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Welcome back to prestressed concrete structures. Today, we are covering the fourth 

lecture of module three on analysis of members. 

(Refer Slide Time: 01:18) 

 

In today’s lecture, we shall cover the analysis for ultimate strength for members under 

flexure. Under that, we shall understand the variation of stress in steel throughout the 

loading history. We shall also learn about the condition at the ultimate limit state and 

finally, we shall move on to the analysis of a rectangular section. 

First is the analysis of ultimate strength. 
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(Refer Slide Time: 01:53) 

 

A prestressed member usually remains uncracked under service loads. The analysis under 

service loads assumes the material to be linear elastic.  In whatever we have studied till 

now for the analysis under service loads, we had assumed linear stress‒strain diagrams 

both for concrete and for steel. 

2 
 



(Refer Slide Time: 02:16) 

 

After cracking, the behaviour of a prestressed member is similar to a non-prestressed 

reinforced concrete member. With increasing load, the stress versus strain behavior of 

concrete becomes non-linear. Close to the yielding of the prestressing steel, the stress 

versus strain behavior of steel also becomes non-linear. This makes the analysis of 

ultimate strength different from the analysis under service loads.  

Under analysis of service loads, we have assumed both the materials to be linear elastic.  

But when we are doing an analysis for ultimate strength, the stress‒strain for concrete 

should be non-linear. Also, if the steel has started to yield, the stress‒strain for steel 

should be non-linear. 
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(Refer Slide Time: 03:17) 

 

The analysis of a prestressed member for ultimate strength is similar to that of a 

reinforced concrete member. The analysis aims to calculate the ultimate moment 

capacity, which is also known as the ultimate moment of resistance. The capacity is 

compared with the demand at ultimate loads.  

(Refer Slide Time: 04:17) 
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There is an inconsistency in the traditional analysis at the ultimate state. The force 

demand is calculated based on elastic analysis, with superposition for the different load 

cases using the load factors. But the capacity is calculated based on the non-linear limit 

state analysis. This inconsistency has stayed after the introduction of the limit states 

method. When we are calculating the demand, we are using a linear analysis with the 

principle of superposition being applied for the different load cases, whereas, when we 

are trying to find out the capacity, we are using a non-linear behaviour of the material. 

(Refer Slide Time: 05:08)  

 

This inconsistency is justified by the following arguments: First, the moment versus 

curvature relationship is almost linear till the yielding of the steel. That is, although there 

is some non-linearity in the concrete, yet the non-linearity is not reflected to a great 

extent before the yielding of the steel. 

Second, the moment at yield is slightly lower than the ultimate moment capacity. When 

we are talking of the behavior, it is almost linear up to the yield moment.  That is, it is 

almost linear close to its ultimate capacity. 

 The third argument is that the calculated moment demand for a load case is based on 

elastic analysis that is well within the moment at yield. Say, if I pick up the load case 

either for the dead load or live load, then the moment demand for any of this particular 
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load case is well within the yield moment. Hence, superposition for the different load 

cases is applicable to find out the force at ultimate. 

(Refer Slide Time: 06:36) 

 

Of course, superposition cannot be used to calculate the deflection at ultimate. Here we 

have to be careful that, we may apply the principle of superposition to find out the 

demand, but we cannot use the principle of superposition to find out the deflection at 

ultimate. Because, after yielding there is substantial inelastic deformation which will not 

be accounted for if we use the principle of superposition for deflections of individual load 

cases. 

The second important aspect of the analysis at ultimate strength is to understand the 

variation of stress in steel. 
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(Refer Slide Time: 07:39) 

 

In non-prestressed reinforced concrete members, the tension and consequently the stress 

in steel increase almost proportionately with increasing moment till yielding. The lever 

arm between the resultant compression and tension remains almost constant. We had seen 

this in the analysis under service loads that for a reinforced concrete member, as the load 

is increased or as the external moment is increased, the stress in the steel increases almost 

proportionately till it starts to yield.  

