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Welcome back to prestressed concrete structures. Today is the first lecture of Module 3 

on analysis of members.  
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Till now, we have studied the material properties, the prestressing systems and devices 

and the losses of prestress. Today, we are moving on to the analysis of prestressed 

concrete members. First, we shall study the analysis of members under axial load and 

under that, we shall study the analysis at transfer, analysis at service loads, analysis of 

ultimate strength and finally, we shall study the analysis of behavior. 
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The geometric properties that we shall use are shown schematically in this figure. On the 

left, we can see a typical axially loaded member, where we may have both prestressing 

tendons and non-prestressed reinforcement. A is the gross cross-sectional area of the 

member. The prestressed member consists of the area of concrete which is represented as 

Ac. Then, it consists of the area of the non-prestressed reinforcement, which is 

represented as As and it also consists of the area of the prestressed tendons, which is 

represented by Ap. Thus, A = Ac + As + Ap. 
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Another geometric property that we shall use is the transformed section. When the 

reinforcement and the prestressed tendons are transformed to equivalent areas of concrete 

and we add that to the remaining part of the concrete, the total transformed area is termed 

as the transformed area of the section. It is represented as At.  At is equal to Ac plus the 

modular ratio times As plus the modular ratio of the prestressing tendons times Ap. The 

modular ratio for either of the reinforcement of the prestressed tendons is given as the 

ratio of the elastic modulus of the steel divided by the elastic modulus of the concrete. 

The transformation is done when we study the stresses under elastic analysis.  
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Prestressed concrete members only under axial loads, are uncommon. Members such as 

hangers and ties are subjected to axial tension. Members such as piles may have bending 

moment along with axial compression or tension. 

(Refer Slide Time: 04:30) 

 

In this figure, we see that on the left hand side, the floor at the bottom has been 

suspended from the floor at the top by hangers. This hanger is subjected to axial tension 

4 
 



and it needs to be prestressed to have area of the member within the certain architectural 

limit. On the right hand side, we see a pile, which is subjected to axial compression. But 

piles can go to axial tension also, when there will be uplift under high lateral force on the 

building.  Also, the piles are subjected to shear and it can be subjected to bending 

moments. In these sketches, we have shown only the vertical forces. The ties are 

horizontal members subjected to tension.  

(Refer Slide Time: 05:37) 

 

A prestressed axial member may also have non-prestressed reinforcement to carry the 

axial force. This type of members is called partially prestressed members. We shall also 

come back to partially prestressed members for flexure. This type of members is 

somewhere in between the reinforced concrete members and fully prestressed members. 

The partially prestressed members have both prestressing tendons and non-prestressed 

reinforcement to carry the forces.  
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The study of members under axial load gives an insight of the behavior of a prestressed 

member as compared to an equivalent non-prestressed reinforced concrete member. Why 

at all, are we studying members under axial load, if such members are not common? The 

reason is that there are some basic differences between a reinforced concrete member and 

a prestressed concrete member, which is easy to understand, if we are studying the axially 

loaded members first. This gives an insight into the effect of prestressing on the behavior 

of reinforced concrete members.  In the case of the members we are studying now, we 

will neglect any eccentricity of the prestressing tendons with respect to the CGC, which 

means we are considering that the CGS lies at the level of the CGC. 
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The analysis refers to the following.  

First, we shall study the permissible prestress based on allowable stresses at transfer. 

Earlier we had known that the load stages in a prestressed concrete member can be 

divided into several stages; the first one is the stage at the transfer of prestress; second, is 

the stage during transportation of the prestressed member from its casting site to its 

permanent position; third, is the stage under service loads and finally, under some 

extreme event, it can be subjected to ultimate loads. For all these load stages, we need to 

study the stresses, or the strength. Here we are first studying the stresses at transfer and 

based on the allowable stresses at transfer, the maximum prestress is determined.  

Second, we are studying the stresses under service loads. These stresses are compared 

with the allowable stresses under service conditions. Remember that the allowable 

stresses can be different at transfer and under service conditions. We have studied the 

allowable stresses under the module of “Material Properties”. 
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Third, we shall study the ultimate strength. This is compared with the demand under the 

factored loads. That means, in a limit state design, we compare the ultimate strength with 

the demand under ultimate loads, which are the load factors times the characteristic loads. 

