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Module — 3: Analysis of Members

Lecture — 11: Analysis of Members under Axial Load

Welcome back to prestressed concrete structures. Today is the first lecture of Module 3

on analysis of members.
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Module 3-a (1* Hour)

Analysis of Members Under Axial |Load
Introduction
Analysis af Transfer
Analysis at Service | nads
Analysis of Ultimate Strength
Analysis of Bahaviour

Till now, we have studied the material properties, the prestressing systems and devices
and the losses of prestress. Today, we are moving on to the analysis of prestressed
concrete members. First, we shall study the analysis of members under axial load and
under that, we shall study the analysis at transfer, analysis at service loads, analysis of

ultimate strength and finally, we shall study the analysis of behavior.
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Geometric Properties

A A, A,

A,

A = gross cross-soctional arca

A_= area of concrete

A = afed of Ron-predtfedied felnforcement
A= area ef presiressing tendons

The geometric properties that we shall use are shown schematically in this figure. On the
left, we can see a typical axially loaded member, where we may have both prestressing
tendons and non-prestressed reinforcement. A is the gross cross-sectional area of the
member. The prestressed member consists of the area of concrete which is represented as
A.. Then, it consists of the area of the non-prestressed reinforcement, which is
represented as As and it also consists of the area of the prestressed tendons, which is
represented by Ap. Thus, A= Ac+ A+ A,.
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Geometric Properties

A A

A, = transformed anea of the section
=A,+(EJE)A, +(EJE)A,

Another geometric property that we shall use is the transformed section. When the
reinforcement and the prestressed tendons are transformed to equivalent areas of concrete
and we add that to the remaining part of the concrete, the total transformed area is termed
as the transformed area of the section. It is represented as A;. A is equal to A. plus the
modular ratio times As plus the modular ratio of the prestressing tendons times Ap, The
modular ratio for either of the reinforcement of the prestressed tendons is given as the
ratio of the elastic modulus of the steel divided by the elastic modulus of the concrete.

The transformation is done when we study the stresses under elastic analysis.
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Analysis of Members Under Axial Load

[troduction

Prestressed members under axial loads only ane
uncommon. Members such a8 hangers and ties arme
subjecied o axial lension. Members such as piles may
have bending moment along with axial compression ar
LEMEIOn.

Prestressed concrete members only under axial loads, are uncommon. Members such as
hangers and ties are subjected to axial tension. Members such as piles may have bending

moment along with axial compression or tension.
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Analysis of Members Under Axial Load

It o uetfon
H

In this figure, we see that on the left hand side, the floor at the bottom has been

suspended from the floor at the top by hangers. This hanger is subjected to axial tension



and it needs to be prestressed to have area of the member within the certain architectural
limit. On the right hand side, we see a pile, which is subjected to axial compression. But
piles can go to axial tension also, when there will be uplift under high lateral force on the
building. Also, the piles are subjected to shear and it can be subjected to bending
moments. In these sketches, we have shown only the vertical forces. The ties are

horizontal members subjected to tension.
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Analysis of Members Under Axial Load

[ntroduction

A prestressed axial member may altso have non-
presiressed reinforcement 10 Carmy thie axial fonce. This

type of members are called partially prestressed
members.

A prestressed axial member may also have non-prestressed reinforcement to carry the
axial force. This type of members is called partially prestressed members. We shall also
come back to partially prestressed members for flexure. This type of members is
somewhere in between the reinforced concrete members and fully prestressed members.
The partially prestressed members have both prestressing tendons and non-prestressed

reinforcement to carry the forces.
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Analysis of Members Under Axial Load

Introduction

The study of members under axial load gives an insight
of the bahaviour of a prestiessed member as companad
to an equivalent non-presiressed reinferced concrele
member.

I this presentaton, no eooentnicity of the CGS with
mespect to CGC is considered.

The study of members under axial load gives an insight of the behavior of a prestressed
member as compared to an equivalent non-prestressed reinforced concrete member. Why
at all, are we studying members under axial load, if such members are not common? The
reason is that there are some basic differences between a reinforced concrete member and
a prestressed concrete member, which is easy to understand, if we are studying the axially
loaded members first. This gives an insight into the effect of prestressing on the behavior
of reinforced concrete members. In the case of the members we are studying now, we
will neglect any eccentricity of the prestressing tendons with respect to the CGC, which
means we are considering that the CGS lies at the level of the CGC.
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Analysis of Members Under Axial Load

Introduction

Thi analysis of members refers 1o the evaluatian of the
following.

f) Permissible prestress based on allowable stresses ot
tramsder.

