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Module — 3: Analysis of Members

Lecture — 13: Cracking Moment, Kern Point and Pressure Line

Welcome back to prestressed concrete structures. This is the third lecture of module three

on analysis of members.
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Module 3-¢ (3™ Hour)

Analysis of Mem ber Under Flesurne
Cracking Momant
Kern Point
Fressure Line

In today’s lecture, we shall study the analysis of members under flexure for service
condition, and we shall see some particular properties for the analysis. First, we shall
learn about the cracking moment. Next, we shall learn about the kern point and kern

zones. Then, we shall learn about the pressure line.
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Analysis of Members under Flexure

Imtresd uetion

The analysis of Mesural members under service lsads
involve the following.

a) Galculation of the cracking moment.
By Lezathomi of Kerm paints.
) Locathsn of phassiira line.

The following material explains cach one of them.

The analysis of flexural members under service loads, involve the following: First, is the
calculation of the cracking moment; next, the location of the kern points and then, the
location of pressure line. That means, these three particular quantities come within the
analysis of the members under service loads. Now, we shall study each one of them

individually.

First, cracking moment.
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Analysis of Members under Flexure

Cracking Moment

The cracking moment (M ] is defined as the moment

due to cxternal loads @ which the Mrst crack ocours in
a prestresseod Mesral mem ber.

The cracking moment is defined as the moment due to the external loads, at which the
first crack occurs in a prestressed flexural member. Again to repeat, it is the moment
corresponding to the first crack; after that there will be more cracking. Considering the
variability in stress at the occurrence of the first crack, the evaluated cracking moment is

just an estimate.
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Analysis of Members under Flexure

Cracking Momant (CoRtinued. ..)

Conskiering the variability in stress at the cccurrence
of thie first crack, the evaluated cracking moment is an

estimate, Mevertheless, the evaluation of cracking
rraement is impartant in (he analysis of presiressed
FRerT TS,




Nevertheless, the evaluation of cracking moment is important in the analysis of
prestressed concrete members. We have to be aware that concrete inherently shows
variations in its properties, especially so, for the cracking stress. Hence, the cracking
moment that we evaluate is an estimate. It may not be the exact value when we test a
beam under the testing machine. But still, the evaluation of the cracking moment helps us

to check the properties of the member under study.

For Type 1 and Type 2 prestressing members, cracking is not allowed under service
loads. Type 1 prestressed members are considered to be fully prestressed, where no
tensile stress is allowed under service loads. Type 2 members are called limited
prestressed members where tensile stress is allowed, but cracking is not allowed under
service loads. Hence, it is imperative to check that the cracking moment is greater than
the moment due to service loads for these members. One purpose of calculating the
cracking moment is that once we have an estimate of the cracking moment, we can
compare it with the moment due to the service loads. If we find that the moment due to
the service loads is less than the cracking moment, then we can expect that the members

will not crack under the service loads.
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Analysis of Members under Flexure

Gracking Moment [continued...)

Thie striess at the bottom edge of the baaim
corresponding to the cracking moment (M) is cqual (o
the modulus of mupture,

The: modulus of Fupbure (s the Mexural tensile sirengih
measured by testing beams wnder 2 pdint loading (alsa
calbed 4 point losding nciuding the reactions),




The stress at the bottom edge of the beam corresponding to the cracking moment (which
is denoted as M) is equal to the modulus of rupture. The modulus of rupture is the
flexural tensile strength measured by testing plain concrete beams under 2-point loading,
which is also called 4-point loading including the reactions. Earlier, in the module of
material properties, we had studied about the modulus of rupture, which is a measure of
the tensile strength of concrete. This value corresponds to the stress, when the cracking

moment occurs in a particular member.
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Analysis of Members under Flexure

Cracking Moment (continued...

The modulus of rupture () is expressed in terms of
the characieristic compressive sirength () of
concrefe by the foliowing equaticn (15456 - Z000).

f, =07.ff,

Here, f_, and [, are in Nimm?,

Hence, before calculating the cracking moment, we need to estimate the modulus of
rupture. The modulus of rupture (which is denoted as f.;) is expressed in terms of the
characteristic compressive strength of concrete (which is denoted as fcx) by the following
equation as per IS: 456 — 2000. The equation is . = 0.7 Vfq. Here, both f, and fo are in
N/mm?. If we know the characteristic strength of the concrete, we can estimate the
modulus of rupture by this simple expression. Next, when we know the modulus of

rupture, we are able to estimate the cracking moment for a particular beam.
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Analysis of Members under Flexure

Cracking Moment (continued...)

Hased on the sthess concepl, the stiess at the bottom
edge comesponding (o & . s equated to 1.