Finally, we shall study the entire axial load versus deformation behavior to understand 

the full property of the prestressed concrete member. First, we are studying the analysis at 

transfer. 

(Refer Slide Time: 09:49) 
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The stress in the concrete can be calculated as follows. The stress is given as the ratio of 

the prestress at transfer after short-term losses divided by the area of the concrete. In this 

expression, we have not considered any non-prestressed reinforcement. Just note that we 

are considering a negative sign for a compressive stress under the prestressing force. 

(Refer Slide Time: 10:26) 

 

In presence of non-prestressed reinforcement, the stress in the concrete can be calculated 

as follows. The stress is given by the prestress at transfer divided by a transformed area, 

which is equal to the area of the concrete plus the modular ratio of the reinforcement steel 

times the area of the reinforcement steel. This denominator is higher than just the area of 

the concrete. The permissible prestress (P0) is determined based on fc to be within the 

allowable stress at transfer, which means, we can apply the prestress up to a certain level 

such that the stress under transfer is within the allowable value.  

Next, we are studying the analysis at service loads. 
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The stresses in concrete can be calculated by the following expression: ‒ Pe/Ac ± P/At, 

where Pe is the effective prestress after the long-term losses, Ac is the area of the 

concrete, P is the external force and At is the transformed area. If we have a tensile force, 

then we shall use the ‘+’ sign and if we have a compressive external force, then we shall 

use the ‘‒’ sign. The stress in the concrete is equal to the compressive stress, which is 

generated by the effective prestress, plus or minus the stress that is generated by the axial 

load. In the expression, we have not considered any non-prestressed reinforcement. 
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If there is non-prestressed reinforcement, then the area Ac is to be substituted by Ac plus 

the modular ratio times As, and the transformed area At is to be calculated including As. 

That is, the way we have included As in the previous expression, similarly, we shall 

include As in this expression as well.  

The value of fc should be within the allowable stress under service conditions. As I said 

before, the allowable stress under service conditions is different from the allowable stress 

at transfer.  We need to make sure that the total stress that is generated by the effective 

prestress and the external load, should be within the allowable stress under service 

conditions.  

Next, we are moving on to the analysis of ultimate strength. 
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The ultimate tensile strength of a section (which is denoted as PuR, the ultimate load of 

resistance) can be calculated as per Clause 22.3 of IS: 1343 – 1980. The ultimate load in 

absence of any non-prestressed reinforcement is given as 0.87fpkAp, where the area of the 

prestressing tendon is Ap. If we have non-prestressed reinforcement, then the ultimate 

tensile strength is given as 0.87fyAs, where As is the area of the non-prestressed 

reinforcement, plus 0.87fpkAp. Here 0.87 is the inverse of 1.15, the material safety factor. 
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In this previous equation, fy is the characteristic yield stress for non-prestressed 

reinforcement with mild steel bars, the bars which have a definite yield plateau. The 

stress corresponding to the yielding is denoted as fy. For high strength deformed bars, fy 

is equal to the characteristic 0.2 proof stress. We have learnt that the proof stress is the 

stress corresponding to a particular plastic strain. The 0.2 proof stress is obtained by 

drawing a line parallel to the initial modulus and it starts with a plastic strain of 0.002. 

Wherever this parallel line intercepts the stress-strain curve, the corresponding stress is 

termed as the 0.2 percent prestress. fpk is the characteristic tensile strength of the 

prestressing tendons.  

Once we know the material properties of both the types of steel, we can find out the 

ultimate tensile strength of a member. This ultimate strength should be greater than the 

demand due to factored loads. Here, there is a difference between the analysis at transfer 

and service loads with the analysis at ultimate strength. For transfer and service loads, we 

calculated the stresses and compared the stresses with the allowable value, whereas for 

the ultimate loads, we first computed the ultimate strength and then, we compared the 

ultimate strength with the demand under the ultimate loads or the factored loads. Hence, 

to summarize, the computation for the stage at transfer and that at service loads is based 

on stresses where we use an elastic analysis; whereas the computation for the ultimate 

13 
 



strength is based on strength and not stresses, and there we use non-linear material 

properties of the steel.  

(Refer Slide Time: 17:48) 

 

If we are calculating the ultimate compressive strength, then the expression in presence of 

moments, can be found out by the use of interaction diagrams. Usually, compression 

members are also subjected to moments, like columns. If we have to find out the ultimate 

compressive load in presence of moments then we have to use the interaction diagrams 

that we have learnt under reinforced concrete. The code IS: 1343 allows us the method 

given in IS: 456 to find out the ultimate compressive strength in presence of moments.  

