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Welcome back to prestressed concrete structures. This is the third lecture of module three 

on analysis of members. 

(Refer Slide Time: 01:18) 

 

In today’s lecture, we shall study the analysis of members under flexure for service 

condition, and we shall see some particular properties for the analysis. First, we shall 

learn about the cracking moment. Next, we shall learn about the kern point and kern 

zones.  Then, we shall learn about the pressure line. 
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 (Refer Slide Time: 01:47) 

 

The analysis of flexural members under service loads, involve the following: First, is the 

calculation of the cracking moment; next, the location of the kern points and then, the 

location of pressure line. That means, these three particular quantities come within the 

analysis of the members under service loads. Now, we shall study each one of them 

individually. 

First, cracking moment. 
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(Refer Slide Time: 02:24) 

 

The cracking moment is defined as the moment due to the external loads, at which the 

first crack occurs in a prestressed flexural member. Again to repeat, it is the moment 

corresponding to the first crack; after that there will be more cracking. Considering the 

variability in stress at the occurrence of the first crack, the evaluated cracking moment is 

just an estimate. 

(Refer Slide Time: 03:03) 

 

3 
 



Nevertheless, the evaluation of cracking moment is important in the analysis of 

prestressed concrete members. We have to be aware that concrete inherently shows 

variations in its properties, especially so, for the cracking stress. Hence, the cracking 

moment that we evaluate is an estimate. It may not be the exact value when we test a 

beam under the testing machine. But still, the evaluation of the cracking moment helps us 

to check the properties of the member under study. 

For Type 1 and Type 2 prestressing members, cracking is not allowed under service 

loads. Type 1 prestressed members are considered to be fully prestressed, where no 

tensile stress is allowed under service loads. Type 2 members are called limited 

prestressed members where tensile stress is allowed, but cracking is not allowed under 

service loads. Hence, it is imperative to check that the cracking moment is greater than 

the moment due to service loads for these members. One purpose of calculating the 

cracking moment is that once we have an estimate of the cracking moment, we can 

compare it with the moment due to the service loads. If we find that the moment due to 

the service loads is less than the cracking moment, then we can expect that the members 

will not crack under the service loads. 

(Refer Slide Time: 04:59) 
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The stress at the bottom edge of the beam corresponding to the cracking moment (which 

is denoted as Mcr) is equal to the modulus of rupture. The modulus of rupture is the 

flexural tensile strength measured by testing plain concrete beams under 2-point loading, 

which is also called 4-point loading including the reactions. Earlier, in the module of 

material properties, we had studied about the modulus of rupture, which is a measure of 

the tensile strength of concrete. This value corresponds to the stress, when the cracking 

moment occurs in a particular member. 

(Refer Slide Time: 05:59) 

 

Hence, before calculating the cracking moment, we need to estimate the modulus of 

rupture. The modulus of rupture (which is denoted as fcr) is expressed in terms of the 

characteristic compressive strength of concrete (which is denoted as fck) by the following 

equation as per IS: 456 – 2000. The equation is fcr = 0.7 √fck. Here, both fcr and fck are in 

N/mm2. If we know the characteristic strength of the concrete, we can estimate the 

modulus of rupture by this simple expression. Next, when we know the modulus of 

rupture, we are able to estimate the cracking moment for a particular beam. 
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(Refer Slide Time: 07:02) 

 

Based on the stress concept, the stress at the bottom edge corresponding to Mcr is equal to 

the modulus of rupture fcr. That means, to estimate Mcr, we are going back to the stress 

concept of analysis, and we are equating the stress at the bottom to be tensile, with the 

value of fcr. On the left hand side, we see the effective prestress occurring at a certain 

eccentricity. Mcr is the moment due to the external load, which also includes its self-

weight. Corresponding to the occurrence of Mcr in the resultant stress profile, the stress at 

the bottom is tensile with a value of fcr. This is the state of stress along the depth of the 

section, when the moment due to the external load is equal to Mcr. 
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(Refer Slide Time: 08:13) 

 

From the expression that we have seen under the analysis based on stress concept, we are 

writing that the total stress is composed of the uniform compressive stress, then the 

compressive stress due to the prestressing force with an eccentricity e, and next the 

tensile stress, which is from the cracking moment. From all these terms, we are finding 

out the stress at the bottom of the beam and we are equating that to the modulus of 

rupture fcr.  