¥ —p

i
Internal forces H.'nuﬂ: nt stress
in cancrete profile

Based on the stress concept, the stress at the bottom edge corresponding to M, is equal to
the modulus of rupture fe,. That means, to estimate M, we are going back to the stress
concept of analysis, and we are equating the stress at the bottom to be tensile, with the
value of f... On the left hand side, we see the effective prestress occurring at a certain
eccentricity. M, is the moment due to the external load, which also includes its self-
weight. Corresponding to the occurrence of M, in the resultant stress profile, the stress at
the bottom is tensile with a value of f. This is the state of stress along the depth of the

section, when the moment due to the external load is equal to M.
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Gracking Moment (comtinued. ..)
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This equation relates M_ 1o the section and matberial
properties and prestressing vanabies.

From the expression that we have seen under the analysis based on stress concept, we are
writing that the total stress is composed of the uniform compressive stress, then the
compressive stress due to the prestressing force with an eccentricity e, and next the
tensile stress, which is from the cracking moment. From all these terms, we are finding
out the stress at the bottom of the beam and we are equating that to the modulus of

rupture fe,.

After that we are transposing the term with M, on the left side and rest of the terms on
the right side. Then we get an expression of M, which is equal to fl/yp, + Pcl/Ayy +
Pce. Thus, we have an analytical expression which relates M, to the section and material
properties, and the prestressing variables. We understand that M, depends not only on
the section properties and the material properties, but it also depends on the amount of

prestressing force.
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Analysis of Members under Flexure

Kern Points

When the OGS s localed within a specific zone of a
section of 3 beam, tensile stresses are not generated.
This zone is called the kerm of & section. For a Section
symmetric about a verfical axis, the kem i within the
levels of thi upper and Ewer Kem points.

We move on to the study of kern points. When the resultant of the compression is located
within a specific zone of a beam, tensile stresses are not generated. This zone is called the
kern of a section. For a section symmetric about a vertical axis, the kern is within the
levels of upper and lower kern points. The kern zone is limited within two levels: one is
called the top kern level, and the other is called the bottom kern level. Hence, to calculate

the kern zone, we need to find out the kern levels, also called the kern points.
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Analysis of Members under Flexure

Kern Points ([continued...)

When the resultant compression [C) under service
loads is located, at the upper kern point, the stress at
the botiom edge is 2ero.

Similarly, when C i transier of presiress is located af
the baltom kem point, the stress at the spper edge is
pere, The levels of the upper and lower kern points:
from GG are denoled as k and k;, respectively.

How do we define the kern points? The condition is that when the resultant compression
in the concrete (C) occurs at the upper kern point under service loads, then the bottom
edge will have a zero stress; this is the condition of the upper kern point. Similarly, when
C at transfer of prestress is located at the bottom kern point, the stress at the upper edge is
zero. The levels of the upper and lower kern points from the CGC are denoted as k; and

Ky, respectively.
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Analysis of Members under Flexure

Harn Points ([continued...)

Based on the siress concept, the stress ot the bottom
edge corresponding (e C at k above CGC, is equated to
0.

|
Yo,

Iribirmeal farce Resultant siress
in congrete prafile

Based on the stress concept, the stress at the bottom edge corresponding to C at k; above
CGC is equated to zero. This is the way we are calculating the kern point or the kern
level. When C acts at the upper kern level, then we have a zero stress at the bottom. On

the right hand side, we see the resultant stress profile when C acts at the upper kern point.
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Kern Points (continued.. )
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This equation expres=zes the location of upper ke point in
termis of the section propeties. Here, ris the radius of
gyrathon.
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If we write the expression of the stress at the bottom corresponding to this location of C
we find that, the first term is the uniform compression caused by C and the second term is
due to the eccentricity of C from the CGC. Here, Ck; is the moment due to C, and vy, is
the distance of the bottom edge from the CGC. The resultant stress is equal to zero. We
are substituting | = Ar?, where r is the radius of gyration. Once we substitute that and we
transpose the terms, we can find out an expression of the upper kern point. ki = r’/yy.
Thus, this equation expresses the location of upper kern point in terms of the section
properties.
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Analysis of Members under Flexure
Kemn Points jcontinued...)

Similar to thie calculation of k., the bZation of the
hottom kem paint is calculated as follows.

¥

—C 1K

Intermal force Resuitant stress
in eonerele profile

Similar to the location of k;, the location of the bottom kern point is calculated as follows.
When C occurs at the bottom kern point, which is at a distance k, from the CGC, the

resultant stress profile is shown on the right side. There is zero stress at the top.

11
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Analysis of Members under Flexure

Harn Pobsts (continued. . .)

C Chy
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If we write the expression of the stress at the top, then the first term is the uniform
compression, and the second term is the stress corresponding to the eccentricity of C,
which is equal to Ckpyi/l, and the sum total is equal to zero. Again, substituting | equal to
Ar?, we can find out an expression of the bottom kern point which is given as ky = r/y;.

Again, here r is the radius of gyration and y; is the distance of the top edge from the

CGC.