For a member under compression with minimum eccentricity, we can neglect the use of 

the interaction diagrams and then the ultimate strength is given by the following 

expression: PuR = 0.4 fck Ac + 0.67 fy As. In this expression, we have considered that 

both the materials have reached their ultimate capacities and also we have introduced a 

factor to consider the effect of minimum eccentricity. We find that the ultimate strength 

is a summation of the compressive strength of the concrete and the compressive strength 

of the reinforcement steel. In this expression, the contribution of prestressing steel has 

been neglected. Usually, the area of prestressing steel is very small and it need not be 

considered in considering the compressive strength of an axially loaded member. 
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Thus, till now what we have studied is: first, the analysis at transfer where we found out 

an expression of the stress. Since the stress has to be less than the allowable stress at 

transfer, we have to limit the maximum prestress that can be applied. We studied the 

analysis at service loads, where we found out the stresses due to the effective prestress 

after the losses and the external load that acts on the member. Then, we found out the 

ultimate strength, when both the materials, steel and concrete, are reaching their ultimate 

capacities.  We are comparing this ultimate strength with the demand, which is coming 

under the factored loads. The ultimate strength has to be larger than the demand under the 

factored loads. Next, we are moving on to the study of an important aspect. It is the 

complete load versus deformation behavior of the axially loaded member.  

(Refer Slide Time: 21:28) 

 

The analysis of behavior refers to the determination of the complete axial load versus 

deformation behavior. The analyses at transfer, under service loads and for ultimate 

strength correspond to three instants in the above behavior. Whatever we have studied till 

now are just three points in the complete load versus deformation behavior. The load 

versus deformation behavior is an entire curve, which shows how the member will 

behave, when we are gradually increasing the externally applied load.  
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The analysis involves three principles of mechanics.  

First is the equilibrium of internal forces. Here, the internal forces are in equilibrium with 

the external loads at any point of the load versus deformation behavior. This is a very 

important principle of mechanics that at any time, the structure is under static 

equilibrium. It means that the internal forces that are generated within the member and 

the external load are in equilibrium, and we can write the equations of statics at any point 

of this load versus deformation behavior. The internal forces in concrete and steel are 

evaluated based on their respective strains, cross-sectional areas and the constitutive 

relationships.  

16 
 



 (Refer Slide Time: 23:48) 

 

The second principle is the compatibility of the strains in concrete and in steel for bonded 

tendons. This assumes a perfect bond between the two materials. This is another 

important principle that the concrete and the prestressing tendon and any other non-

prestressed reinforcement, if they are present, they deform together. The strain that the 

concrete undergoes at the level of the steel is same as the change in the strain in the 

prestressing tendon, and also it is equal to the strain in the corresponding level of the 

reinforcement. 

The strain compatibility is true when we have a bonded tendon. In a pre-tensioned 

member, the tendons are bonded with the concrete. In a post-tensioned member, if we 

grout the member, then also the tendons are bonded with concrete and we can expect 

strain compatibility between the concrete and the steel. For unbonded tendons, the 

compatibility cannot be expressed in terms of strain, but it can be expressed in terms of 

overall deformation. In this lecture, we are not considering unbonded tendons. We are 

just studying bonded tendons, where we shall assume strain compatibility between the 

concrete and the steel. 
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The third principle of mechanics is the constitutive relationships. The constitutive 

relationships relate the stresses and the strains in the materials. These relationships are 

developed based on the material properties. 

(Refer Slide Time: 25:44) 

 

The first principle, that is equilibrium, can be expressed at any instant of the load versus 

deformation behavior by this following equation: The external load is equal to the 

internal force in the concrete plus the internal force in the non-prestressed reinforcement 

plus the internal force in the prestressing tendon. Here, fc is the stress in the concrete, fs is 

the stress in non-prestressed reinforcement and fp is the stress in the prestressed tendons. 