After that we are transposing the term with Mcr on the left side and rest of the terms on 

the right side. Then we get an expression of Mcr,, which is equal to fcrI/yb + PeI/Ayb + 

Pee. Thus, we have an analytical expression which relates Mcr to the section and material 

properties, and the prestressing variables. We understand that Mcr depends not only on 

the section properties and the material properties, but it also depends on the amount of 

prestressing force. 
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(Refer Slide Time: 10:16) 

 

We move on to the study of kern points. When the resultant of the compression is located 

within a specific zone of a beam, tensile stresses are not generated. This zone is called the 

kern of a section. For a section symmetric about a vertical axis, the kern is within the 

levels of upper and lower kern points. The kern zone is limited within two levels: one is 

called the top kern level, and the other is called the bottom kern level. Hence, to calculate 

the kern zone, we need to find out the kern levels, also called the kern points. 
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(Refer Slide Time: 11:31) 

 

How do we define the kern points? The condition is that when the resultant compression 

in the concrete (C) occurs at the upper kern point under service loads, then the bottom 

edge will have a zero stress; this is the condition of the upper kern point. Similarly, when 

C at transfer of prestress is located at the bottom kern point, the stress at the upper edge is 

zero. The levels of the upper and lower kern points from the CGC are denoted as kt and 

kb, respectively. 
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(Refer Slide Time: 12:58) 

 

Based on the stress concept, the stress at the bottom edge corresponding to C at kt above 

CGC is equated to zero. This is the way we are calculating the kern point or the kern 

level. When C acts at the upper kern level, then we have a zero stress at the bottom. On 

the right hand side, we see the resultant stress profile when C acts at the upper kern point. 

(Refer Slide Time: 13:41) 
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If we write the expression of the stress at the bottom corresponding to this location of C 

we find that, the first term is the uniform compression caused by C and the second term is 

due to the eccentricity of C from the CGC.  Here, Ckt is the moment due to C, and yb is 

the distance of the bottom edge from the CGC. The resultant stress is equal to zero. We 

are substituting I = Ar2, where r is the radius of gyration. Once we substitute that and we 

transpose the terms, we can find out an expression of the upper kern point. kt = r2/yb. 

Thus, this equation expresses the location of upper kern point in terms of the section 

properties. 

(Refer Slide Time: 15:07) 

 

Similar to the location of kt, the location of the bottom kern point is calculated as follows. 

When C occurs at the bottom kern point, which is at a distance kb from the CGC, the 

resultant stress profile is shown on the right side. There is zero stress at the top. 
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(Refer Slide Time: 15:37) 

 

If we write the expression of the stress at the top, then the first term is the uniform 

compression, and the second term is the stress corresponding to the eccentricity of C, 

which is equal to Ckbyt/I, and the sum total is equal to zero. Again, substituting I equal to 

Ar2, we can find out an expression of the bottom kern point which is given as kb = r2/yt. 

Again, here r is the radius of gyration and yt is the distance of the top edge from the 

CGC. 
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(Refer Slide Time: 16:33) 

 

Once we know the kern points, we can also determine the cracking moment using these 

kern points. The cracking moment is slightly greater than the moment causing zero stress 

at the bottom. C is located above kt to cause a tensile stress equal to the modulus of 

rupture fcr at the bottom. The incremental moment is given as fcrI/yb. Let us understand 

this from the following stress diagram. 

(Refer Slide Time: 17:20) 
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In this diagram we can observe that, if the compression occurs at the top kern point then 

we have the first stress diagram as shown with zero stress at the bottom. If we shift C 

slightly above the top kern point by a distance Δz, then there will be an additional stress 

profile with the modulus of rupture showing up at the bottom edge. The resultant stress 

profile will have a bottom stress of equal to fcr and which is tensile in nature. This 

additional increase in the moment due to the shift of the C from the top kern point to a 

level which is Δz above the top kern point causes this additional tensile stress in the 

section, which corresponds to the cracking moment of the section. 