12



(Refer Slide Time: 16:33)

Analysis of Members under Flexure

Cracking Moment using Hern Points

The k2rn points can be used to determine the cracking
rroment (M_). The cracking meoment i< sligmily greater
than the moment causing tefo siress & the bottom. C
Is located above ki cause a tensile siress [_.at the
baottam. Thie incrementsl moment S 1 My,

Once we know the kern points, we can also determine the cracking moment using these
kern points. The cracking moment is slightly greater than the moment causing zero stress
at the bottom. C is located above k; to cause a tensile stress equal to the modulus of
rupture fe at the bottom. The incremental moment is given as fl/y,. Let us understand

this from the following stress diagram.
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Analysis of Members under Flexure

Cracking Moment using Kern Points (continued...)

[

or

Resultant
siress profile

Imternal forces
im section
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In this diagram we can observe that, if the compression occurs at the top kern point then
we have the first stress diagram as shown with zero stress at the bottom. If we shift C
slightly above the top kern point by a distance Az, then there will be an additional stress
profile with the modulus of rupture showing up at the bottom edge. The resultant stress
profile will have a bottom stress of equal to f,; and which is tensile in nature. This
additional increase in the moment due to the shift of the C from the top kern point to a
level which is Az above the top kern point causes this additional tensile stress in the
section, which corresponds to the cracking moment of the section.
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Analysis of Members under Flexure

Cracking Moment using Kern Points (continued...)

M - Clk, ¢ e+ dz)

I

or, M, -Clk, +a)+ F;

The cracking moment is thus given as C times the total lever arm.
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Analysis of Members under Flexure

Cracking Moment using Kern Poinis (continued...)

r

= §

Irternal forces
Resultant
im sesction P ——

If we go back to the figure, the total lever arm is equal to e + e, which is equal to e + k;
+ Az. M is equal to C(e + k¢ + Az). Next, we are equating CAz to f.I/y, because that is
the incremental moment, beyond the moment causing zero stress at the bottom. This
incremental moment causes cracking at the bottom. This is another expression of the

cracking moment which is in terms of the kern points and the modulus of rupture.
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Analysis of Members under Flexure

Cracking Moment using Kern Points (continued...)

Substituling € = F,, k= ryr, and £ = A, the above
SOUANON Becomes Same as Eg, (35-1)

g ri
+8 |4
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The expression of M, that we had seen earlier and this second expression, they are in
fact same. We can prove this by substituting C = Pe, k; = r?/y, and r* = I/A. Once we
substitute these variables into the expression, we can get back the first expression of the

cracking moment.

Thus, we have two approaches to calculate the cracking moment: the first one is from the
basic definition based on the stress concept, and the second one is based on the location
of C above the upper kern point. Both these approaches will give the same value of the

cracking moment.
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Analysis of Members under Flexure

Pressure Line

The pressure line in a beam s the locus: of the
resultant compression () along the length. Itis also
called the thrust line or C-line.

Itis used to check whether C af tranefer and wncer
service loads s falling within the ke of the section.
The ecceniricity of the pressure line (e,) from CGC
should be less than k, to ensune C 0 the kem

Next, we are studying the pressure line. The pressure line in a beam is the locus of the
resultant compression C along the length. It is also called the thrust line or C-line. As we
move along the span of a beam, the profile of the tendon changes, the external moment
changes, and the shift of C from the tendon also changes. If we plot a line connecting all
the points of the location of C along the span of the beam, that line is called the pressure
line for the beam for that particular given load. The pressure line is used to check whether
the C at transfer and under service loads is falling within the kern zone of the section.
Thus, we are using the pressure line to ensure whether there is any tensile stress in the

section or not.
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If the C at transfer is within the kern zone, and if the C at service loads is also within the
kern zone, then we can say that for any type of service loads, we can expect that C will
always be within the kern zone, and the section will always be under compression. At
service, the eccentricity of the pressure line which is represented as e. from the CGC,
should be less than k; to ensure C is in the kern zone. The way to make sure that C is
within the kern zone is that the distance of the pressure line at any point of the beam from

the CGC should be less than the top kern level under service loads.

(Refer Slide Time: 23:26)

Analysis of Members under Flexure

Pressure |ine [contineed. . )

The pressune ind Can e Icated from [he isvet anm (1)
AN EOCEMINCTY of CGS (o) 58 odlaws.

L)
X
c

8 -I-0 [3c-6)

A positive value of _implies that C acts sbove He
CGC and vice-versa.

The pressure line can be located from the lever arm (z) and eccentricity of the CGS (e) as
follows. The lever arm is the distance between the tension in the prestressing tendon and
compression in the concrete. It is given as the moment divided by the compressive force.
Then, the location of the pressure line is given by the variable ec, which is equal to z —e.
A positive value of e implies that C acts above the CGC. Based on this definition we can
say that if e is positive, then the compression acts above the CGC and if e; is negative,

then the compression acts below the CGC.

17
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Analysis of Members under Flexure

Pressure Line (continued...)

