depth of the CGS which is equal
to 120 mm.
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Soliution

The Strain cofmpatibilty method s shawn i a tabular
form. Hens,

P, =load in a single wire obiained from the table

T, =10 x P, , for the ten wines.

. P,
(L1]

| (Ve |
0.0f0s 9.4

lootE| 91

0.0104 8415 |
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We are using the strain compatibility method to solve this problem. The strain
compatibility method is an iterative procedure where, we start by assuming a depth of the
neutral axis (x,). This iterative procedure can be nicely written down in a tabular form to
have the results in a compact way. In this table, we are first writing the assumed value of
Xu. We are writing the normalized value x,/d. From the compatibility equation, we can
find out the strain in the concrete at the level of the steel, which is epy — €gec. Once we
know this, we can calculate the strain in the steel because e4ec has been calculated. Then,
from the strain we are calculating the load based on the given table.

Once we know the load in single wire, we can find the total tensile force in the tendons. It
is 10 times the load in a single wire, since there are 10 wires. We can also calculate the
compression based on the assumed value of x,. Then we are checking the first
equilibrium equation, whether T, = C,?

If the starting value of x, is 60 mm, which is half of the effective depth (x,/d =0.5), T, =
94 kN and C, = 86.4 kN. For this step, Ty, > C,. Hence, we need to have a larger x, to
give more compression to the concrete. We are increasing x, to 65 mm, for which x,/d =
0.54. After going through the steps, T, has dropped from 94 to 91 kN, whereas, C, has
increased from 86.4 to 93.6 kN. For this step, T, < C,. At this stage we should reduce X,
to give more tension in the tendons. After a few iterations, for x, = 63.5 mm, T, =915
kN and C, = 91.4 kN, which are reasonably close. Thus, x, and the forces have
converged to the final values.
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Solution
Thie uitirmate fexursl strength is given as fallows.

M, = T,[d-0.42x )
94,5 [120.0 - 0.42 < 63.5) kNmm

a.5kNm

The ultimate flexural strength is given as the tension or the compression times the lever

arm. Once we substitute the variables, M g = 8.5 KNm.
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Summary

Analysiz of Members Under Flexure

Analysls for Uimate Strength
Wariation of Siress in Stoed
Condition at Ultimate Limit State

Analysis of Rectangular Section

Thus in today’s lecture, we studied the analysis of members for ultimate strength. First,
we understood the variation of stress in the steel. In our analysis for service loads, we did

not consider any variation in the stress in the steel. We said that the stress is constant at
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the effective prestress fpe. Today, what we observed is that before cracking the increase in
stress with increasing load is very small and hence, we can neglect the increase in stress.
It is only after cracking that the stress in steel increases suddenly. As the ultimate strength
is approached, the stress will increase quite rapidly.

We learned the condition to define the ultimate limit state of a member under flexure. As
per the code, it is defined based on the compressive strain in the extreme concrete fiber to
be 0.0035. During that, if the steel has substantially yielded then it is called an under-
reinforced section. But if the steel has not yielded when the concrete has reached its
ultimate strain, then it is called an over-reinforced section. For a prestressed member,
there is no definite balanced point, because the steel itself does not have a true yield
point. We may define a balanced condition by considering a particular value of strain
which the steel should have, when the concrete attains the strain of 0.0035.

We learned the analysis of rectangular sections. We first draw the strain diagram, where
we assign a strain of 0.0035 for the extreme concrete fiber under compression. From the
strain diagram, we draw the stress diagram based on the constitutive relationships. For
concrete, the stress—strain behaviour is non-linear. For the steel also, the behaviour is

non-linear at ultimate. From the stress diagram, we get the force couple.

There are three principles of mechanics. The first is the equilibrium of forces. The first
equation is the equilibrium of the tension and the compression. The second is the
equilibrium of the moment, from which we have an expression of the ultimate moment
capacity. The second principle gives the compatibility equation. The third principle is
related to the constitutive relationships. The set of equations can be solved iteratively by
a strain compatibility method, where we start with an assumed depth of the neutral axis.
If we want to bypass the strain compatibility method, we can use the code tabulated
values of the depth of neutral axis, and the stress in the steel. From these we can evaluate

the ultimate moment of resistance for a rectangular section.
In the next lecture, we shall study flanged sections.

Thank you.
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