Z) Stresses under zervice oads, These are compared
with allowakble stresses under service conditions.

The analysis refers to the following.

First, we shall study the permissible prestress based on allowable stresses at transfer.
Earlier we had known that the load stages in a prestressed concrete member can be
divided into several stages; the first one is the stage at the transfer of prestress; second, is
the stage during transportation of the prestressed member from its casting site to its
permanent position; third, is the stage under service loads and finally, under some
extreme event, it can be subjected to ultimate loads. For all these load stages, we need to
study the stresses, or the strength. Here we are first studying the stresses at transfer and

based on the allowable stresses at transfer, the maximum prestress is determined.

Second, we are studying the stresses under service loads. These stresses are compared
with the allowable stresses under service conditions. Remember that the allowable
stresses can be different at transfer and under service conditions. We have studied the

allowable stresses under the module of “Material Properties”.
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Analysis of Members Under Axial Load

|mtroduction

3) Uitimate strength. This is compared with the demand
under factored [aads,

&) The entire axial load versus deformation behaviour.

Third, we shall study the ultimate strength. This is compared with the demand under the
factored loads. That means, in a limit state design, we compare the ultimate strength with
the demand under ultimate loads, which are the load factors times the characteristic loads.
Finally, we shall study the entire axial load versus deformation behavior to understand
the full property of the prestressed concrete member. First, we are studying the analysis at
transfer.
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Analysis of Members Under Axial Load

Analysis af Transfer
The stress in the concrete () can be calculated as
Iallaws.

P

-

(2a-1)

Here,
P, = prestress at transfer after shori-berm losses.

No non-prestressad reinforcement wis considersd in
the section.




The stress in the concrete can be calculated as follows. The stress is given as the ratio of
the prestress at transfer after short-term losses divided by the area of the concrete. In this
expression, we have not considered any non-prestressed reinforcement. Just note that we

are considering a negative sign for a compressive stress under the prestressing force.
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Analysis of Members Under Axial Load

Analysis al Tramsler

hmﬂ mn-puﬂmﬂ neinforcement, the stress
i the concrete can be calculated as follows.

|
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The permissible prestress is determined based on /. to
be within the allowable stress at transher.

In presence of non-prestressed reinforcement, the stress in the concrete can be calculated
as follows. The stress is given by the prestress at transfer divided by a transformed area,
which is equal to the area of the concrete plus the modular ratio of the reinforcement steel
times the area of the reinforcement steel. This denominator is higher than just the area of
the concrete. The permissible prestress (Po) is determined based on f; to be within the
allowable stress at transfer, which means, we can apply the prestress up to a certain level

such that the stress under transfer is within the allowable value.

Next, we are studying the analysis at service loads.
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Analysis of Members Under Axial Load

Analysis at Service Loads

The stresses: in concrete can be calculated as Tolkows.
A g
==t 3a-3
AA U
Here,
P = pxternal axial force
(I the equation, + for teniles force and vice versa ]
P, = effective presiress.

No non-prestressed reinforcement was considered in
ie: section.

The stresses in concrete can be calculated by the following expression: — P¢/A. £ P/A;,
where P is the effective prestress after the long-term losses, A is the area of the
concrete, P is the external force and A is the transformed area. If we have a tensile force,
then we shall use the “+” sign and if we have a compressive external force, then we shall
use the ‘-’ sign. The stress in the concrete is equal to the compressive stress, which is
generated by the effective prestress, plus or minus the stress that is generated by the axial

load. In the expression, we have not considered any non-prestressed reinforcement.

10
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Analysis of Members Under Axial Load

Bnalysis at Serviee Loads

i there is non-prestressed reinforcement, A_is to be
subistituted by (A, + (EJE) A,] and A, I3 to be
calculated including A,

This m:nﬂg ahculd ba within the allowable straag
under service condiilons.

If there is non-prestressed reinforcement, then the area A is to be substituted by A. plus
the modular ratio times As, and the transformed area A is to be calculated including As.
That is, the way we have included As in the previous expression, similarly, we shall

include A in this expression as well.