A pasitive valus of ¢, implies that C acts above the
CGC and vice-versa.

I e_iis megative and the numerical value is greater than kg
(thai is Je_| > k). C lies below the lower kemn point and
tension & generated ot the top of the member.

It g, > K, them C lies above ihe upper kerm point amnd
tension = generated ot the bottom of the member.

To summarise, a positive value of e; implies that C acts above the CGC and vice versa. If
e is negative and the numerical value is greater than ky, then C lies below the lower kern
point and tension is generated at the top of the member. Similarly, if e. is greater than k;,
then C lies above the upper kern point and tension is generated at the bottom of the
member. Thus, this is the way to check whether the compression lies within the kern zone
by the use of the pressure line.

18
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Analysis of Members under Flexure

Pressure Line at Transfer

The pressure line is calculated considering only the
sell weight,

Pressure line cL

Fig. Jc-1 Pressune ine af trans fer

In this sketch, the pressure line is calculated considering only the self-weight of the beam.
Here, the tendon is at a constant eccentricity throughout the member. Due to the self-
weight, the compression (C) has shifted from the location of the tendon towards upwards.
At the centre, the moment is maximum for a simply supported beam and the shift of C is
also maximum. The blue line shows the locus of the C for the various locations along the
span of the beam and hence, this is the pressure line at transfer. That means, at transfer,
only the self-weight is acting and we are considering that this pressure line is due to the

moment from the self-weight.

The next sketch shows, the location of the pressure line at service.

19
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Analysis of Members under Flexure
PFressure Line under Service Coandilions

The pressure line is caleulated for the service loads.

Prassuns ling CL

cGe |
cGs |

Fig. Jc-2 Pressure line under service loads

At service also, for a uniformly distributed load, the maximum moment is at the centre
and hence, the maximum shift of the pressure line from the CGS is at the centre. Here
also, the blue line shows the locus of the points of C along the span of the beam. What we
ensure for Type 1 (fully prestressed) members is that the pressure line should lie within

the kern zone which is limited by the top kern point and the bottom kern point.

(Refer Slide Time: 27:42)

Analysis of Members under Flexure

Limiting #one

For full presiressed members (Type 1), tension is not
dliowed under service conditions. If lension (s also not
albowed at transfer, C always les within the kern, The

limiting 2one is defined as the sone for placing the CGS
of the tendons such that € always lies within the karm.
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There is another concept which is used in the design of prestressed concrete members,
and this concept is called the limiting zone. For Type 1 members, tension is not allowed
under service conditions. If tension is not allowed at transfer also, then C always lies
within the kern. The limiting zone is defined as the zone for placing the CGS of the
tendons such that C always lies within the kern. To summarize, in a fully prestressed
member, where we do not want any tension at the bottom under service loads, C lies
within the top kern point. During the transfer of prestress in such a member, if we ensure
that C lies within the bottom kern point due to the self-weight, then throughout its service

life we expect C to lie between the bottom and the upper kern points.

In order to ensure that C will be lying within the kern zone, we can place the CGS only
within a certain zone and that zone is called the limiting zone. The limiting zone is used
in the design of prestressed concrete members to place the CGS of the tendons, such that

C is located within the kern zone for a Type 1 member.
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Lirmiting Zono jcomtimued. . )

For limited prestressed members (Type 2 and Type 3),
tension is allowed at transfer and under service
condiions. The imiting zone (= defined as the zone for
placing the CGS such thai the fensile siresses inihe
extreme edges are within the allowakile valees.

For limited prestressed members (Type 2 and Type 3), tension is allowed at transfer and
under service conditions. The limiting zone is defined as the zone for placing the CGS
such that the tensile stresses in the extreme edges are within the allowable values. The

limiting zone for a Type 2 or Type 3 member is a bit more relaxed than a limiting zone
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for a Type 1 member. C may be outside the kern zones such that the tensile stress at the

extreme edges is within the allowable values.
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Limwnitirng & orve (eomiinued ..

The following figure shows the imiting zone (as the
shaded region) for a simply supported beam
subjected to uniformiby distributed load.

Lociis of @

The following figure shows the limiting zone as the shaded region for a simply supported
beam subjected to uniformly distributed load. Here, the top line is the locus of the
minimum values of the eccentricity of the CGS along the span of the beam, and the
bottom line is the locus of the maximum values of the eccentricity of the CGS along the
span. We have shown the sketch only for half the length of the beam and the other side, it
will be symmetric. If we place the CGS between these two bounds, then we ensure that
the compression (C) will lie within the kern zone for a Type 1 member, or it may lie
outside the kern zone for Type 2 and Type 3 members, but the tensile stresses that are

generated in the extreme fibres will be within the allowable values.
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Analysis of Members under Flexure

Lirniting Zone (continued...)