The axial force which is externally applied is a summation of the internal forces that are 

generated within the concrete, steel and the prestressing tendon. 
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Next, we are writing the equations of compatibility. For non-prestressed reinforcement, εs 

which is the strain in the non-prestressed reinforcement is equal to εc which is the strain 

in the concrete at the level of the steel. We are trying to express that both the non-

prestressed reinforcement and the concrete deform together. Hence, the strains of the 

concrete at the level of the non-prestressed reinforcement are same as that of the strain in 

the steel. For the prestressing tendon, the strain in the tendon is given as the strain in the 

concrete plus an additional term, which is called the strain in the prestressed tendon at the 

decompression of concrete. 
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Let us try to understand this additional term in the strain compatibility equation of the 

prestressed tendons. The strain in the prestressed tendons at the decompression of 

concrete, which is denoted as εdec is the strain when the concrete has zero strain. How are 

we defining the strain at decompression of concrete? It is the strain in the prestressing 

tendon, when the strain in the concrete is zero. The concrete is no more under 

compression. It has been decompressed under the externally applied load. This occurs 

when the strain due to the external tensile axial load balances the compressive strain due 

to prestress. It means whatever strain the prestress is applying on the concrete member, 

the external load is applying an equal and opposite strain and hence, the strain in the 

concrete is finally equal to zero. For pre-tensioned and post-tensioned members, the 

values of εdec are different. The reason behind this difference is the different way of 

applying the prestressing force.  
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Next we move on to the third principle of mechanics which is the constitutive 

relationships. The constitutive relationships can be expressed in the following forms, 

based on the material stress-strain curves shown in the module of introduction, 

prestressing systems and material properties. 

For concrete under compression, we have an expression which is fc is equal to some 

function of εc. We are writing that function as F1(εc). For prestressing steel, the 

relationship can be written as fp is equal to some function of εp and we are denoting this 

function as F2. For reinforcing steel, the constitutive relationship can be written as fs is 

equal to some function of εs and this function is denoted as F3. Let us try to understand 

the constitutive relationship for each of the materials individually.   
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The stress versus strain curve for concrete is shown in this figure. Here, the first quadrant 

or the quadrant at the top right represents the behavior under tension. Once the concrete 

cracks, we are not considering any stress in the concrete. The curve in the first quadrant 

can be considered to be linear elastic, where fc is equal to Ecεc. The third quadrant, which 

is the lower left quadrant, represents the behavior under compression, where the behavior 

is a parabolic form and we have seen the expression of Hognestad’s equation for normal 

strength concrete, and the expression by Thorenfeldt, Tomaszewicz and Jensen for high 

strength concrete. We can use the expressions to get the functional form relating fc and 

εc. Thus, for positive values of εc, we are using the linear elastic relationship. For a 

negative value of εc, we are using the relationship for concrete under compression. 
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The second constitutive relationship is for the prestressing tendons.  We are considering 

only the relationship for tension.  Here we see that initially, the prestressing force is 

almost linear and then we have a curved behavior till it gains its ultimate strength. The 

variation of fp with respect to εp can be given in the form of a curve in a graphical paper, 

or it can be given in the form of a table, or we can try to fit some equation. Once we have 

either one of these forms, we say that we are able to express the stress fp in terms of εp in 

this functional form, which is denoted by fp = F2(εp). 
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The third constitutive relationship is for the stress-strain curve for reinforcing steel. Here 

we have shown the behavior, both for the tension quadrant at the top right and for the 

compression quadrant, which is for the bottom left. We see that for either of the 

quadrants, the behaviour initially is elastic. For mild steel, we have a definite yield 

plateau and then we have a strain hardening region till it reaches its ultimate strength. If 

we do not have mild steel then we will not be seeing this yield plateau. But we will have 

a curve, which again will be given in either a graphical form or in a tabular form. This 

relationship between fs and εs is expressed in terms of the equation fs = F3(εs). This 

functional representation of the constitutive relationship implies that given a strain in the 

material, we are able to calculate the stress.  
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The equilibrium and compatibility equations, and the constitutive relationships can be 

solved to develop the axial force versus deformation curve. Here, we have seen a set of 

equations. First, we have seen an equilibrium equation, where the external load is equal 

to the summation of the internal forces. Next, we saw a set of compatibility equations, 

where for the reinforcement steel, we saw εs = εc. For the prestressing tendons, we have 

seen εp = εc + εdec.  Then, we had three equational forms for the constitutive 

relationships: fs is a function of εs, fc is a function of εc, and fp is a function of εp.  

