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In today’s class, we will develop finite element formulation for two node beam element. 

Before we proceed with that, let me summarize what we have done in the last class. In 

the last class, we derived the governing differential equation for beam bending problem 

and while deriving this, we also looked at various sign conventions that we adopted, that 

is, for the nodal degrees of freedom, applied forces, moments, internal moments and 

shears. The sign conventions are very important, because the entire equation or the 

subsequent calculations will be based on the sign conventions. While deriving these 

governing differential equations for beam problem, what we did is, we used conditions of 

equilibrium; that is, sum of all forces in the transverse direction is equal to 0 and sum of 

all moments taken about a point is equal to 0. We got the relation between the shear 

force and the applied load, and also bending moment and shear force. In a way, we can 

find what the relation between bending moment and applied load is. 

After that, what we did is, we assumed that these transverse displacements are small; 

based on the assumption that plane sections remain plane, we derived the relation 

between the displacement in the x direction and the derivative of transverse 

displacement. Then, we derived strain – what is the relation between strain and 

transverse displacement. Then, we used Hooke’s law and got the relation between stress 

and strain. Then, taking moment equilibrium about a cross section, we developed a 

relationship between bending moment and transverse displacement. Once we got this 

relation, we can substitute what is the relation between bending moment and load 

applied. Through this, we got the governing differential equation. It turns out that this 

governing differential equation for beam bending problem is a fourth order differential 

equation. So, we require four boundary conditions to solve this problem. These boundary 

conditions can be a combination of any of the four boundary conditions; that is, 

transverse displacement, rotation and bending moment, shear force. Here I want to 



emphasize that rotation is nothing but first derivative of transverse displacement and 

bending moment is nothing but second derivative of transverse displacement multiplied 

by modulus of rigidity or EI. Shear force is related to third derivative of transverse 

displacement; it is equal to EI times third derivative of transverse displacement with 

respect to the spatial coordinate, which is x. 

Now, with that, what we did is, later we applied variational approach and we got 

equivalent functional. While deriving this equivalent functional, we applied integration 

by parts or twice, because beam bending differential equation is fourth order differential 

equation. Also, we substituted the relationship between transverse displacement and 

shear force and transverse displacement and bending moment. Also, we used variational 

identities and we derived equivalent functional, which is going to the potential energy for 

beam bending problem for two conditions: first is essential boundary conditions 

specified and natural boundary conditions specified. This equivalent functional turns out 

to be the potential energy for beam bending problem. As you know, potential energy is 

nothing but strain energy minus work done by the applied forces. Here, strain energy is 

nothing but beam bending strain energy and work done by the applied forces are nothing 

but work done by the distributed loads and work done by the point loads – moments and 

forces. 

That is what we have covered in the last class related to this beam bending. In today’s 

class, what we will do is, we will develop a finite element two node beam finite element 

for later computational purposes. So, essential boundary conditions for a beam involves 

– as you know, it is transverse displacement and rotations – both of them specified at the 

ends. So, the trial solution must satisfy these boundary conditions. In finite elements, this 

can be easily done if both transverse displacements and rotations are chosen as 

independent degrees of freedom for each node. 
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A simplest element, which is a two node beam element has 2 degrees of freedom per 

node. A two node straight beam element is shown here in this figure. Here EI is assumed 

to be constant over the entire length of the beam element and also, applied load along the 

element length is uniformly distributed. So, q is uniformly distributed and EI is assumed 

to be constant. We will be using these conditions at the end, when we are trying to 

simplify the stiffness equation and also load vector. 

Now, to develop these shape functions and other things, it is convenient to define a local 

coordinate system as follows. Here you have two nodes: in the x-coordinate system, node 

1 corresponds to x is equal to x 1, and node 2 corresponds to x is equal to x 2. The 

degrees of freedom at node 1 are v 1, theta 1; that is, transverse displacement and 

derivative of transverse displacement. The degrees of freedom at node 2 are v 2 and theta 

2. This entire length, that is, x 1 to x 2 is mapped on to another coordinate system in s, 

where s is equal to 0 corresponds to x 1; s equal to 1 corresponds to x 2. So, the relation 

between x-coordinate system and s-coordinate system is given by s is equal to x minus x 

1 over length of the element, which is nothing but x 2 minus x 1. This relation, that is, s 

is equal to x minus x 1 over L is obtained similar to how we arrived for the bar element; 

that is, we use linear interpolation formula; that is, y minus y 1 is equal to y 2 minus y 1 

divided by x 2 minus x 1 multiplied by x minus x 1. We use that relation similar to what 

we did for two node bar element. Using that relation, we get the relationship between s-

coordinate system and x-coordinate system. 