(Refer Slide Time: 18:39) 

 

The cracking moment is thus given as C times the total lever arm.  

Refer Slide Time: 18:50) 
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If we go back to the figure, the total lever arm is equal to e + ec, which is equal to e + kt 

+ Δz.  Mcr is equal to C(e + kt + Δz).  Next, we are equating CΔz to fcrI/yb because that is 

the incremental moment, beyond the moment causing zero stress at the bottom. This 

incremental moment causes cracking at the bottom. This is another expression of the 

cracking moment which is in terms of the kern points and the modulus of rupture. 

(Refer Slide Time: 19:45) 
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The expression of Mcr that we had seen earlier and this second expression, they are in 

fact same. We can prove this by substituting C = Pe, kt = r2/yb and r2 = I/A. Once we 

substitute these variables into the expression, we can get back the first expression of the 

cracking moment.  

Thus, we have two approaches to calculate the cracking moment: the first one is from the 

basic definition based on the stress concept, and the second one is based on the location 

of C above the upper kern point. Both these approaches will give the same value of the 

cracking moment. 

(Refer Slide Time: 20:56) 

 

Next, we are studying the pressure line. The pressure line in a beam is the locus of the 

resultant compression C along the length. It is also called the thrust line or C-line. As we 

move along the span of a beam, the profile of the tendon changes, the external moment 

changes, and the shift of C from the tendon also changes. If we plot a line connecting all 

the points of the location of C along the span of the beam, that line is called the pressure 

line for the beam for that particular given load. The pressure line is used to check whether 

the C at transfer and under service loads is falling within the kern zone of the section. 

Thus, we are using the pressure line to ensure whether there is any tensile stress in the 

section or not. 
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If the C at transfer is within the kern zone, and if the C at service loads is also within the 

kern zone, then we can say that for any type of service loads, we can expect that C will 

always be within the kern zone, and the section will always be under compression. At 

service, the eccentricity of the pressure line which is represented as ec from the CGC, 

should be less than kt to ensure C is in the kern zone. The way to make sure that C is 

within the kern zone is that the distance of the pressure line at any point of the beam from 

the CGC should be less than the top kern level under service loads.  

(Refer Slide Time: 23:26) 

 

The pressure line can be located from the lever arm (z) and eccentricity of the CGS (e) as 

follows.  The lever arm is the distance between the tension in the prestressing tendon and 

compression in the concrete. It is given as the moment divided by the compressive force.  

Then, the location of the pressure line is given by the variable ec, which is equal to z ‒ e. 

A positive value of ec implies that C acts above the CGC. Based on this definition we can 

say that if ec is positive, then the compression acts above the CGC and if ec is negative, 

then the compression acts below the CGC. 
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(Refer Slide Time: 24:40) 

 

To summarise, a positive value of ec implies that C acts above the CGC and vice versa. If 

ec is negative and the numerical value is greater than kb, then C lies below the lower kern 

point and tension is generated at the top of the member. Similarly, if ec is greater than kt, 

then C lies above the upper kern point and tension is generated at the bottom of the 

member. Thus, this is the way to check whether the compression lies within the kern zone 

by the use of the pressure line. 
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 (Refer Slide Time: 25:29) 

 

In this sketch, the pressure line is calculated considering only the self-weight of the beam. 

Here, the tendon is at a constant eccentricity throughout the member. Due to the self-

weight, the compression (C) has shifted from the location of the tendon towards upwards. 

At the centre, the moment is maximum for a simply supported beam and the shift of C is 

also maximum. The blue line shows the locus of the C for the various locations along the 

span of the beam and hence, this is the pressure line at transfer. That means, at transfer, 

only the self-weight is acting and we are considering that this pressure line is due to the 

moment from the self-weight. 

The next sketch shows, the location of the pressure line at service. 
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(Refer Slide Time: 26:44) 

 

At service also, for a uniformly distributed load, the maximum moment is at the centre 

and hence, the maximum shift of the pressure line from the CGS is at the centre. Here 

also, the blue line shows the locus of the points of C along the span of the beam. What we 

ensure for Type 1 (fully prestressed) members is that the pressure line should lie within 

the kern zone which is limited by the top kern point and the bottom kern point.  