The value of f; should be within the allowable stress under service conditions. As | said
before, the allowable stress under service conditions is different from the allowable stress
at transfer. We need to make sure that the total stress that is generated by the effective
prestress and the external load, should be within the allowable stress under service

conditions.

Next, we are moving on to the analysis of ultimate strength.

11
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Analysis of Members Under Axial Load

Analysis of Ullimate Strength

Thi uiltimatis tensile stranglh of a section (P ) can be
calculated as per Clause 22.7, [5:1343 . 1580.

P, - 08T, A (3a-4a)

in presence of non-prestressed reinforcement,

P = 0871, A, + 0871, A, (3a-4b)

The ultimate tensile strength of a section (which is denoted as Pr, the ultimate load of
resistance) can be calculated as per Clause 22.3 of 1S: 1343 — 1980. The ultimate load in
absence of any non-prestressed reinforcement is given as 0.87f,Ap, where the area of the
prestressing tendon is A,. If we have non-prestressed reinforcement, then the ultimate
tensile strength is given as 0.87f,A;, where A is the area of the non-prestressed

reinforcement, plus 0.87f,Ap. Here 0.87 is the inverse of 1.15, the material safety factor.

12
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Analysis of Members Under Axial Load

Analysis of Ultimate Strength

In the previaus equations,
f= characteristic yield stress for non-presiressed
reinforcement with mikd sieel bars
= characteristie 0.2%. proof stress for non-prestressed
reinforcement with high yiedd strength deformed bars.
1,.= characteristic tensile strength of prestressing

The ultimate strength should be greater than the demand
dise to factored |ends.

In this previous equation, fy is the characteristic yield stress for non-prestressed
reinforcement with mild steel bars, the bars which have a definite yield plateau. The
stress corresponding to the yielding is denoted as fy. For high strength deformed bars, fy
is equal to the characteristic 0.2 proof stress. We have learnt that the proof stress is the
stress corresponding to a particular plastic strain. The 0.2 proof stress is obtained by
drawing a line parallel to the initial modulus and it starts with a plastic strain of 0.002.
Wherever this parallel line intercepts the stress-strain curve, the corresponding stress is
termed as the 0.2 percent prestress. fy is the characteristic tensile strength of the

prestressing tendons.

Once we know the material properties of both the types of steel, we can find out the
ultimate tensile strength of a member. This ultimate strength should be greater than the
demand due to factored loads. Here, there is a difference between the analysis at transfer
and service loads with the analysis at ultimate strength. For transfer and service loads, we
calculated the stresses and compared the stresses with the allowable value, whereas for
the ultimate loads, we first computed the ultimate strength and then, we compared the
ultimate strength with the demand under the ultimate loads or the factored loads. Hence,
to summarize, the computation for the stage at transfer and that at service loads is based

on stresses where we use an elastic analysis; whereas the computation for the ultimate

13



strength is based on strength and not stresses, and there we use non-linear material

properties of the steel.
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Analysis of Members Under Axial Load

Analysis of Uitimate Strength

The ultimate comprésshig SIFEngth of & section (P, g) can
b CRlCULItEd (M pretendd of moments by the use of
interaction diag rams.

Fiar 3 mamber under Compressian with minirmum
eccentricity, the ultimate strength (s ghven as follows.
Here, the contribution of prestressing steel is neglected,

Poe =0A A +06TT, A, [3a-5)

If we are calculating the ultimate compressive strength, then the expression in presence of
moments, can be found out by the use of interaction diagrams. Usually, compression
members are also subjected to moments, like columns. If we have to find out the ultimate
compressive load in presence of moments then we have to use the interaction diagrams
that we have learnt under reinforced concrete. The code IS: 1343 allows us the method

given in IS: 456 to find out the ultimate compressive strength in presence of moments.

For a member under compression with minimum eccentricity, we can neglect the use of
the interaction diagrams and then the ultimate strength is given by the following
expression: Pyr = 0.4 fo Ac + 0.67 fy As. In this expression, we have considered that
both the materials have reached their ultimate capacities and also we have introduced a
factor to consider the effect of minimum eccentricity. We find that the ultimate strength
is a summation of the compressive strength of the concrete and the compressive strength
of the reinforcement steel. In this expression, the contribution of prestressing steel has
been neglected. Usually, the area of prestressing steel is very small and it need not be
considered in considering the compressive strength of an axially loaded member.