Once we get this relation, we can find what is ds – a small differential element of length 

ds in s-coordinate system. How it is related to a differential element of length dx in x 

coordinate system? That is given by ds is equal to 1 over L dx. That can be rearranged in 

the manner dx is equal to L times ds. Suppose if there is an integral going from x 1 to x 2 

and if you want to change the limits for integration to 0 to 1; that is, x 1 corresponding to 

0, x 2 corresponding to 1, then the integral, which we need to integrate with respect to x, 

that is, dx term in that integral, we can replace with L times ds, when we change the 

limits of integration from x 1, x 2 to 0 to 1. 
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In terms of s element goes from 0 to 1; that is what I just explained. Since here at each 

node you have 2 degrees of freedom and total 4 degrees of freedom are there, we need to 

choose a cubic polynomial. A cubic polynomial is an appropriate trial solution. If you 

recall – when we are deriving bar element with 2 nodes and with 1 degree of freedom at 

each node, what we did is – since we have 2 degrees of freedom total for two node bar 

element, what we did is, we started out with a linear trial solution. So, depending on the 

number of degrees of freedom, if N number of degrees of freedom, it is better to start out 

with the trial solution having N minus 1 order or degree. So, that is what is done here. 

Since there are 4 degrees of freedom, we are starting with a cubic polynomial for trail 

solution. As we did for bar element, you start out with this kind of polynomial, v is equal 

to a naught plus a 1 s plus a 2 s square plus a 3 s cube. 



Now, our job is to find a naught, a 1, a 2 and a 3. Back substitute these – a naught, a 1, a 

2, a 3 into this equation and group the terms containing the coefficient v 1 theta 1, v 2 

theta 2. Whatever is left in the brackets – that turns out be the shape functions or 

interpolating functions for this beam element. While deriving this beam element – shape 

functions, we are using both transverse displacement and rotation. These kinds of shape 

functions are called hermite shape function. 

Now, let us start. What is theta? Theta is nothing but derivative of transverse 

displacement with respect to x. Using chain rule, dv by dx can be written as dv by ds ds 

by dx. We just learnt that the relation between dx and ds is dx equal to L times ds. So, we 

know what is ds over dx, which is going to be 1 over L. v is already given in terms of s. 

So, one can easily take derivative of v with respect to s. So, dv over dx can be obtained. 

Now, at a each extreme point, that is, at s equal to 0, which corresponds to x 1, we know 

what are the degrees of freedom – transverse displacement is v 1 and derivative of 

transverse displacement is theta 1. Similarly, at the other extreme end, which 

corresponds to s is equal to 1, which is nothing but x 2, we know what is transverse 

displacement and also we know what is the derivative of transverse displacement, which 

are v 1 and theta 2 respectively. 
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We will make the substitutions. Now, let us say at s is equal to 0, substitute s is equal to 

0 into previous equation; that is, v is equal to a naught plus a 1 s plus a 2 s square plus a 



3 s cube. In that, you substitute s is equal to 0, we will be ending up getting a naught is 

equal to v 1. Next, we need to substitute at s is equal to 0; derivative of v with respect to 

x is equal to theta 1. When you do the substitution, we get a 1 is equal to L theta 1. So, 

out of unknown coefficients – a naught, a 1, a 2, a 3, we already obtained what is a 

naught and what is a 1 – by these two equations. 

Now, let us substitute the other condition that at s is equal to 1, v is equal to v 2. 

Substitute s is equal to 1 in the equation v is equal to a naught plus a 1 s plus a 2 s square 

plus a 3 s cube. Then, we obtained this equation, which is a 2 plus a 3 is equal to v 2 

minus v 1 minus L theta 1. Similarly, now, what we need to do is, we need to substitute s 

is equal to 1 in the derivative of v with respect to x, which is equal to theta 2. 