(Refer Slide Time: 08:31) 
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Whereas, in prestressed concrete members, the tension and consequently the stress in 

prestressing steel, increase slightly with increasing moment till the cracking. The increase 

in moment changes the lever arm significantly. This is in contrast to that in a reinforced 

concrete member.  For a prestressed concrete member, as the load is increased, or as the 

external moment is increased, the tension in the steel does not increase significantly. It 

just increases slightly, whereas the lever arm between the compression and tension 

increases as the moment increases. The compression shifts from the level of the 

prestressing steel upwards, and that the increase in the lever arm is able to resist the 

increase in external moment. This was explained previously in the module of analysis 

under service loads. 

Only after cracking, the stress in steel increases rapidly with moment.  That means, 

before cracking the increase in the stress in steel is not significant, but after cracking 

there is a significant increase in the stress in the steel, and then it reaches a value close to 

its ultimate. 

(Refer Slide Time: 09:58) 

 

The following sketch explains the variation of stress in prestressing steel which is 

denoted as fp, with increasing load. 
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(Refer Slide Time: 10:08) 

 

In this sketch, what we see is that first the prestressing steel in the tendons is stretched up 

to a stress of fp0. The self-weight can act either while the member is hogging up, or it can 

act when the shuttering is removed. When the self-weight acts, there is a slight increase 

in the stress, and then with time there is a drop in the stress due to the long-term effects of 

shrinkage, creep and relaxation, and it stabilizes to a value of fpe. 

A drop in the prestress has been just denoted by a vertical line in this sketch, because we 

are not plotting this with respect to time. We are plotting the variation of the stress with 

respect to the increasing load. From the self-weight, once the service load starts acting, 

the stress again increases slightly until the member cracks. A Type 1 or Type 2 member 

does not crack under service load, and hence the variation of the stress in the steel is very 

small. Hence, it is neglected in the analysis under service loads. We assume that, the 

stress in the steel remains constant at a value of fpe.  

After cracking, there is a sudden increase in the stress in the steel. Here, we see that both 

for bonded and unbonded tendons, there is a jump in the stress in the steel. There is a 

redistribution of the stresses between the concrete and the steel, and then when the load is 

increased further, the stress increases till it reaches an ultimate value corresponding to the 

ultimate capacity of the member. 
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For a bonded tendon, the stress is higher at the locations of the cracks.  For an unbonded 

tendon, the average stress over the length is not as high as the local stress for a bonded 

tendon.  

(Refer Slide Time: 12:55) 

 

The above sketch assumes that the section is failing in flexure. Other types of failure are 

not considered here. The stress variables in the sketch are defined as follows: fpe is the 

effective prestress after long-term time dependent losses, fp0 is the prestress after initial 

losses, fpu is the ultimate stress corresponding to the capacity of the member. 
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Let us try to understand this variation in a bit more details. When a pre-tensioned member 

is lifted from the prestressing bed, the prestress increases beyond fp0 due to bending 

under self-weight. If during the transfer of prestress the member hogs up, that means the 

prestress is high enough to counteract the self-weight, then the self-weight acts right after 

transfer. 

For a post-tensioned member, if the member is post-tensioned in the casting bed itself, 

then the self-weight may not act during prestressing. But, if the member is prestressed at 

the site where it is being supported only at the ends, then the self-weight is acting even 

before the prestress is applied.  

The increase in stress from fp0 to a value slightly higher than fp0 is due to the self-weight 

of the member. The time dependent losses over a period reduce the prestress to the 

effective value fpe. The drop in the prestress is represented by this vertical line, and this 

occurs over several years in the service life of the member.  
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When the external load starts acting, the prestress increases slightly beyond fpe. The 

increase is higher in bonded tendons due to the local increase in stress at the region of 

higher moments.  For an unbonded tendon, the stress is averaged throughout the length of 

the member. The increase in prestress is neglected in the analysis under their service 

loads. 