14



Thus, till now what we have studied is: first, the analysis at transfer where we found out
an expression of the stress. Since the stress has to be less than the allowable stress at
transfer, we have to limit the maximum prestress that can be applied. We studied the
analysis at service loads, where we found out the stresses due to the effective prestress
after the losses and the external load that acts on the member. Then, we found out the
ultimate strength, when both the materials, steel and concrete, are reaching their ultimate
capacities. We are comparing this ultimate strength with the demand, which is coming
under the factored loads. The ultimate strength has to be larger than the demand under the
factored loads. Next, we are moving on to the study of an important aspect. It is the

complete load versus deformation behavior of the axially loaded member.
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Analysis of Members Under Axial Load

Analysis of Behaviour

The analysis of behaviour refers to the determination
of the complete axial load versus deformation
behaviour.

The analyses at transfer, under service loads and for
ultimate strength correspond to three instants in the
abowve behaviour.

The analysis of behavior refers to the determination of the complete axial load versus
deformation behavior. The analyses at transfer, under service loads and for ultimate
strength correspond to three instants in the above behavior. Whatever we have studied till
now are just three points in the complete load versus deformation behavior. The load
versus deformation behavior is an entire curve, which shows how the member will

behave, when we are gradually increasing the externally applied load.

15
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Analysis of Members Under Axial Load

AREyEES of Béhsiour
The analysis invoives three principles of mechanics,

1) Equilibrium of internal forces with the sxternal losds
&t 3Ry polnt Of the G wWersus dendrmalion
bafdviowur. The intemal fofnces in cone el and sleal
ame evaluated based on the mmm
sectional areas and the constitutive

The analysis involves three principles of mechanics.

First is the equilibrium of internal forces. Here, the internal forces are in equilibrium with
the external loads at any point of the load versus deformation behavior. This is a very
important principle of mechanics that at any time, the structure is under static
equilibrium. It means that the internal forces that are generated within the member and
the external load are in equilibrium, and we can write the equations of statics at any point
of this load versus deformation behavior. The internal forces in concrete and steel are
evaluated based on their respective strains, cross-sectional areas and the constitutive
relationships.

16
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Analysis of Members Under Axial Load

Amealysis of Bahaviour

) Compatibility of the strains in concrete and in steel
for bonded tendons. This assumes a perfect bond
between the two materials. For unbonded tendans,
tihe compatibil ity is in terms of deformation.

J) Constitutive relationships relating the stresses and
e strains in the mateniais, The relationships ane
developed based on the material properties.

The second principle is the compatibility of the strains in concrete and in steel for bonded
tendons. This assumes a perfect bond between the two materials. This is another
important principle that the concrete and the prestressing tendon and any other non-
prestressed reinforcement, if they are present, they deform together. The strain that the
concrete undergoes at the level of the steel is same as the change in the strain in the
prestressing tendon, and also it is equal to the strain in the corresponding level of the

reinforcement.

The strain compatibility is true when we have a bonded tendon. In a pre-tensioned
member, the tendons are bonded with the concrete. In a post-tensioned member, if we
grout the member, then also the tendons are bonded with concrete and we can expect
strain compatibility between the concrete and the steel. For unbonded tendons, the
compatibility cannot be expressed in terms of strain, but it can be expressed in terms of
overall deformation. In this lecture, we are not considering unbonded tendons. We are
just studying bonded tendons, where we shall assume strain compatibility between the

concrete and the steel.
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The third principle of mechanics is the constitutive relationships. The constitutive
relationships relate the stresses and the strains in the materials. These relationships are

developed based on the material properties.
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Analysis of Members Under Axial Load

Equilibrium Eguation

R Ay (e, the &quilbrium i given by the falowing
equation.

FE‘J:'*"-’:";,: [34-8)

Here,

f. = stress in concrate

f, = siress in non-presiressed reinfiorcement
f, = siress in presiressed tendons

P = axial foree.