Substituting s is equal to 1, in the derivative of v with respect to x, we get this; equating 

it to theta 2, we get this equation, which is 2 a 2 plus 3 a 3 is equal to L theta 2 minus L 

theta 1. So, we got two equations in terms of a 2 and a 3 and we have two unknowns to 

be determined, which is a 2 and a 3. We can solve these two equations and get a 2, a 3 in 

terms of v 1, v 2, theta 1, theta 2, and L. 
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To solve these two equations for a 2 and a 3, we get a 2 to be this one – a 2 is equal to 

minus 3 v 1 minus 2 L theta 1 plus 3 v 2 minus L theta 2 and a 3 as 2 v 1 plus L theta 1 

minus 2 v 2 plus L theta 2. So, we got all the coefficients a naught, a 1, a 2, and a 3 in 

terms of v 1, theta 1, v 2, theta 2, and L, which is length of the beam element. 
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Now, what we need to do is, substitute all these coefficients – a naught, a 1, a 2, a 3 into 

the equation v is equal to a naught plus a 1 s plus a 2 s square plus a 3 s cube. 

Substituting a naught, a 1, a 2, and a 3 into the trail solution, we get this one. Now, 

rearranging this equation such a way that we group all the terms having v 1 as coefficient 

separately, theta 1 as coefficient separately, v 2, theta 2 as coefficients in a same manner 

separately, we can rewrite this equation in this form. So, whatever is acting like a 

coefficient to v 1 is nothing but N 1, whatever is acting like a coefficient to theta 1, is 

nothing but N 2, whatever is acting like a coefficient to v 2 is nothing but N 3, and 

whatever is acting like a coefficient to theta 2 is nothing but N 4. 
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With this understanding, we can write this equation in a matrix and vector form by 

defining N 1, N 2, N 3, N 4, which are going to be the shape functions or interpolating 

functions for this two node beam element in this manner, which can be compactly 

written as N transpose d. Please note that the N vector is defined as N 1, N 2, N 3, N 4; 

whereas, earlier, for bar element, it is defined as N1, N2. At each stage, you should be 

checking what the shape function vector corresponds to. To avoid confusion, the 

displacement vector d consists of transverse displacement and rotation components at 

node 1 and node 2; that is, v 1, theta 1, v 2, theta 2. As I mentioned, N 1, N 2 and N 3, N 

4 are nothing but shape functions or interpolating functions. If you write these separately, 

they look like this. 

It can be easily checked that N 1 is equal to 1 at s is equal to 0 and N 3 is equal to 1 at s 

is equal to 1. If you plot these shape functions by normalizing N 2 and N 4 with respect 

to L; that is, the equation corresponding to N 2 is divided on either side with L. Then, it 

becomes a function of s alone. So, we can plot how these shape functions look like, when 

s goes from 0 to 1. 
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This plot shows how shape functions vary with respect to s; that is, s going from 0 to 1. 

You can easily observe that N 1 is equal to 1 at s is equal to 0; N 3 is equal to 1 at s is 

equal to 1; N 2, N 4 are normalized with respect to L. We learnt that the trail solution v, 

now, can be written as N 1 v 1 plus N 2 theta 1 plus N 3 v 2 plus N 4 theta 2. 
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Now, we are ready to find the derivatives of trail solution, which are subsequently 

required for deriving the element equations. What is derivative of v with respect to 

transverse displacement with respect to x? Using chain rule, we can write like this – dv 



over dx can be written as dv over ds ds over dx, which can be written as 1 over L dv over 

ds. Substituting what is dv over ds, we get this relation (Refer Slide Time: 22:14). While 

arriving at this relation, v is equal to N transpose d; that is, N 1 N 2 N 3 N 4 values are 

substituted and d is nothing but v 1, theta 1, v 2, theta 2. After making the substitution 

and taking derivative with respect to s, we get this relation. 
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What is the second derivative of transverse displacement with respect to x? Taking one 

more time derivative of this, second derivative of transverse displacement with respect to 

x can be written as derivative of theta value, which is nothing but derivative of transverse 

displacement. Using chain rule, this can be written in a similar fashion as we did in the 

previous equation. Finally, we get second derivative of transverse displacement with 

respect to x as 1 over L square d square v over ds square. 

Now, substituting what is v, which is N transpose d and noting that the nodal values, 

which are nothing but v 1, theta 1, v 2, theta 2 are constants, when we are taking 

derivative with respect to s. Taking second derivative of shape functions, we get this 

relation (Refer Slide Time: 23:57). If you recall, while deriving the relationship between 

bending moment and transverse displacement, we noted that bending moment is nothing 

but second derivative of transverse displacement times modulus of rigidity, which is EI. 