(Refer Slide Time: 16:05) 
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After cracking, the stress increases rapidly till it reaches fpu. After cracking, the 

behaviour of a prestressed concrete member is very similar to a reinforced concrete 

member.  The increase in stress is higher for bonded tendons, due to local increase at the 

cracks. The stress is not uniform along the length for a bonded tendon.  

(Refer Slide Time: 16:54) 

 

For an unbonded tendon, the stress remains uniform along the length. At the failure of the 

beam, it may not reach as high as the local stress for a bonded tendon.  Thus, we have 

understood the variation of the stress in steel as the load is increased. To summarize, the 

stress in the tendon does not increase much under the service load. But after the member 

cracks, the increase in the stress is substantially high, and we cannot consider that the 

stress is remaining constant at fpe. 

Next we are trying to understand the conditions at ultimate limit state. 
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In the limit states method of analysis, the limit state of collapse (or the ultimate state) of a 

member under flexure is defined as the state when the extreme concrete compressive 

strain reaches a value of 0.0035. This is the definition of failure of both the reinforced 

concrete member and the prestressed concrete member, as per the Indian codes. At the 

ultimate state, the extreme concrete compressive strain is represented as εcu. Thus, εcu = 

0.0035. 

(Refer Slide Time: 18:45) 
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Depending on the amount of prestressing steel, a section can be under-reinforced or over-

reinforced. For an under-reinforced section, the amount of prestressing steel is less and 

the steel yields before the extreme concrete strain reaches 0.0035. The concept is similar 

to that for reinforced concrete section, where an under-reinforced section means that the 

steel will yield before the concrete reaches its ultimate strain.  

(Refer Slide Time: 19:33) 

 

For an over-reinforced section, the amount of steel is high and the steel does not yield at 

ultimate.  The transition situation is called a balanced condition, which we are familiar 

with in the analysis of reinforced concrete sections. 
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Let us try to understand the profiles of the strain across the depth of a section, at the 

ultimate, for the three situations.  Here, we can see that the linear strain diagram comes 

from the assumption that the plane sections remain plane, till the failure. We have to also 

note the strain compatibility condition at the level of the prestressing steel. Here, there is 

a difference between the reinforced concrete and prestressed concrete sections. In 

reinforced concrete, the strain in steel is same as the strain in the concrete at the level of 

the steel; whereas, in prestressed concrete, there is a permanent difference between the 

strain in the prestressing steel and the strain in the concrete. Even at ultimate, the strain 

difference will be there and that is being denoted as εdec (strain at decompression). The 

total strain in the prestressing tendon is equal to the strain in the concrete at the level of 

the steel, plus εdec. 

For the profile at the left, at ultimate, the strain of the extreme concrete fiber is εcu and 

the strain in the prestressing steel is higher than the strain for a balanced condition 

(εpu,bal). This is an under-reinforced section.  On the other hand, for the profile at the 

right, the strain in the steel is lower than εpu,bal when the extreme compressive strain in 

the concrete is εcu.  This is an over-reinforced section.  At the transition, which is a 

balanced section, the strain in the prestressing steel is equal to εpu,bal.  
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(Refer Slide Time: 22:19) 

 

In the previous sketch, εdec is the strain in the steel at the decompression of concrete, and 

εpu,bal is the strain in the steel at balanced condition. 

(Refer Slide Time: 22:32) 

 

As mentioned under material properties, the prestressing steel does not have a definite 

yield point. Here, we are seeing a difference between the behavior of mild steel in 

reinforced concrete and the behaviour for prestressing steel.  For prestressing steel, the 
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0.2% proof stress is defined when the steel reaches an inelastic strain of 0.2%.  The 0.2% 

proof stress is like an equivalent yield point for prestressing steel.  

Hence, unlike reinforced concrete with mild steel, the transition from under-reinforced to 

over-reinforced section in prestressed concrete is gradual, and there is no definite 

balanced condition.  