(Refer Slide Time: 27:42) 
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There is another concept which is used in the design of prestressed concrete members, 

and this concept is called the limiting zone. For Type 1 members, tension is not allowed 

under service conditions. If tension is not allowed at transfer also, then C always lies 

within the kern. The limiting zone is defined as the zone for placing the CGS of the 

tendons such that C always lies within the kern. To summarize, in a fully prestressed 

member, where we do not want any tension at the bottom under service loads, C lies 

within the top kern point. During the transfer of prestress in such a member, if we ensure 

that C lies within the bottom kern point due to the self-weight, then throughout its service 

life we expect C to lie between the bottom and the upper kern points. 

In order to ensure that C will be lying within the kern zone, we can place the CGS only 

within a certain zone and that zone is called the limiting zone. The limiting zone is used 

in the design of prestressed concrete members to place the CGS of the tendons, such that 

C is located within the kern zone for a Type 1 member. 

(Refer Slide Time: 29:49) 

 

For limited prestressed members (Type 2 and Type 3), tension is allowed at transfer and 

under service conditions. The limiting zone is defined as the zone for placing the CGS 

such that the tensile stresses in the extreme edges are within the allowable values. The 

limiting zone for a Type 2 or Type 3 member is a bit more relaxed than a limiting zone 
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for a Type 1 member. C may be outside the kern zones such that the tensile stress at the 

extreme edges is within the allowable values. 

(Refer Slide Time: 30:32) 

 

The following figure shows the limiting zone as the shaded region for a simply supported 

beam subjected to uniformly distributed load. Here, the top line is the locus of the 

minimum values of the eccentricity of the CGS along the span of the beam, and the 

bottom line is the locus of the maximum values of the eccentricity of the CGS along the 

span. We have shown the sketch only for half the length of the beam and the other side, it 

will be symmetric. If we place the CGS between these two bounds, then we ensure that 

the compression (C) will lie within the kern zone for a Type 1 member, or it may lie 

outside the kern zone for Type 2 and Type 3 members, but the tensile stresses that are 

generated in the extreme fibres will be within the allowable values. 
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(Refer Slide Time: 31:47) 

 

The determination of limiting zone for a section will be given in detail in the module of 

design of members for flexure. In this particular lecture, we are not further going into the 

determination of limiting zone. 

(Refer Slide Time: 32:09) 

 

Next, let us solve a problem to determine the cracking moment, the kern points and the 

location of the pressure line for a particular member. For the post-tensioned beam with a 
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flanged section as shown in the next slide, the profile of the CGS is parabolic with no 

eccentricity at the ends. The live load moment at mid-span due to service loads is 648 

kNm. The prestress after transfer which we have been able to measure from the jacks is 

1600 kN. Assume 15 % loss at service. The grade of concrete is given as M30. The span 

of the beam is 80 m, and the tendon is parabolic with zero eccentricity at the ends and 

maximum eccentricity at the middle. 

(Refer Slide Time: 33:18) 

 

The cross-section of the beam has a top flange with width 500 mm and depth 200 mm. 

We have a bottom flange with width 250 mm and depth 200 mm. The width of the web is 

150 mm. The total depth of the section is 1000 mm. The CGS is located 150 mm above 

the soffit of the beam. 

24 
 



(Refer Slide Time: 33:55) 

 

For this member, evaluate the following quantities: a) the kern level, b) the cracking 

moment, c) the location of pressure line at mid-span at transfer and at service.  

Once we know the location of the pressure line at mid-span, we can draw the complete 

pressure line, because at the ends, the location of the pressure line is at the CGC. Since, 

the CGS does not have any eccentricity at the ends, and at the end the moment is zero, 

there the CGS and the pressure line coincide at the CGC. Once we know the location of 

the pressure line at the mid-span, we will be able to draw a parabolic line between the end 

and the location at mid-span. Hence, the calculation only at mid-span is sufficient to draw 

the pressure line.  

d) Calculate the stresses at the top and bottom of the member at transfer and at service, 

and compare the stresses with the following respective allowable values. 