So, bending moment is equal to EI times second derivative of transverse displacement. 



Now, we obtained what is a transverse displacement relation once we know the nodal 

values v 1, theta 1, v 2, theta 2. If you observe this equation, it turns out that this 

equation is linear, whatever two node beam element that we just developed – that gives 

us that captures – bending moment accurately if the variation of bending moment is 

linear along the element length, because s is going from 0 to 1. This relation, that is, 

second derivative of v with respect to x can be compactly written as B transpose d, where 

B is defined as the first row vector along with 1 over L square; as you already know, d is 

nothing but v 1, theta 1, v 2, theta 2. However, if you recall, in the potential energy, we 

require square of second derivative of v with respect to x. Because second derivative of v 

with respect to x is a scalar quantity, we can write this as second derivative of v with 

respect to x – transpose second derivative of v. We just noted that second derivative of B 

is nothing but B transpose d. Substituting that, we get square of second derivative of v as 

d transpose BB transpose d. 

Now, we are ready; we got the trail solution in terms finite element shape functions. 

Also, we just obtained what is second derivative of v and square of that in terms of finite 

element shape functions. 
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Now, the next step is to substitute the trail solution – all these quantities into the potential 

energy equation that we derived. We learned that potential energy is nothing but strain 

energy minus work done by the applied forces. Strain energy here corresponds to beam 



bending strain energy. We already derived this; it is nothing but this – u is equal to half 

integral x 1 to x 2 EI times second derivative of v with respect to x square times dx. As I 

mentioned earlier, we can change the limits of integration from x 1, x 2 to 0 to 1 in s 

coordinate system. By making that substitution, that is, x 1 is equal to 0, x 2 is equal to 1, 

dx is replaced with L times ds, and EI is modulus of rigidity. Substituting what is the 

second derivative of transpose displacements – square of that; that is, d transpose B B 

transpose d. Noting that d vector, which is nothing but v 1, theta 1, v 2, theta 2 they are 

not functions of s, we can take them out of the integral and we can write this bending 

strain energy in a compact form, which is denoted with u there as half d transpose k d. 

Now, k is defined as integral 0 to 1 EI BB transpose L ds and is known as beam elements 

stiffness matrix. This is a general equation. Even modulus of rigidity is not constant, this 

equation can be used and integrated, and we will get the stiffness matrix. 
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Now, work done by the distributed load; that is given by – we already derived this 

equation also earlier – W q is equal to… – that is, W is because of distributed load q – 

that is why subscript q there. So, W q is equal to integral x 1 x 2 q v dx. Changing the 

limits of integration, x 1 is replaced with 0 and x 2 is replaced with 1, dx is replaced with 

L ds, B is substituted – v value in terms of shape functions, and transpose d – noting that 

d is a dependent of s, it is taken out of the integral, the entire thing W q is compactly 

written as d transpose r q; where, r q is defined as integral 0 to 1 q N L ds. This is 

equivalent nodal load vector. This equation is also a general equation even if q, the 



distributed load is the function of x or the function of spatial coordinate that can be 

included inside the integral and integrated, which gives equivalent nodal vector. The 

previous equation and this equation are general equations, which are applicable even if E 

I and q are functions of spatial coordinate. 
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Now, work done by the concentrated forces and moments, which are applied at the 

extreme points of the two node beam element, which are nothing but nodes is given by – 

it is nothing but force times displacement and moments times rotation. This can be 

compactly written as d transpose r f, where r f just comprises of all the forces and 

moments – F1 M1 F2 M2 – is a vector of applied nodal forces. 
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Potential energy, pi can be written by substituting U W f, that is, work done by the 

concentrated forces, which includes forces and moments, loads and moments, and W q, 

which is the work done by the applied distributed forces, is given by half d transpose k d 

minus d transpose r q minus d transpose r f. Now, applying the stationarity condition, if 

you recall, we got potential energy is nothing but equivalent functional in variational 

approach. So, variation of this functional should be equal to 0, which is nothing but 

partial derivative of pi with respect to the unknown parameters, which are here – partial 

derivative of pi with respect to d, gives us element equations. Finally, we get element 

equations from stationarity of the functional. 