(Refer Slide Time: 24:18) 

 

IS: 1343-1980 does not explicitly enforce an under-reinforced section. It just limits the 

maximum stress in the steel. But the Indian Railway Standard concrete bridge code 

requires that the strain in the outermost tendon is not less than 0.87fpk/Ep + 0.005.  Here, 

fpk and Ep are the characteristic strength and modulus of prestressing steel, respectively. 

0.87fpk/Ep is the elastic component and 0.005 is plastic component of the strain. The total 

value can be considered to be the strain in the steel at balanced condition. 

Next, we are moving on to the assumptions of the analysis at ultimate strength. 
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(Refer Slide Time: 25:48) 

 

The analysis of members under flexure for ultimate strength considers the following:  

First, a plane section perpendicular to the axis of the beam, remain plane at ultimate. This 

is the Bernoulli’s hypothesis which is the basic assumption in flexural analysis.  

Second, perfect bond is retained between concrete and prestressing steel for bonded 

tendons. That is, we assume strain compatibility between the concrete at the level of the 

steel and the prestressing tendon, till the failure of the member. This is not exactly true 

around the cracks, where there is disruption of the bond. But in an average sense, we 

assume that there is compatibility between the strains in the concrete and the steel.  

Third, the tension in concrete is neglected. This is an assumption to simplify our 

calculations. 

Fourth, the design stress versus strain curves of concrete and steel are considered. In 

service load analysis, we assume linear elastic behaviour for both the materials. We just 

need to know the moduli for the two materials. But in the analysis for ultimate strength, 

we should know the design stress-strain curves for both the concrete and the steel.  
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The method of analysis will be presented for three types of sections. 

1) A rectangular section: A rectangular section is easy to cast, but it is not an efficient 

section. 

(Refer Slide Time: 27:40) 
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2) A flanged section: A precast flanged section, with flanges either at top or bottom needs 

costlier formwork. But, the section is efficient in flexure. A flanged section can also be 

made of precast web and cast-in-place slab  

3) A partially prestressed section: A section in a member that contains both prestressed 

and non-prestressed reinforcement. 

The comparison of different types of sections will be again elaborated when we study the 

design of prestressed members. Here, we shall learn about the analysis of the three types 

of sections.  

We are moving on to the analysis of a rectangular section. 

(Refer Slide Time: 28:58) 

 

The following sketch shows the beam cross section, strain profile, stress diagram and 

force couple at the ultimate state. 
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(Refer Slide Time: 29:09) 

 

Before we start the analysis, we should understand these individual diagrams. The 

geometric variables in a rectangular section are the breadth of the section which is 

represented by b, and the depth of the CGS which is represented by d. At ultimate, we 

first draw the strain diagram. The strain is linear along the depth, which is from the 

assumption that a plane section remains plane. At failure, the ultimate compressive strain 

in concrete is 0.0035, and the tensile strain in the steel is equal to the tensile strain in the 

concrete at the level of the steel, plus the permanent strain difference which we are 

representing as εdec. 

From the strain diagram, we move on to the stress diagram. The neutral axis is the level 

where the strain in the section is zero. The depth of the neutral axis at the ultimate is 

represented as xu. In the stress profile, we are having a non-linear curve for concrete 

under compression, which we get from the design stress‒strain curve.  The maximum 

value of the stress is equal to 0.447 times the characteristic cube compressive strength 

(fck). The stress in the prestressing steel is denoted as fpu, which corresponds to the strain 

of εpu. To determine fpu, we need the design stress strain‒curve for the prestressing steel.  

From the stress diagram, we move on to the force couple. The resultant compression is 

represented as Cu, which acts at a depth of 0.42 times xu from the face under 
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compression.  The resultant tension Tu is equal to the area of the prestressing steel which 

is denoted as Ap, times the stress fpu. 