Here, the allowable stresses are given to be same for transfer and service. In real 

situation, these values may be different. For compression, the allowable stress is ‒ 18 

N/mm2. For tension, the allowable stress is 1.5 N/mm2. 
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(Refer Slide Time: 35:51) 

 

In our solution, the first step is to calculate the geometric properties. The section is 

divided into three rectangles for the computation of the geometric properties. This is the 

essential difference between a rectangular section and a flange section. In our last lecture, 

we had solved a problem with a rectangular section. There, the calculation of the 

geometric properties was simpler with standard formulas. But here, we are decomposing 

the flange section into component rectangles from which we are calculating the geometric 

properties. 

The centroid of each rectangle is located from the soffit of the beam. That means, the top 

rectangle which is denoted as 1, its centroid is located at 900 mm from the bottom. The 

second rectangle which represents the web, its centroid is located 500 mm from the 

bottom. The rectangle which represents the bottom flange, its centroid is located at 100 

mm from the bottom. Given this data and given the dimensions of each rectangle, we can 

find out the location of the CGC from the soffit of the beam, which we shall represent as 

ȳ. The distance of the top fibre from the CGC will be denoted as yt and the distance of 

the bottom fibre from the CGC will be represented as yb. Note that yb will be same as ȳ. 
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 (Refer Slide Time: 37:43) 

 

For the area of the section, first, we are calculating the area of the first rectangle which is 

A1 = 500 × 200 = 100,000 mm2. The second one is the area of Rectangle 2 which is A2 = 

600 × 150 = 90,000 mm2. Area of Rectangle 3 is A3 = 250 × 200 = 50,000 mm2. The total 

area is given as A1 + A2 + A3 = 240,000 mm2. 

(Refer Slide Time: 38:25) 
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The location of the CGC is based on calculating the first moment of each of the areas 

about the level of the soffit, and then sum of these first moments divided by the total area. 

This is equal to (A1 × 900 + A2 × 500 + A3 × 100)/A = 583.3 mm. Thus, the CGC is 

located at a distance of ȳ = 583.3 mm from the soffit of the beam. From here, we can 

calculate the value of yb which is same as ȳ and equal to 583.3 mm. The value of yt is 

equal to 1000 (total depth) ‒ 583.3 = 416.7 mm. Thus, we know the distances of the two 

extreme edges from the CGC.  

Next, we are calculating the moment of inertias of the individual rectangles and then we 

shall add them up to get the moment of inertia of the total section about the CGC. 

(Refer Slide Time: 39:55) 

 

Using the principle of parallel axis theorem, the moment of inertia of Rectangle 1 about 

an axis through CGC is equal to the sum of the moment of inertia about its centroid, plus 

the area times the square of the distance between the two parallel axes. The moment of 

inertia about its centroid is given as 1/12 × 500 (breadth of the section) × 2003 (depth of 

the section). The additional term is A1 × (900 ‒ 583.3)2. Once we substitute the value of 

A1, we get the value of I1 = 1.036 × 1010 mm4.  
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Similarly, we are calculating moment of inertia of Rectangle 2. We get I2 = 3.32 × 109 

mm4. 

(Refer Slide Time: 41:25) 

 

Similarly, we calculate moment of inertia of Rectangle 3 which is I3 = 1.184 × 1010 mm4. 

The moment of inertia of the total section is I = I1 + I2 + I3 = 2.552 × 1010 mm4. 

(Refer Slide Time: 41:55) 
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We calculate the square of radius of gyration. r2 = I/A. Once we substitute the values of I 

and A, we get the value of r2 = 1.063 × 105 mm2. 

(Refer Slide Time: 42:17) 

 

Now, we have all the variables to calculate the kern levels of the section. kt = r2/yb = 

182.2 mm. kb = r2/yt = 255.1 mm. 

(Refer Slide Time: 42:46) 
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If we plot these kern levels or the kern points for the section, we designate the 

intermediate zone as the kern zone for the section. Thus, if the compression under any 

stage of load lies within this kern zone, then there will be no tension in the cross-section. 