The first principle, that is equilibrium, can be expressed at any instant of the load versus
deformation behavior by this following equation: The external load is equal to the
internal force in the concrete plus the internal force in the non-prestressed reinforcement
plus the internal force in the prestressing tendon. Here, f is the stress in the concrete, fs is
the stress in non-prestressed reinforcement and f, is the stress in the prestressed tendons.
The axial force which is externally applied is a summation of the internal forces that are

generated within the concrete, steel and the prestressing tendon.

18
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Analysis of Members Under Axial Load
Compatibility Equations

For non-presiressed reinfarcement

L=,

Fer prestressed tendons

i:P=r.r_+.d.ln

Here,

£_= strain in concrete at the level of the steal
i, = straifl in non-prestressed reinforcenent
- siraim in prestressed iendons

ﬂp*ﬂﬂm difference in préestressed lendons with
adjacent concrete

Next, we are writing the equations of compatibility. For non-prestressed reinforcement, &
which is the strain in the non-prestressed reinforcement is equal to . which is the strain
in the concrete at the level of the steel. We are trying to express that both the non-
prestressed reinforcement and the concrete deform together. Hence, the strains of the
concrete at the level of the non-prestressed reinforcement are same as that of the strain in
the steel. For the prestressing tendon, the strain in the tendon is given as the strain in the
concrete plus an additional term, which is called the strain in the prestressed tendon at the

decompression of concrete.

19
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Analysis of Members Under Axial Load
Compatibility Equations

The sirain difference [4g,) is the sirain in the prestressed
tendong whien the conchele Nas rero straim (€= 0). This
occurs when the strain due to the exbarmdal tensike axiEal
load balances the compressive strain dus to prestress.
This stage |5 called the decompraision of concrate.

e

Here,

£, = sirain in lendons due io P, the presiress at service
£,, = Sirain in concrete due ta P,

For tension, Af, can be denoted £,

Let us try to understand this additional term in the strain compatibility equation of the
prestressed tendons. The strain in the prestressed tendons at the decompression of
concrete, which is denoted as ggec IS the strain when the concrete has zero strain. How are
we defining the strain at decompression of concrete? It is the strain in the prestressing
tendon, when the strain in the concrete is zero. The concrete is no more under
compression. It has been decompressed under the externally applied load. This occurs
when the strain due to the external tensile axial load balances the compressive strain due
to prestress. It means whatever strain the prestress is applying on the concrete member,
the external load is applying an equal and opposite strain and hence, the strain in the
concrete is finally equal to zero. For pre-tensioned and post-tensioned members, the
values of gqc are different. The reason behind this difference is the different way of

applying the prestressing force.
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Analysis of Members Under Axial Load
Conatitutive Relationhips

The constitut e relationships can be expressed in the
follzwing fonms basad on the material stress-sirain
curves shown (n the Module “Introduction, Prestressing

Systems and Material Praperties”,

Foi conc bl Undal compréssion f=Fc) | [(Badi)

For prestressing steel f=Filg) | (3a12)

For reinforcing steel f=Fe) (3813

Next we move on to the third principle of mechanics which is the constitutive
relationships. The constitutive relationships can be expressed in the following forms,
based on the material stress-strain curves shown in the module of introduction,

prestressing systems and material properties.

For concrete under compression, we have an expression which is f; is equal to some
function of .. We are writing that function as Fi(ec). For prestressing steel, the
relationship can be written as f, is equal to some function of &, and we are denoting this
function as F,. For reinforcing steel, the constitutive relationship can be written as fs is
equal to some function of & and this function is denoted as F3. Let us try to understand

the constitutive relationship for each of the materials individually.
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Analysis of Members Under Axial Load

Constitutive Relationships

Thie stress versus SiTain curve ToF concnete is shown
bedow. The first and third guadrants represent the:
behaviour under (ension and compression, mp-ﬂl'ulgr

The stress versus strain curve for concrete is shown in this figure. Here, the first quadrant
or the quadrant at the top right represents the behavior under tension. Once the concrete
cracks, we are not considering any stress in the concrete. The curve in the first quadrant
can be considered to be linear elastic, where f is equal to Ee.. The third quadrant, which
is the lower left quadrant, represents the behavior under compression, where the behavior
is a parabolic form and we have seen the expression of Hognestad’s equation for normal
strength concrete, and the expression by Thorenfeldt, Tomaszewicz and Jensen for high
strength concrete. We can use the expressions to get the functional form relating f. and
gc. Thus, for positive values of g;, we are using the linear elastic relationship. For a

negative value of ¢, we are using the relationship for concrete under compression.
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Analysis of Members Under Axial Load

Constitutive Relationships

Thie stress versus strain curve for prestressing tendon (§
as given below.