(Refer Slide Time: 31:31) 

 

The constitutive relationship for concrete is parabolic up to a strain of ε0, and then the 

stress is constant up to the ultimate strain of εcu = 0.0035. From the stress block based on 

the design curve, we can find out the expression of the resultant compression.  

(Refer Slide Time: 32:17) 
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This expression is Cu = 0.36 fckxub.  Also, Tu = Apfpu. 

(Refer Slide Time: 32:23) 

 

The analysis at ultimate strength is based on three principles of mechanics. 

1. The first principle is based on the equilibrium of forces. The axial forces are under 

equilibrium, that means Tu = Cu which gives, Apfpu = 0.36fckxub. 

(Refer Slide Time: 32:55) 
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The second equilibrium equation is that the ultimate moment of resistance is equal to the 

tension times the lever arm. The lever arm is given as the depth of the CGS (d) minus the 

depth of the resultant compression (which is 0.42xu). Hence, the lever arm is d ‒ 0.42xu.  

Thus, the ultimate moment capacity is MuR = Tu (d ‒ 0.42xu) = Apfpu (d ‒ 0.42xu). 

(Refer Slide Time: 33:50) 

 

2. The second principle is based on the compatibility of strains. The equation also 

involves the assumption of plane sections remaining plane. We are able to relate the 

strain in the steel with the ultimate strain in the concrete. By the similarity of triangles, 

xu/d = 0.0035/(0.0035 + εpu ‒ εdec). Here, εpu ‒ εdec is the strain in the concrete at the 

level of the prestressing steel, at the ultimate state.  
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(Refer Slide Time: 35:14) 

 

3. The third principle is based on the constitutive relationships. The constitutive 

relationship for concrete has already been considered in the expression of Cu. This is 

based on the area under the design stress‒strain curve for concrete under compression. 

(Refer Slide Time: 35:31) 

 

For the steel, the constitutive relationship can be expressed as fpu = F(εpu), where F(εpu) 

represents the design stress‒strain curve for prestressing steel under tension. 

26 
 



(Refer Slide Time: 35:49) 

 

We have seen this curve earlier under material properties.  Thus, given the design 

stress‒strain curve, for any value of εpu, we can determine fpu. 

(Refer Slide Time: 36:09) 

 

In the analysis of a rectangular section, the following variables are given. We know the 

section of the member, that means, we know b and d. We know the area of the 

prestressing steel (Ap). We also know εdec, which is the strain in the prestressing steel at 
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decompression of concrete, or which is the strain difference between the concrete and the 

steel at the level of the steel. This is further explained later. We also know the strengths 

of the two materials, for concrete it is represented as fck and for the steel it is represented 

as fpk. What are the unknown quantities that we need to find out? 

(Refer Slide Time: 37:02) 

 

The first one, what we are looking for is MuR which is the ultimate moment capacity or 

the ultimate moment of resistance. We have to know xu, which is the depth of neutral 

axis at ultimate. We also need to know εpu and fpu which are the strain and stress, 

respectively, in the prestressing steel at the ultimate. The objective of the analysis is to 

find out MuR from the equations that we have in our hand. 
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(Refer Slide Time: 37:41) 

 

The simultaneous equations 3d-1 to 3d-6 can be solved iteratively. This procedure of 

analysis is called the strain compatibility analysis. The steps are as follows: 

(Refer Slide Time: 37:55) 

 

First we assume a depth of the neutral axis, which is xu. Second we calculate εpu from 

Eqn. 3d-5, which is the strain compatibility equation. By rewriting the equation in a 

slightly different form, we can find out that εpu = 0.0035/(xu/d) ‒ 0.0035 + εdec.  The third 
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step is to calculate fpu from Eqn. 3d-6, which is the design stress‒strain curve for the 

steel. Calculate Tu from Eqn. 3d-2, where the tension is equal to the area of the 

prestressing tendon times the stress. 

(Refer Slide Time: 38:58) 

 

Fifth, we calculate Cu from Eqn. 3d-1, which is Cu = 0.36fckxub. Next, we check the first 

equilibrium equation (Eqn. 3d-3), that is whether Tu = Cu as per our calculations. 