Please note that these equations are applicable to any beam element regardless of how 

modulus of rigidity E I and q vary along beam length. Once these values, that is, E I and 

q are specified, numerical integration can be carried out to obtain element equations. We 

will see what is numerical integration in a while or in the later classes. 
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However, we will see a specific case because we started out assuming that modulus of 

rigidity EI is constant and q is uniformly distributed load over the entire element. We 

will take that specific case when E I and q are constants. Then, what we can do is, we 

can explicitly write what is the stiffness matrix and what is the load vector because once 

we take out EI, integrant becomes very simple and we can easily integrate it manually. 

So, by multiplying those two vectors, we get this. 
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Now, integrating all the components, we get this. If you recall, from your matrix analysis 

of structures course, which you must have taken, this is the kind of stiffness matrix that 

you arrive even using any of the matrix methods. The same thing we obtained using 

starting with a finite element beam formulation. Also, starting with variational approach, 

we derived the potential energy equation. Then, we substituted derivative of transverse 

displacement in terms of finite element shape functions. Finally, after simplifying, we 

arrived at this one. The stiffness matrix is a symmetric matrix and all the diagonal terms 

are always positive. Here, only upper triangular part is shown and lower triangular part is 

nothing but reflection of that. 
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We can also simplify r q. Now, assuming q to be constant, you can take that out of the 

integral q and integrating the rest of the terms, we get this. There is no need of 

integration for r f because r f is already obtained as F1 M1 F2 M2. So, the finite element 

equations for a prismatic beam element that is having constant modulus of rigidity or EI 

with uniformly distributed load on the span and concentrated forces and moments 

applied at the nodes, is given by this one – k d equal to r q plus r f. If you substitute what 

is k, d, r q, r f, this is how it looks. We obtained what is r q, which is q L over 2, q L 

square over 12, q L over 2, minus q L square over 12. 
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What is the physical interpretation of this load vector or equivalent nodal loads? Please 

note that this is a sign convention that we are using for nodal degrees of freedom and 

applied forces and moments. With this sign convention for a two node beam element, for 

a constant value of q, that is, uniformly distributed load, we obtained load vector to be 

this one or the equivalent nodal loads at… Nodal loads here includes loads and moment 

at node 1 as q L over 2 and moment as q L square over 12 and q L over 2, minus q L 

square over 12. Here, if you see, it is not just enough to look at this vector as it is, but we 

should also make a note of what is this positive negative means. Here, positive, negative 

means whatever we are using based on the sign convention, that is, for nodal degrees of 

freedom, applied forces and moments – following that convention, this is the vector we 

got. 

Now, let us consider a fixed end beam subjected to uniform upward load. The solution 

for this problem is well known; it is presented in most elementary mechanics of 

deformable bodies text books. Here the figure shows fixed end beam subjected to 

uniform upward load, q along with the end moments and shear forces obtained using any 

of the solution procedures that are given in elementary mechanics of deformable bodies 

text books. Now, all the forces and moments are indicated for this fixed end beams 

subjected to uniform upward load. Following the sign convention for nodal degrees of 

freedom, applied forces and moments, all these forces end moments on this fixed end 

beam with uniform upward load, q – all the moments and forces we can write in a vector 



like whatever is shown there, that is, minus q L over 2. If you see this fixed end beam at 

the left end, their shear force is acting in the negative direction to the sign convention – 

that is why minus q L over 2. Again, at the left end moment is, q L square over 12, which 

is acting in a negative direction. If you follow the sign convention for the applied forces 

and moments, it is going to be minus q L square over 12. Similarly, the rest of the 

quantities. 

Now, if we compare this; comparing the moments and shears with equivalent nodal 

loads, it can be observed that in the both vectors, the magnitude is same except that the 

sign is opposite. Wherever minus sign is there here for fixed end beam at that location, 

we have positive moment; wherever a positive value is there, we get a negative value 

here in this fixed end beam case. So, a physical interpretation is useful in developing 

equivalent nodal load vectors. 