The second constitutive relationship is for the prestressing tendons. We are considering
only the relationship for tension. Here we see that initially, the prestressing force is
almost linear and then we have a curved behavior till it gains its ultimate strength. The
variation of f, with respect to €, can be given in the form of a curve in a graphical paper,
or it can be given in the form of a table, or we can try to fit some equation. Once we have
either one of these forms, we say that we are able to express the stress f,, in terms of g, in

this functional form, which is denoted by f, = Fa(gp).
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Analysis of Members Under Axial Load

Consiftutive Relationships

The following stress versus strain curve is for
reinforcing stesl,

The third constitutive relationship is for the stress-strain curve for reinforcing steel. Here
we have shown the behavior, both for the tension quadrant at the top right and for the
compression quadrant, which is for the bottom left. We see that for either of the
quadrants, the behaviour initially is elastic. For mild steel, we have a definite yield
plateau and then we have a strain hardening region till it reaches its ultimate strength. If
we do not have mild steel then we will not be seeing this yield plateau. But we will have
a curve, which again will be given in either a graphical form or in a tabular form. This
relationship between fs and & is expressed in terms of the equation fs = F3(gs). This
functional representation of the constitutive relationship implies that given a strain in the

material, we are able to calculate the stress.
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Analysis of Members Under Axial Load

The equilibrium and compatibility equations and the
constitutive relationships can be solved to develop the
axial force versus deformation curve. Considering ¢ as
an average sirain and neglecting the tension stiffening
effect of concrete, the deformation can be calculated as
£ L, whare L is the length of the membaer.

The following plot shows the axial foree versus
deformation curves for a prestressed and a non-
prestressed sections. The (wo sections are eguivalent in
their ultimate tensile strengths.

The equilibrium and compatibility equations, and the constitutive relationships can be
solved to develop the axial force versus deformation curve. Here, we have seen a set of
equations. First, we have seen an equilibrium equation, where the external load is equal
to the summation of the internal forces. Next, we saw a set of compatibility equations,
where for the reinforcement steel, we saw &s = ¢¢. For the prestressing tendons, we have
seen g, = & + &dgec. Then, we had three equational forms for the constitutive

relationships: fs is a function of s, f. is a function of g, and f,, is a function of ¢.

Once we have the set of equations, these equations can be solved simultaneously. Say, for
a particular value of g, we can calculate €; and €,. From these values of strains, we can
calculate f¢, fs, and f, respectively, plug them in the equilibrium equation and get the
axial force P. The axial deformation is given as gcL, where L is the length of the member.
It means for any value of ¢, we can determine a value of P and a value of the axial

deformation.

The following plot shows the axial force versus deformation curves for members with
prestressed and non-prestressed sections. Here, the two sections are considered to be
equivalent, in terms that their tensile strengths are same.
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Analysis of Members Under Axial Load
Axial force:

_—

__—— Tensile sirengths

The orange curve is the axial force versus deformation curve for a section without any
prestressing. It is just reinforced with conventional steel. We see in the tension quadrant,
that the axial force increases linearly with deformation till the member cracks. In this
region, the elastic analysis is applicable. After cracking, there is a drop in the axial force
till the system comes under equilibrium, and again the axial force increases with
deformation. But this time, it increases with a lower stiffness. The rate of increase of the
axial force with deformation is low as compared to the pre-cracking behavior. Finally,
when it reaches the yield stress of the steel, there is no increase in the axial force
(neglecting the strain hardening of steel) and the member is considered to achieve its

ultimate tensile strength.

On the other hand, if we look into the behavior in the compressive quadrant, then we see
that initially the behavior can be almost linear elastic. But then, we see non-linearity due
to the non-linear behavior of concrete. These curves are a schematic representation of the
axial load versus deformation behavior. The exact curve depends on the equations that we

are using and the type of steel that we have.

Compared to a non-prestressed section, which is represented by an orange line, let us

observe what happens to a prestressed section which is represented by the blue line. The
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first thing we see is that the curve for the prestressed section is at an offset from the
origin. It means that at zero external force, we have some negative deformation. That is,

under prestressing, we have an axial compression in that member.