If it is not satisfied, then we have to change xu. If the calculated Tu is less than Cu, then 

decrease xu to reduce compression. If the calculated Tu comes out to be greater than Cu, 

then increase xu to increase compression. We do this iteration process till the values of Tu 

and Cu are reasonably close.  Once we have converged to this condition, then we 

calculate MuR from Eqn. 3d-4, which is MuR = Tu (d ‒ 0.42xu). The capacity MuR is then 

compared with the demand under ultimate loads. 
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In the strain compatibility method, the difficult step is to calculate xu and fpu which we 

have to do in an iteration process. The code IS: 1343-1980 allows to calculate these 

values approximately from Table 11 and Table 12, Appendix B, based on the amount of 

prestressing steel. The later is expressed as a reinforcement index ωp =  Apfpk/bdfck.  That 

means, the code gives us a simple way to calculate approximate values of the depth of the 

neutral axis and the stress in the prestressing steel at ultimate.  

(Refer Slide Time: 41:46) 
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Table 11 gives the values for pre-tensioned members, and post-tensioned members with 

bonded tendons. Table 12 gives the values for post-tensioned members with unbonded 

tendons. As I had said earlier, that the analysis of pre-tensioned members and post-

tensioned members with bonded tendons are similar because, we assume strain 

compatibility for both of them. Whereas, the analysis for post-tensioned members with 

unbonded tendons is different, because there we cannot assume strain compatibility at a 

section. We assume a compatibility of the overall deformation of the member. 

(Refer Slide Time: 42:41) 

 

To understand the tabulated values in Table 11, this plot shows the values of fpu 

(normalized with respect to the maximum allowed stress 0.87fpk) with respect to ωp. As 

ωp increases, we observe that beyond a certain value fpu reduces. If we put more steel, 

beyond a certain point the stress in the steel will go down, which is evident. On the other 

hand, if we reduce the amount of steel, then the stress in steel goes up till it reaches the 

maximum value which is allowed by the code. The code does not allow the design stress 

in the steel to go beyond 0.87fpk. 
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On the other hand, if we try to understand the variation of the depth of the neutral axis 

(xu), then as the amount of steel (or ωp) is increased, xu also increases. If we have more 

steel, we need more concrete to balance the force in the steel. Hence, the depth of the 

neutral axis increases with the increasing amount of the reinforcement. Thus, the values 

of fpu and xu given in the tables follow our intuition.  

Next, the analysis of a rectangular section is demonstrated with the help of an example. 
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A prestressed concrete beam produced by pre-tensioning method has a rectangular cross 

section of 100 mm × 160 mm, which is breadth times the total depth. It is prestressed 

with 10 numbers of straight 2.5 mm diameter wires. Each wire is stressed up to a load of 

6.8 kN. The design load versus strain curve for each wire is given in a tabular form. The 

grade of concrete is M40. Estimate the ultimate flexural strength of the member by the 

strain compatibility method. 

(Refer Slide Time: 45:07) 
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The depth of the CGS is 40 mm below the CGC. The design load versus strain curve for 

each wire is given for the range under consideration. This is different from the 

stress‒strain curve because, the load versus strain curve is readily available from the 

tests, and it can be used to calculate the ultimate strength of a wire. 

(Refer Slide Time: 45:54) 

 

For a strain of 0.006, the load in a wire is 5.4 kN. Similarly, for a strain of 0.014, the load 

is 10.7 kN.  The values outside this range are not required. 
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First, we are calculating the initial strain in the prestressing wires, εpi to calculate the 

strain at decompression of the concrete. Since, we know the initial load in each wire, we 

can calculate the strain from the given load versus strain table, and that strain is 0.0073. 

Since, for a pre-tensioned member the strain at decompression is same as εpi, we can 

write εdec = 0.0073. From the section, we also know the depth of the CGS which is equal 

to 120 mm.  