The determination of limiting zone for a section s
givien if the Module of “Design of Medmibers faf
Flegiine™,

The determination of limiting zone for a section will be given in detail in the module of
design of members for flexure. In this particular lecture, we are not further going into the

determination of limiting zone.
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Example Jc-1

For the posi-lensioned beam with a Nanged section as
sheown, the profile of the CGS s parabolic, with no
eccentricily & the ends. The: live oad moment 28 mijd-
span (M, ) is 648 KNm. The prestress after transter (Pg) is
1600 kM. Assume 15% loss af service. Grade of concrete
Is M30,

|

Next, let us solve a problem to determine the cracking moment, the kern points and the

location of the pressure line for a particular member. For the post-tensioned beam with a
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flanged section as shown in the next slide, the profile of the CGS is parabolic with no
eccentricity at the ends. The live load moment at mid-span due to service loads is 648
kNm. The prestress after transfer which we have been able to measure from the jacks is
1600 kN. Assume 15 % loss at service. The grade of concrete is given as M30. The span
of the beam is 80 m, and the tendon is parabolic with zero eccentricity at the ends and

maximum eccentricity at the middle.

(Refer Slide Time: 33:18)

Example Jc-1 [continued. . )

500

The cross-section of the beam has a top flange with width 500 mm and depth 200 mm.
We have a bottom flange with width 250 mm and depth 200 mm. The width of the web is
150 mm. The total depth of the section is 1000 mm. The CGS is located 150 mm above
the soffit of the beam.
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Example lc-1|continued...)

Evaluate the following quantities.

a| Kemn levels:

b Cracking moment

c) Location of pressure |ne st mid -5 pam i iransfer and it
service.

d] The stresses ai the iop and battem fbres al transier
and al sarvice.

Compare the stresses with the following allowable
sinesses At transfer and at service.

For compression, £ =— 18,0 Nimm?
[Far {ensian, f = 1 5 Nimm?.

For this member, evaluate the following quantities: a) the kern level, b) the cracking

moment, c) the location of pressure line at mid-span at transfer and at service.

Once we know the location of the pressure line at mid-span, we can draw the complete
pressure line, because at the ends, the location of the pressure line is at the CGC. Since,
the CGS does not have any eccentricity at the ends, and at the end the moment is zero,
there the CGS and the pressure line coincide at the CGC. Once we know the location of
the pressure line at the mid-span, we will be able to draw a parabolic line between the end
and the location at mid-span. Hence, the calculation only at mid-span is sufficient to draw

the pressure line.

d) Calculate the stresses at the top and bottom of the member at transfer and at service,

and compare the stresses with the following respective allowable values.

Here, the allowable stresses are given to be same for transfer and service. In real
situation, these values may be different. For compression, the allowable stress is — 18
N/mm?. For tension, the allowable stress is 1.5 N/mmZ.
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Solution
Calculation of geometnic properties

The section s divided into three nectangles for the
computation of the geometric properties. The centroid
of esch rectangie is located from the soffit.

In our solution, the first step is to calculate the geometric properties. The section is
divided into three rectangles for the computation of the geometric properties. This is the
essential difference between a rectangular section and a flange section. In our last lecture,
we had solved a problem with a rectangular section. There, the calculation of the
geometric properties was simpler with standard formulas. But here, we are decomposing
the flange section into component rectangles from which we are calculating the geometric

properties.

The centroid of each rectangle is located from the soffit of the beam. That means, the top
rectangle which is denoted as 1, its centroid is located at 900 mm from the bottom. The
second rectangle which represents the web, its centroid is located 500 mm from the
bottom. The rectangle which represents the bottom flange, its centroid is located at 100
mm from the bottom. Given this data and given the dimensions of each rectangle, we can
find out the location of the CGC from the soffit of the beam, which we shall represent as
§. The distance of the top fibre from the CGC will be denoted as y; and the distance of

the bottom fibre from the CGC will be represented as y,. Note that y, will be same as .
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Solution
A af the SeEticn

Areaafl (1) =A; =500 . 200 = 100,000 mm’

Areaof |2 =A, =800 » 150 = 80,000 mm?

Argaal |3 =A, =260 « 200 = 50,000 mim”

AN+ A+ Ay
= 340 D00 mm?

For the area of the section, first, we are calculating the area of the first rectangle which is
A; =500 x 200 = 100,000 mm?. The second one is the area of Rectangle 2 which is A, =
600 x 150 = 90,000 mm®. Area of Rectangle 3 is Az = 250 x 200 = 50,000 mm?. The total

area is given as A; + A, + Az = 240,000 mm?.

(Refer Slide Time: 38:25)

Soluthon
Location of CGC from the soffit

A, 000+ A, <500 + A, =100
¥ A

583.3 mirm

Therefore,
¥, = 5833 mm

y, = 1000,0 - 583.3

A7 mim
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The location of the CGC is based on calculating the first moment of each of the areas
about the level of the soffit, and then sum of these first moments divided by the total area.
This is equal to (A1 x 900 + A, x 500 + Az x 100)/A = 583.3 mm. Thus, the CGC is
located at a distance of ¥ = 583.3 mm from the soffit of the beam. From here, we can
calculate the value of y, which is same as § and equal to 583.3 mm. The value of y; is
equal to 1000 (total depth) — 583.3 = 416.7 mm. Thus, we know the distances of the two

extreme edges from the CGC.