Once we have the set of equations, these equations can be solved simultaneously. Say, for 

a particular value of εc, we can calculate εs and εp.  From these values of strains, we can 

calculate fc, fs, and fp respectively, plug them in the equilibrium equation and get the 

axial force P. The axial deformation is given as εcL, where L is the length of the member. 

It means for any value of εc, we can determine a value of P and a value of the axial 

deformation.  

The following plot shows the axial force versus deformation curves for members with 

prestressed and non-prestressed sections. Here, the two sections are considered to be 

equivalent, in terms that their tensile strengths are same. 
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The orange curve is the axial force versus deformation curve for a section without any 

prestressing. It is just reinforced with conventional steel. We see in the tension quadrant, 

that the axial force increases linearly with deformation till the member cracks. In this 

region, the elastic analysis is applicable. After cracking, there is a drop in the axial force 

till the system comes under equilibrium, and again the axial force increases with 

deformation. But this time, it increases with a lower stiffness. The rate of increase of the 

axial force with deformation is low as compared to the pre-cracking behavior. Finally, 

when it reaches the yield stress of the steel, there is no increase in the axial force 

(neglecting the strain hardening of steel) and the member is considered to achieve its 

ultimate tensile strength.  

On the other hand, if we look into the behavior in the compressive quadrant, then we see 

that initially the behavior can be almost linear elastic. But then, we see non-linearity due 

to the non-linear behavior of concrete. These curves are a schematic representation of the 

axial load versus deformation behavior. The exact curve depends on the equations that we 

are using and the type of steel that we have.  

Compared to a non-prestressed section, which is represented by an orange line, let us 

observe what happens to a prestressed section which is represented by the blue line. The 
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first thing we see is that the curve for the prestressed section is at an offset from the 

origin. It means that at zero external force, we have some negative deformation. That is, 

under prestressing, we have an axial compression in that member.  

Next, as we are increasing the axial tension, we are achieving a zero deformation for a 

certain value of the axial load. It means that we need to have some external tensile load to 

have zero deformation in the member, and that instant is called the decompression of the 

concrete. The deformation increases with the axial force till the member cracks. What we 

observe is that this cracking level is much higher compared to the cracking level for a 

non-prestressed section. That is, the beauty of a prestressed member is that the cracking 

level is much higher than the non-prestressed member. Once it cracks, the behavior is 

similar to the reinforced concrete member. That is, there will be an increase in the 

required axial force with deformation, but with much reduced stiffness. The increase in 

axial force is till the section achieves an ultimate strength, beyond which it may stay 

constant depending on the type of steel.  

On the other side, if we are applying compressive load then we see that the behaviour is 

similar to reinforced concrete.  However, it does not achieve the same compressive 

strength as that of the reinforced concrete. Here the concrete is under a pre-compression 

and hence, it reaches its ultimate strength at a lower external load. These two curves give 

the essential difference between a reinforced concrete member and a prestressed concrete 

member.  
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Let us try to understand them with some logical statements.  

The first one is that prestressing increases the cracking load. In the first lecture, I had said 

why is concrete prestressed at all. The basic reason is that concrete is weak in tension as 

compared to compression, and to check the cracking of concrete, to make up for the 

weakness of concrete under tensile load, prestressing is done. Once we prestress a 

member, the cracking load is increased  

The next inference we have is that prestressing shifts the curve from the origin. The two 

analogous statements are: first, for the prestressed member, there is a compressive 

deformation in absence of external axial force. We can see that even if there is no 

external force in the prestressed member, there is a compressive deformation in the 

axially loaded member, because that comes due to the effect of prestressing. The second 

corollary statement is that a certain amount of external tensile load is required to 

decompress the member. We need some external load to have zero strain in the concrete. 

These two aspects are unlike reinforced concrete. In reinforced concrete, if there is no 

external load, then there is no strain in the member, and also we do not need any external 

load to have zero strain in the concrete. 
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The third statement is, for a given tensile load, the deformation of the prestressed 

concrete member is smaller.  

(Refer Slide Time: 44:15) 

 

If we go back to the previous figure and if we pick up any axial tension, we see 

corresponding to the force, the orange line is much shifted from the blue line along the 

deformation axis. What it means is that the deformation of the reinforced concrete 
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member is much higher as compared to a prestressed concrete member for a given level 

of the axial force. Thus, prestressing reduces deformation at service loads. This is an 

important benefit of prestressed concrete members, that is, if we prestress a member then 

we will have less deformation under service loads.  