(Refer Slide Time: 47:28) 
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We are using the strain compatibility method to solve this problem. The strain 

compatibility method is an iterative procedure where, we start by assuming a depth of the 

neutral axis (xu). This iterative procedure can be nicely written down in a tabular form to 

have the results in a compact way. In this table, we are first writing the assumed value of 

xu. We are writing the normalized value xu/d. From the compatibility equation, we can 

find out the strain in the concrete at the level of the steel, which is εpu ‒ εdec. Once we 

know this, we can calculate the strain in the steel because εdec has been calculated. Then, 

from the strain we are calculating the load based on the given table.  

Once we know the load in single wire, we can find the total tensile force in the tendons. It 

is 10 times the load in a single wire, since there are 10 wires. We can also calculate the 

compression based on the assumed value of xu. Then we are checking the first 

equilibrium equation, whether Tu = Cu?  

If the starting value of xu is 60 mm, which is half of the effective depth (xu/d = 0.5), Tu = 

94 kN and Cu = 86.4 kN. For this step, Tu > Cu. Hence, we need to have a larger xu to 

give more compression to the concrete. We are increasing xu to 65 mm, for which xu/d = 

0.54. After going through the steps, Tu has dropped from 94 to 91 kN, whereas, Cu has 

increased from 86.4 to 93.6 kN.  For this step, Tu < Cu. At this stage we should reduce xu 

to give more tension in the tendons. After a few iterations, for xu = 63.5 mm, Tu = 91.5 

kN and Cu = 91.4 kN, which are reasonably close. Thus, xu and the forces have 

converged to the final values. 
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The ultimate flexural strength is given as the tension or the compression times the lever 

arm. Once we substitute the variables, MuR = 8.5 kNm. 

Refer Slide Time: 51:08) 

 

Thus in today’s lecture, we studied the analysis of members for ultimate strength. First, 

we understood the variation of stress in the steel. In our analysis for service loads, we did 

not consider any variation in the stress in the steel. We said that the stress is constant at 
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the effective prestress fpe. Today, what we observed is that before cracking the increase in 

stress with increasing load is very small and hence, we can neglect the increase in stress. 

It is only after cracking that the stress in steel increases suddenly. As the ultimate strength 

is approached, the stress will increase quite rapidly. 

We learned the condition to define the ultimate limit state of a member under flexure. As 

per the code, it is defined based on the compressive strain in the extreme concrete fiber to 

be 0.0035. During that, if the steel has substantially yielded then it is called an under-

reinforced section. But if the steel has not yielded when the concrete has reached its 

ultimate strain, then it is called an over-reinforced section. For a prestressed member, 

there is no definite balanced point, because the steel itself does not have a true yield 

point. We may define a balanced condition by considering a particular value of strain 

which the steel should have, when the concrete attains the strain of 0.0035.  

We learned the analysis of rectangular sections. We first draw the strain diagram, where 

we assign a strain of 0.0035 for the extreme concrete fiber under compression. From the 

strain diagram, we draw the stress diagram based on the constitutive relationships. For 

concrete, the stress‒strain behaviour is non-linear. For the steel also, the behaviour is 

non-linear at ultimate. From the stress diagram, we get the force couple.  

There are three principles of mechanics. The first is the equilibrium of forces. The first 

equation is the equilibrium of the tension and the compression. The second is the 

equilibrium of the moment, from which we have an expression of the ultimate moment 

capacity. The second principle gives the compatibility equation. The third principle is 

related to the constitutive relationships. The set of equations can be solved iteratively by 

a strain compatibility method, where we start with an assumed depth of the neutral axis. 

If we want to bypass the strain compatibility method, we can use the code tabulated 

values of the depth of neutral axis, and the stress in the steel. From these we can evaluate 

the ultimate moment of resistance for a rectangular section.  

In the next lecture, we shall study flanged sections.  

Thank you.  
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