Next, we are calculating the moment of inertias of the individual rectangles and then we
shall add them up to get the moment of inertia of the total section about the CGC.

(Refer Slide Time: 39:55)

Solution
Moment of inedtia of 1 about axis through GGG

i, 112_-.5m:.m‘.11:|m 583.3)°

1.036 10" mm’

Moment of inertiaof | F

& :2 «150 600" + A, »(583.3 - 500)°

332 -10% mm*

Using the principle of parallel axis theorem, the moment of inertia of Rectangle 1 about
an axis through CGC is equal to the sum of the moment of inertia about its centroid, plus
the area times the square of the distance between the two parallel axes. The moment of
inertia about its centroid is given as 1/12 x 500 (breadth of the section) x 200° (depth of
the section). The additional term is A1 x (900 — 583.3)°. Once we substitute the value of

A1, we get the value of I, = 1.036 x 10'° mm*.
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Similarly, we are calculating moment of inertia of Rectangle 2. We get I, = 3.32 x 10°

mm?*.

(Refer Slide Time: 41:25)

Solution
Moment of insrtia of | 3

Iy 112 « 2502007 + A, |583.3 - 100)°

1.184 <10™ mm”

Momert of inertia of the section
P=fya b+l
{1.036+0.336.+1.184) ~ 10™

2.562:10" mm’

Similarly, we calculate moment of inertia of Rectangle 3 which is 15 = 1.184 x 10'° mm®*.

The moment of inertia of the total section is I = I; + I, + I3 = 2.552 x 10 mm*.

(Refer Slide Time: 41:55)

Soluthon

Square of the radius of gyration

o
A

r

2.552.10™
2400 (00

1.063x10® mm"
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We calculate the square of radius of gyration. r* = I/A. Once we substitute the values of |

and A, we get the value of r* = 1.063 x 10° mm?.

(Refer Slide Time: 42:17)

Soluibon
aj Kem levels of the secton

rt rt
il ¥

k

1.063 10" 1.063 <10
5831 4167

1822 mmn & 255 1mm

Now, we have all the variables to calculate the kern levels of the section. k; = r*/y, =
182.2 mm. kp, = r’ly; = 255.1 mm.

(Refer Slide Time: 42:46)

Valees (n mm.
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If we plot these kern levels or the kern points for the section, we designate the
intermediate zone as the kern zone for the section. Thus, if the compression under any

stage of load lies within this kern zone, then there will be no tension in the cross-section.

(Refer Slide Time: 43:17)

Soluthon

Calculation of moment die 1o Sell welght (Mg, |

17 m

a* | mm®

Wy = 24.0 kNim’ - 240,000 mm’ =-=i -

&.TE EMNimi

W, L
"=

576« 18.0°7
g8

2303 kRm

We move on to find out the location of pressure line. At transfer, we are calculating the
moment due to self-weight. We are calculating the weight per unit length of the beam as
the unit weight of the concrete, which is assumed to be 24 kN/m? times the area, and then
a factor to convert the mm? tom® We get the weight per unit length equal to 5.76 kN/m.
From that, we can calculate the moment due to self-weight, which is equal to Wp, L%8.
The span is equal to 18 m. Once we substitute the values of Wp_ and L, the moment due
to the dead load is Mp. = 233.3 kKNm.
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(Refer Slide Time: 44:27)

Soluthon

b) Calculation of lecaticn of pradsude ling at mid-span
Al transher

:.‘-

233« 18"
1600

At this point, we are calculating the location of the pressure line at mid-span, for transfer.
The transfer is the first load stage, when only the prestress is acting without the long term
losses, and the self-weight is acting. At transfer, the lever arm (z) is given as the moment
due to the dead load divided by C, which is equal to 233.3 x 10*/1600 = 145.8 mm. That
means the C shifts from the CGS by a distance of 145.8 mm at the centre of the beam.
Thus, the location of the pressure line at the mid-span is equal to the lever arm minus the
eccentricity of the CGS, which is 145.8 — 433.3 = -287.5 mm.
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(Refer Slide Time: 45:50)

Soluthon
Calculation of locatlen of pressune line ol md-span
Al transler (continued. ..

Simes ¢, is negative, the pressure line 5 bebow CGL,

Since the magnilude of ¢ £ grester tham K, there £
temsiom at the top.

Since e, is negative, the pressure line at transfer is below the CGC. Since the magnitude
of e. is greater than kp, there will be tension at the top for this member at transfer.

(Refer Slide Time: 46:14)

Soluthon
Calculation of locatikh of pressung line al mikd-3pan
Al transfer (continued...)