The fourth inference is that for a given compressive load, the deformation of a 

prestressed concrete member is larger.  From the two curves, we observe that for a given 

axial force, the blue line is shifted from the orange line on the left hand side; that means, 

the deformation of a prestressed concrete member under compression is more than the 

deformation of a corresponding reinforced concrete member. 

We can conclude that prestressing is detrimental for the response under compression. 
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The fifth inference is that the compressive strength of the prestressed member is lower. 

We have taken two sections, which have equivalent tensile strength. What we find is that, 

if we prestress then the compressive strength of the prestressing member is lower. Hence, 

we can see that prestressing is actually detrimental for the compressive strength.  
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The sixth inference is that for a partially prestressed section with the same ultimate 

strength, the axial load versus deformation curve will lie in between the curves for 

prestressed and non-prestressed sections. 

(Refer Slide Time: 46:33) 

 

The orange line represents the curve for a reinforced section. The blue line represents the 

curve for a prestressed section, both of which have equivalent tensile strength. If we pick 

up a partially prestressed section which has both prestressing tendons as well as 

conventional reinforcement, and if it is also of the same tensile strength, then its axial 

load versus deformation curve will lie somewhere in between the orange and the blue 

lines.  
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The above conclusions are generic for prestressed members. The purpose of studying this 

behavior under axial load was to understand the essence of prestressing compared to 

reinforced concrete members. The observations are similar for any other prestressed 

members, such as members under flexure. This material has been taken from the book 

Prestressed Concrete Structures, written by Collins and Mitchell. 
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Today we studied the analysis of members under axial load. Such members can be very 

few and far between, because we do not have members which are purely under axial load 

very frequently. We may have some hangers or ties which are under axial tension. We 

may have piles which may be under axial compression or axial tension but usually, piles 

are also subjected to moments and shear. But, the whole purpose of studying the behavior 

of members under axial load is to understand the difference of the prestressed members 

and the reinforced concrete members. It gives us a foundation to understand the analysis 

procedure for members under flexure. 

First, we studied the analysis at transfer where we have found that based on the allowable 

stresses at transfer, we can determine the maximum amount of prestressing force that we 

can apply. Next, we studied the analysis at service loads where we determined the 

stresses using elastic analysis, from the effective prestressing force (after the long-term 

losses) and the external characteristic loads. The stresses under this effective prestressing 

force and external loads should be within the allowable stresses under service. A member 

can be either fully prestressed, where we do not take account of any non-prestressed 

reinforcement for the strength, or a member can be partially prestressed, where we take 

advantage of non-prestressed reinforcement also.  

We studied the analysis of ultimate strength, where we found out the maximum capacity 

of an axially loaded member. It can be either the tensile strength or it can be the 

compressive strength. This strength has to be larger than the demand that comes from the 

external factored loads. Next, we moved on to the analysis of behavior where we studied 

the complete load versus deformation curve of an axially loaded member and we have 

seen that this needs three principles of mechanics. The first is the equilibrium of forces, 

which means that the external load is equal to the internal forces that generates in the 

concrete in the reinforcement steel and the prestressing tendon. The second is the 

compatibility relationship, where we have seen that the strain in the steel is related with 

the strain in the concrete. For the non-prestressed reinforcement, the strain εs = εc of the 

concrete at the level of the steel. For the prestressed reinforcement, εp = εc + εdec, where 

εdec is the strain at decompression of concrete. The strain at decompression means it is the 

33 
 



strain in the prestressing tendon, when the concrete has zero strain. The expressions of 

εdec are different for the pre-tensioned and post-tensioned members. 

For the pre-tensioned members, εdec is equal to εpi, which is the strain right before the 

cutting of the tendons. For the post-tensioned members, εdec is equal to εp0 after transfer 

plus the corresponding strain in the concrete.  

The third principle is the constitutive relationships. When we solve the simultaneous 

equations, we get the complete load versus deformation curve. We have seen for a 

prestressed member, that the curve shifts from the origin. The cracking load is higher. 

The deformation under service load is lower compared to a reinforced concrete member. 

Prestressing is not beneficial for compression. The difference in the behaviour between 

the reinforced concrete and prestressed concrete members are quite generic, and it will 

help us to understand the behavior of members under flexure. In our next lecture, we 

shall move on to the analysis of members under flexure.  

Thank you.  
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