What is physical interpretation? Physical interpretation is the finite element equivalent 

nodal loads are simply fixed end forces with sign reverse. So, if we have a distributed 

load, instead of finding equivalent nodal loads, using finite element shape function 

substitution and doing all the integration and all that kind of stuff – for that 

corresponding span, if you know this fixed end moments and shear, we can put them in a 

vector form. We can reverse the sign – that gives us the equivalent nodal loads for finite 

element calculations. So, this physical interpretation is useful in developing equivalent 

nodal load vectors for more complicated distributed load patterns. Formulas for fixed end 

forces are available in already existing hand books. Using these formulas, the equivalent 

load vectors can be written directly without going through the integration. Not only that, 

we will be using this physical interpretation when we look at a method called 

superposition method in the later lectures. 
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Now, this is about physical interpretation of equivalent nodal loads. In summary, finite 

element equivalent nodal loads are simply fixed end forces with sign reversed. Now, 

once we calculate for the nodal values, that is, v 1, theta 1, v 2, theta 2, what we do is – 

to analyze any beam problem, the element equations are written and then assembled in 

the usual manner depending on the element connectivity. Whatever element equations 

we derived that using those equations, we have to assemble for each of the element 

depending on how many elements are there. Then, assemble these element equations to 

get the global equation system using element connectivity. The solution of global 

equation gives nodal displacements and rotations. So, we will get v 1, theta 1, v 2, theta 2 

for each of the element. After solving for these nodal unknowns, element quantities such 

as bending moment and shear forces in each of the elements, can be computed from the 

shape functions. How we do that? 
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Once we get v 1, theta 1, v 2, theta 2, we go back to the relation v is equal to N transpose 

d; where, N is nothing but N 1, N 2, N 3, N4. Into that, we substitute v 1, theta 1, v 2, 

theta 2. Then, we get displacement at any point in the element, where s goes from 0 to 1. 

So, s is equal to 0 corresponds to one extreme point of the element; s is equal to 1 

corresponds to the other extreme point of the element. So, we can sweep over the entire 

element length and get displacement at any point in the element using this equation. 
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Similarly, bending moment at any point in the element; once we calculate v 1, theta 1, v 

2, theta 2, we can use this relation – that is, bending moment is nothing but EI times 

second derivative of v with respect to x. Please note that second derivative of v with 

respect to x is nothing but B transpose d. So, we get bending moment at any point in the 

element by using this relation – by sweeping from s is equal to 0 at s is equal to 1. So, if 

you just see this equation, it is linear in s. So, as I mentioned earlier, the two node beam 

element that we developed – that gives us accurate prediction of bending moment, if the 

bending moment in that particular beam problem is linear with respect to the spatial 

coordinate. 
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Now, what about shear force? Taking one more time derivative of this, we get shear 

force at any point in the element, is given by this. Once we know v 1, theta 1, v 2, theta 

2, we can substitute in to this equation and sweep from s is equal to 0 to s is equal to 1 to 

get the shear force value at any point in the element. So, if you look at these two 

equations for bending moment and shear force, bending moment is linear and shear force 

is constant. If you see this equation, you can notice that shear force is constant. 

From mechanics of deformable bodies, we know that exact solution for a uniform beam 

subjected to concentrated loading involves constant shear and linear bending moment. If 

you have a uniform beam, that is, where E I is constant and it is subjected to 

concentrated load, we know that shear force is constant, bending moment is linear. So, 



the two node element that we just developed gives exact solution when it is used to 

analyze prismatic beams; that is, EI is constant and subjected to concentrated loads. 

What about if the beam is not prismatic, that is, non-uniform beams? This particular 

element may not give exact solution. So, in that case, we have to use more number of 

elements per span for better accuracy. Not only that, if we have distributed loads, the 

solution may not be accurate and we may need to use some special technique what is 

called a superposition technique. Using superposition, exact solution can also be 

obtained for uniform beams subjected to distributed loading. Therefore, analysis of 

continues beams in which cross-sectional properties do not change in span, requires 

nodes only at the supports and under concentrated loads. So, wherever concentrated load 

is there, better we have a node at that point. 

Whatever beam element that we looked at, is applicable for prismatic beam subjected to 

concentrated loads. If the beam is non-uniform and if we have distributed load, we may 

have to use more number of elements – that is one option. For the case of distributed 

loads, the other option is we can go for superposition method, which we will be looking 

at in the later part of the lecture. In the next class, we will look at a continuous beam 

problem, which is subjected to concentrated loads and we will see how the two node 

beam element that we developed performs. 

Thank you. 