§
*

= Kern zone

» Location of pressure line
L]

In this sketch, we are plotting the location of the pressure line at transfer from the CGC.
We know the bottom kern point, and we have found that the pressure line is located
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outside the kern zone. Hence, we expect that there will be tension at the top of the beam

at transfer.

(Refer Slide Time: 46:44)

Soluthon
Calculation of lotathan of presstng I &l mkd-span
Al service

Mo
c

x

r-—-8

[233.3 + 648,00« 10’
0.85 - 1600 -

GAB_0 Hd T mm

Next, we are calculating the location of the pressure line at mid-span, at service. For
service, the lever arm is calculated from the total moment, which is due to the dead load
and live load, and from the compression which is now equal to the effective prestress.
The total moment is given as the moment due to the self-weight plus the live load
moment, which has been specified as 648 kNm. The effective prestress is 85% of the
prestress at transfer which is 1600 kN. Once we substitute these values, we get the lever
arm equal to 648 mm. Thus, at service, the C shifts from the CGS by a distance of 648
mm at the mid-span of the beam. The location of the pressure line, which is equal to the
eccentricity of C, is given as z — e = 648.0 — 433.3 = 214.7 mm.
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(Refer Slide Time: 48:20)

Soluthon
Calculation of locathkan of préssung iing at mkd-span
Al service [continued. . )

Simes ¢, is positive, the pressure (ime is above CGC.

Since the magnitede of ¢ |2 grester tham k, hene is
temsiom at the bottom,

Since e, is positive, the pressure line is above CGC. Since the magnitude of e is greater
than k; the upper kern point, there is tension at the bottom.

(Refer Slide Time: 48:34)

Solution
Calculation of Iocatlen of préssuns lingé al mkd-span
Al service (continued. . )

Location of presswne line

= Kern zone

In this sketch we are plotting the location of the pressure line at service, and we find that
this is located above the upper kern point at a distance of 214.7 mm from the CGC.
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(Refer Slide Time: 49:05)

Soluthon

&) Calculation of cracking marmant

Mosduilus of fuptune

a.rfr,

0.7/30

3,83 kMo’

Next, we are calculating the cracking moment. For that, we are first calculating the

modulus of rupture: fo = 0.7Vfu, where o is the characteristic strength equal to 30

N/mm? for M30 grade of concrete. The modulus of rupture is equal to 3.83 N/mm?.

(Refer Slide Time: 49:38)
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Soluihon

Calculation of cracking mamient [continued...)

1 P

M,
Vi AY,

+ P&

3832 557=10" 085 1800:10" « 2582 = 10"
t
5833 240 <70" < 5833

+ .8 1800 = 107 «433.3 Nimim

1678+ 2479 5546

BT0.1 kNm



Substituting the value of the modulus of rupture, the sectional properties and the effective
prestress, we can evaluate the cracking moment. The cracking moment comes out to be
970.1 KNm.

(Refer Slide Time: 49:59)

Soluthon

Calcukation of cracking monmeat [Cantinued...)

Livi load moment corméspanding 1o cracking
M, . -9701-2333

TI6.8 kNm

Simed the given lIve |aad momenl (8480 ENm) i3 =35 than
the abave valie, the seclion S uncracked.

= Ther mament of inertia of the §ross section & used.

Hence, the live load moment corresponding to cracking is My ¢ is equal to 970.1 — 233.3
= 736.8 KNm. Since, the given live load moment 648.0 kNm is less than the above value,
the section is uncracked under service loads. It is a Type 1 member. Hence, we can use

the moment of inertia of the gross section.
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(Refer Slide Time: 50:41)

Soluthon
d) Calculation of strésaes
The stress = ghvem as follows.

¢ Py Ny
AT

HPay [ 'l Rissultant
siress

profile

Finally, we are calculating the stresses in the member under the transfer and service
loads. The expression of the stress is given as follows: the first one is the uniform stress;
the second one is the stress due to the eccentricity of the prestressing force; and the third
one is the stress due to the external moment. We expect a resultant stress profile as shown

in the right.

(Refer Slide Time: 51:07)

Solution
Calculation of SIFeSses ol ransler (P= Py)
P 1600 =10

[}

A 24010°

6.67 Nimm’

Eccentricity of CGS at mid-span

ey - 150
583.3-150
4333 mm
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At transfer, we calculate the stress due to the prestressing force Po. We know the value of
e=y—150=433.3 mm.