Next, as we are increasing the axial tension, we are achieving a zero deformation for a
certain value of the axial load. It means that we need to have some external tensile load to
have zero deformation in the member, and that instant is called the decompression of the
concrete. The deformation increases with the axial force till the member cracks. What we
observe is that this cracking level is much higher compared to the cracking level for a
non-prestressed section. That is, the beauty of a prestressed member is that the cracking
level is much higher than the non-prestressed member. Once it cracks, the behavior is
similar to the reinforced concrete member. That is, there will be an increase in the
required axial force with deformation, but with much reduced stiffness. The increase in
axial force is till the section achieves an ultimate strength, beyond which it may stay

constant depending on the type of steel.

On the other side, if we are applying compressive load then we see that the behaviour is
similar to reinforced concrete. However, it does not achieve the same compressive
strength as that of the reinforced concrete. Here the concrete is under a pre-compression
and hence, it reaches its ultimate strength at a lower external load. These two curves give
the essential difference between a reinforced concrete member and a prestressed concrete

member.
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Analysis of Members Under Axial Load

From the previows plot, the fallowing can be infermed.
1) Prestressing increases the cracking load,

2} Presiressing shifts the curve from the origin,

== For the presiressed member, there (5.2
compressive deformation in sbsence of external axial
force.

~= A certain amount of extemal foree is required to
decompress the member.

Let us try to understand them with some logical statements.

The first one is that prestressing increases the cracking load. In the first lecture, | had said
why is concrete prestressed at all. The basic reason is that concrete is weak in tension as
compared to compression, and to check the cracking of concrete, to make up for the
weakness of concrete under tensile load, prestressing is done. Once we prestress a

member, the cracking load is increased

The next inference we have is that prestressing shifts the curve from the origin. The two
analogous statements are: first, for the prestressed member, there is a compressive
deformation in absence of external axial force. We can see that even if there is no
external force in the prestressed member, there is a compressive deformation in the
axially loaded member, because that comes due to the effect of prestressing. The second
corollary statement is that a certain amount of external tensile load is required to
decompress the member. We need some external load to have zero strain in the concrete.
These two aspects are unlike reinforced concrete. In reinforced concrete, if there is no
external load, then there is no strain in the member, and also we do not need any external

load to have zero strain in the concrete.
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Analysis of Members Under Axial Load

3} For a given tensile load, the deformation of the
presiressed member (3 smalker.

== Prestressing reduces delonmation ot serviee oads.
4) For a given compressive [oad, the deformation of
the prestressed mormiber is langer.

— Prestressing s detrimental for the res ponse under
compression.

The third statement is, for a given tensile load, the deformation of the prestressed

concrete member is smaller.

(Refer Slide Time: 44:15)

Analysis of Members Under Axial Load

—— Tenslle strengths

Coampress vt strenglhs

— Prestressed secthon
Mon-prestreased section

If we go back to the previous figure and if we pick up any axial tension, we see
corresponding to the force, the orange line is much shifted from the blue line along the

deformation axis. What it means is that the deformation of the reinforced concrete
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member is much higher as compared to a prestressed concrete member for a given level
of the axial force. Thus, prestressing reduces deformation at service loads. This is an
important benefit of prestressed concrete members, that is, if we prestress a member then

we will have less deformation under service loads.

The fourth inference is that for a given compressive load, the deformation of a
prestressed concrete member is larger. From the two curves, we observe that for a given
axial force, the blue line is shifted from the orange line on the left hand side; that means,
the deformation of a prestressed concrete member under compression is more than the

deformation of a corresponding reinforced concrete member.
We can conclude that prestressing is detrimental for the response under compression.

(Refer Slide Time: 45:42)

Analysis of Members Under Axial Load

5} The compressive strength of the prestressed
AETBET IS IWer,

== Prestressing s detrimental lor the compress ine
strength.

6] For a partially prestressed seetion with the sam
witimnade: stremgth, the axis losd versus deformation
curve will lie in batween the curves for prestressed
and non-prestressed seclions.