(Refer Slide Time: 43:17) 

 

We move on to find out the location of pressure line. At transfer, we are calculating the 

moment due to self-weight. We are calculating the weight per unit length of the beam as 

the unit weight of the concrete, which is assumed to be 24 kN/m3 times the area, and then 

a factor to convert the mm2 to m2.  We get the weight per unit length equal to 5.76 kN/m. 

From that, we can calculate the moment due to self-weight, which is equal to WDLL2/8. 

The span is equal to 18 m. Once we substitute the values of WDL and L, the moment due 

to the dead load is MDL = 233.3 kNm. 
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(Refer Slide Time: 44:27) 

 

At this point, we are calculating the location of the pressure line at mid-span, for transfer. 

The transfer is the first load stage, when only the prestress is acting without the long term 

losses, and the self-weight is acting. At transfer, the lever arm (z) is given as the moment 

due to the dead load divided by C, which is equal to 233.3 × 103/1600 = 145.8 mm. That 

means the C shifts from the CGS by a distance of 145.8 mm at the centre of the beam. 

Thus, the location of the pressure line at the mid-span is equal to the lever arm minus the 

eccentricity of the CGS, which is 145.8 ‒ 433.3 = ‒287.5 mm. 
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(Refer Slide Time: 45:50) 

 

Since ec is negative, the pressure line at transfer is below the CGC. Since the magnitude 

of ec is greater than kb, there will be tension at the top for this member at transfer. 

(Refer Slide Time: 46:14) 

 

In this sketch, we are plotting the location of the pressure line at transfer from the CGC. 

We know the bottom kern point, and we have found that the pressure line is located 
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outside the kern zone.  Hence, we expect that there will be tension at the top of the beam 

at transfer. 

(Refer Slide Time: 46:44) 

 

Next, we are calculating the location of the pressure line at mid-span, at service. For 

service, the lever arm is calculated from the total moment, which is due to the dead load 

and live load, and from the compression which is now equal to the effective prestress. 

The total moment is given as the moment due to the self-weight plus the live load 

moment, which has been specified as 648 kNm.  The effective prestress is 85% of the 

prestress at transfer which is 1600 kN. Once we substitute these values, we get the lever 

arm equal to 648 mm. Thus, at service, the C shifts from the CGS by a distance of 648 

mm at the mid-span of the beam. The location of the pressure line, which is equal to the 

eccentricity of C, is given as z ‒ e = 648.0 ‒ 433.3 = 214.7 mm. 
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(Refer Slide Time: 48:20) 

 

Since ec is positive, the pressure line is above CGC. Since the magnitude of ec is greater 

than kt the upper kern point, there is tension at the bottom. 

(Refer Slide Time: 48:34) 

 

In this sketch we are plotting the location of the pressure line at service, and we find that 

this is located above the upper kern point at a distance of 214.7 mm from the CGC.  
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(Refer Slide Time: 49:05) 

 

Next, we are calculating the cracking moment. For that, we are first calculating the 

modulus of rupture: fcr = 0.7√fck, where fck is the characteristic strength equal to 30 

N/mm2 for M30 grade of concrete. The modulus of rupture is equal to 3.83 N/mm2. 

(Refer Slide Time: 49:38) 
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Substituting the value of the modulus of rupture, the sectional properties and the effective 

prestress, we can evaluate the cracking moment. The cracking moment comes out to be 

970.1 kNm. 

(Refer Slide Time: 49:59) 

 

Hence, the live load moment corresponding to cracking is MLLcr is equal to 970.1 ‒ 233.3 

= 736.8 kNm. Since, the given live load moment 648.0 kNm is less than the above value, 

the section is uncracked under service loads. It is a Type 1 member. Hence, we can use 

the moment of inertia of the gross section. 
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(Refer Slide Time: 50:41) 

 

Finally, we are calculating the stresses in the member under the transfer and service 

loads. The expression of the stress is given as follows: the first one is the uniform stress; 

the second one is the stress due to the eccentricity of the prestressing force; and the third 

one is the stress due to the external moment. We expect a resultant stress profile as shown 

in the right. 

(Refer Slide Time: 51:07) 
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At transfer, we calculate the stress due to the prestressing force P0. We know the value of 

e = ȳ ‒ 150 = 433.3 mm. 