(Refer Time Slide: 51:26)

Soluthon
Strass at thé top fibne
Pey, 1608=10": 4333 416.7
I 2552 10"

11.32 Nfmm"

My, 2333:.10° 4187
i 2.552«10"

3.81 Nimm'

o, =~ 667 +11.32 -3.81

0.84 Nimm'

When we substitute the values of all the variables into the individual stress components,
we find that the stress, at the top is given as — 6.67 + 11.32 — 3.81 = 0.84 N/mm?. Thus,
we have positive tensile stress at the top, which we had earlier observed from the location
of C at transfer below the bottom kern point.
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(Refer Slide Time: 52:03)

Solution
Stress at the boltom fibne

Pey, 1800-10"«433.3.581.3
I 2.55210™

15,85 Nimm’

M.y, 233.3x10"<583.3
I 2.552 10"

5.33 Nimm'
o f,, =667 -1585+5.33

17.18 Mimm’

For the stress at the bottom, the value is — 17.19 N/mm?.

(Refer Slide Time: 52:13)

Solution

Calculation of stresses ot service (P= )
P, F;
Ll F R
A A

56T Mirmm'

Next, we are calculating the stresses at service. The uniform stress is given as 85% of the

stress at transfer, due to the 15 % losses.
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(Refer Slide Time: 52:27)

Soluthon
Sitress at the top fibre

"‘:T' 0.85:11.32

Q.62

M.y, 648.0.10" 4167
i 2.552 «10™

10.58 Nimm'’

ol == 56T + 882 - 3.87-10.58

10.44 Nimm®

For the stress at the top fibre, calculating the individual values we find that the stress is
~10.44 N/mm?,

(Refer Slide Time: 52:41)

Solution
Stress at the: bottom fibre

H""! 0.55 « 15,88

1347 Mdrmm”

M, y, 848010 <5833
I 2552 10"

14.81 Bmm’

oy, = BT - 1347 « 533 + 14.80

1.0 N

With similar calculations, we find that the stress at the bottom is equal to 1.0 N/mm?.
Remember that, in this expression here, we knew the stress due to the self-weight

moment which we have retained, and we have just added the stress due to the imposed
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live load moment. The uniform component of the stress is — 5.67 N/mm? Then we have —
13.47 N/mm? due to the eccentricity of the prestressing force. 5.33 N/mm? is from the
dead load moment and 14.81 N/mm? is from the live load moment. We observe that at the

bottom, there is a resultant tensile stress under service loads.
(Refer Slide Time: 53:42)
Solulion

The stress profiies ane shown,
04 10.44.

17.19 10
At transfer Al service

The allowable stresses are as follows.
For campreasion, F ... =- 18.0 Nimim?
For tensian, L o = 1.5 Mimm=,

Thues, the stresses are within the aflowable limits,

The stress profiles are shown. At transfer, we have a positive tensile stress at the top and
compressive stress at the bottom. At service, we have compressive stress at the top and
positive tensile stress at the bottom. Let us now compare these stresses with the allowable
values. Both for transfer and service, the allowable compressive stress is —18 N/mm?.
We see that the magnitudes of the compressive stresses both at transfer and at service are
lower than 18 N/mm?. Hence, the allowable compressive stresses have been satisfied.

Next, the allowable tensile stress is 1.5 N/mm?. Here also, the top tensile stress at transfer
and the bottom tensile stress at service, are lower than the allowable value. Thus, the
stresses are within the allowable limits. Our observations from the kern levels and the
locations of pressure line, are consistent with the observations of the calculated stresses.
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(Refer Slide Time: 55:15)

Summary

Analysis of Memiber Under Flexure
Cracking Momant
Kemn Polnt
Pressure Line

To summarize today’s lecture, we studied some specific portions of analysis of members
under flexure. First, we studied the cracking moment. We have defined the cracking
moment as the moment due to the external loads, when the stress at the bottom is equal to
the modulus of rupture. We have seen one expression of cracking moment based on the
stress concept, and the other expression of the cracking moment based on the location of
the kern points. Second, we moved on to the definition of the kern points. If the

compression is located in the kern zone, then there will not be any tension in the section.

Next, we moved on to the pressure line. Pressure line is the location of the resultant
compression throughout the span of the beam. We observed that for a simply supported
beam, if we know the location of the pressure line at mid-span, we will be able to draw
the complete pressure line throughout the span. From the pressure line, if the C lies
within the kern zone at transfer and at service, then we ensure that there will not be any

tension in the prestressed concrete member during its service life period.

Finally, we solved a problem, where we saw the analysis of a flanged section. First, we
calculated the geometric properties by decomposing the section into individual
rectangles. We calculated the kern levels. Next, we found out the cracking moment for

the particular section. We have found that the given live load is lower than the live load
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corresponding to the cracking moment. Hence, the section will not crack. However,
since the pressure line is outside the kern zone, there will be some tension at the extreme
edges. Same observations were obtained by the calculation of the stresses from the stress
concept.

From the stress concept analysis, we found that at transfer, there is some tension at the
top, and at service, there is some tension at the bottom. Both these tensile stresses are
within the allowable value. Also, the compressive stresses at transfer and at service are
also within the allowable value. This ensures that this member will not crack, and it is
satisfactory under service loads. With this, we are ending the analysis under service

loads, where we ensure that the stresses are within the allowable values.

Thank you.
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