The fifth inference is that the compressive strength of the prestressed member is lower.
We have taken two sections, which have equivalent tensile strength. What we find is that,
if we prestress then the compressive strength of the prestressing member is lower. Hence,

we can see that prestressing is actually detrimental for the compressive strength.
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The sixth inference is that for a partially prestressed section with the same ultimate
strength, the axial load versus deformation curve will lie in between the curves for

prestressed and non-prestressed sections.

(Refer Slide Time: 46:33)

Analysis of Members Under Axial Load

—— Tenslle strengths

Coampress vt strenglhs

— Prestressed secthon
Mon-prestreased section

The orange line represents the curve for a reinforced section. The blue line represents the
curve for a prestressed section, both of which have equivalent tensile strength. If we pick
up a partially prestressed section which has both prestressing tendons as well as
conventional reinforcement, and if it is also of the same tensile strength, then its axial
load versus deformation curve will lie somewhere in between the orange and the blue

lines.
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Analysis of Members Under Axial Load

The above conclusions are genenc for prestessed
FrEmibers,

Releremc:
Collins, M. F. and Mitchell, 0., Prestressed Concrete
Struciures, Prentice-Hail, Inc., 1881,

The above conclusions are generic for prestressed members. The purpose of studying this
behavior under axial load was to understand the essence of prestressing compared to
reinforced concrete members. The observations are similar for any other prestressed
members, such as members under flexure. This material has been taken from the book

Prestressed Concrete Structures, written by Collins and Mitchell.

(Refer Slide Time: 47:55)

Summary

Analysis of Mombers Under Axisl L oad
Introdiction
Analysis at Transfer
Analysis at Service Loads

Analysis of Ultimate Strangth
Analysis of Behaviour
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Today we studied the analysis of members under axial load. Such members can be very
few and far between, because we do not have members which are purely under axial load
very frequently. We may have some hangers or ties which are under axial tension. We
may have piles which may be under axial compression or axial tension but usually, piles
are also subjected to moments and shear. But, the whole purpose of studying the behavior
of members under axial load is to understand the difference of the prestressed members
and the reinforced concrete members. It gives us a foundation to understand the analysis

procedure for members under flexure.

First, we studied the analysis at transfer where we have found that based on the allowable
stresses at transfer, we can determine the maximum amount of prestressing force that we
can apply. Next, we studied the analysis at service loads where we determined the
stresses using elastic analysis, from the effective prestressing force (after the long-term
losses) and the external characteristic loads. The stresses under this effective prestressing
force and external loads should be within the allowable stresses under service. A member
can be either fully prestressed, where we do not take account of any non-prestressed
reinforcement for the strength, or a member can be partially prestressed, where we take

advantage of non-prestressed reinforcement also.

We studied the analysis of ultimate strength, where we found out the maximum capacity
of an axially loaded member. It can be either the tensile strength or it can be the
compressive strength. This strength has to be larger than the demand that comes from the
external factored loads. Next, we moved on to the analysis of behavior where we studied
the complete load versus deformation curve of an axially loaded member and we have
seen that this needs three principles of mechanics. The first is the equilibrium of forces,
which means that the external load is equal to the internal forces that generates in the
concrete in the reinforcement steel and the prestressing tendon. The second is the
compatibility relationship, where we have seen that the strain in the steel is related with
the strain in the concrete. For the non-prestressed reinforcement, the strain g5 = ¢ of the
concrete at the level of the steel. For the prestressed reinforcement, e, = g¢ + &gec, Where

€dec 1S the strain at decompression of concrete. The strain at decompression means it is the
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strain in the prestressing tendon, when the concrete has zero strain. The expressions of

€gec are different for the pre-tensioned and post-tensioned members.

For the pre-tensioned members, eqec is equal to ey, which is the strain right before the
cutting of the tendons. For the post-tensioned members, gqec is equal to gy after transfer

plus the corresponding strain in the concrete.

The third principle is the constitutive relationships. When we solve the simultaneous
equations, we get the complete load versus deformation curve. We have seen for a
prestressed member, that the curve shifts from the origin. The cracking load is higher.
The deformation under service load is lower compared to a reinforced concrete member.
Prestressing is not beneficial for compression. The difference in the behaviour between
the reinforced concrete and prestressed concrete members are quite generic, and it will
help us to understand the behavior of members under flexure. In our next lecture, we

shall move on to the analysis of members under flexure.

Thank you.
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