(Refer Time Slide: 51:26) 

 

When we substitute the values of all the variables into the individual stress components, 

we find that the stress, at the top is given as ‒ 6.67 + 11.32 ‒ 3.81 = 0.84 N/mm2. Thus, 

we have positive tensile stress at the top, which we had earlier observed from the location 

of C at transfer below the bottom kern point.  
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(Refer Slide Time: 52:03) 

  

For the stress at the bottom, the value is ‒ 17.19 N/mm2. 

(Refer Slide Time: 52:13) 

 

Next, we are calculating the stresses at service. The uniform stress is given as 85% of the 

stress at transfer, due to the 15 % losses. 
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(Refer Slide Time: 52:27) 

 

For the stress at the top fibre, calculating the individual values we find that the stress is 

‒10.44 N/mm2. 

(Refer Slide Time: 52:41) 

 

With similar calculations, we find that the stress at the bottom is equal to 1.0 N/mm2. 

Remember that, in this expression here, we knew the stress due to the self-weight 

moment which we have retained, and we have just added the stress due to the imposed 
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live load moment. The uniform component of the stress is ‒ 5.67 N/mm2. Then we have ‒ 

13.47 N/mm2 due to the eccentricity of the prestressing force.  5.33 N/mm2 is from the 

dead load moment and 14.81 N/mm2 is from the live load moment. We observe that at the 

bottom, there is a resultant tensile stress under service loads. 

(Refer Slide Time: 53:42) 

 

The stress profiles are shown. At transfer, we have a positive tensile stress at the top and 

compressive stress at the bottom.  At service, we have compressive stress at the top and 

positive tensile stress at the bottom. Let us now compare these stresses with the allowable 

values. Both for transfer and service, the allowable compressive stress is ‒18 N/mm2.  

We see that the magnitudes of the compressive stresses both at transfer and at service are 

lower than 18 N/mm2. Hence, the allowable compressive stresses have been satisfied. 

Next, the allowable tensile stress is 1.5 N/mm2. Here also, the top tensile stress at transfer 

and the bottom tensile stress at service, are lower than the allowable value. Thus, the 

stresses are within the allowable limits. Our observations from the kern levels and the 

locations of pressure line, are consistent with the observations of the calculated stresses. 
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(Refer Slide Time: 55:15) 

 

To summarize today’s lecture, we studied some specific portions of analysis of members 

under flexure. First, we studied the cracking moment. We have defined the cracking 

moment as the moment due to the external loads, when the stress at the bottom is equal to 

the modulus of rupture. We have seen one expression of cracking moment based on the 

stress concept, and the other expression of the cracking moment based on the location of 

the kern points. Second, we moved on to the definition of the kern points. If the 

compression is located in the kern zone, then there will not be any tension in the section.  

Next, we moved on to the pressure line. Pressure line is the location of the resultant 

compression throughout the span of the beam. We observed that for a simply supported 

beam, if we know the location of the pressure line at mid-span, we will be able to draw 

the complete pressure line throughout the span. From the pressure line, if the C lies 

within the kern zone at transfer and at service, then we ensure that there will not be any 

tension in the prestressed concrete member during its service life period.  

Finally, we solved a problem, where we saw the analysis of a flanged section. First, we 

calculated the geometric properties by decomposing the section into individual 

rectangles. We calculated the kern levels. Next, we found out the cracking moment for 

the particular section. We have found that the given live load is lower than the live load 
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corresponding to the cracking moment. Hence, the section will not crack.  However, 

since the pressure line is outside the kern zone, there will be some tension at the extreme 

edges. Same observations were obtained by the calculation of the stresses from the stress 

concept. 

From the stress concept analysis, we found that at transfer, there is some tension at the 

top, and at service, there is some tension at the bottom. Both these tensile stresses are 

within the allowable value. Also, the compressive stresses at transfer and at service are 

also within the allowable value. This ensures that this member will not crack, and it is 

satisfactory under service loads. With this, we are ending the analysis under service 

loads, where we ensure that the stresses are within the allowable values.  

Thank you.  
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